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Lecture 3
Outline
1. Metric Spaces and Normed Spaces

2. Convergence of Sequences in Metric Spaces
3. Sequences in R and R"



Metric Spaces and Metrics

Generalize distance and length notions in R™

Definition 1. A metric space is a pair (X,d), where X is a set

andd: X x X — R4 a function satisfying
Wy = g,fézﬂ’\‘- -2 0oy

1. d(z,y) >0, d(z,y) =0 x=yVa,ye X

2. d(z,y) = d(y,x) Vz,y € X

3. triangle inequality:

d(z,z) <d(z,y) +d(y,z) Vz,y,z€ X
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A functiond : X x X — R_|_ satisfying 1-3 above is called a metric
on X.

A metric gives a notion of distance between elements of X.
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Normed Spaces and Norms

Definition 2. Let V be a vector space over R. A norm on V is
a function(|| - || \V — R satisfying

1. ||| >0VxeV

Ve

2. |z =0 2c=0VzeV
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3. triangle inequality:

lz +yll < llzf| + lyl| Yo,y € V
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4. ||lax|| = |al||z|| Va € R,z € V

A normed vector space is a vector space over R equipped with

a norm. G N \\-\,\)

A norm gives a notion of length of a vector in V.
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Normed Spaces and Norms

Example: In R", standard notion of distance between two vec-
tors x and y measures length of difference x — vy, i.e.,

d(z,y) = |z — yll = /Shey (@ — 1)

In an abstract normed vector space, the norm can be used anal-
ogously to define a notion of distance.

Theorem 1. Let (V.|| -||) be a normed vector space. Let
d:V xV=>R_ be defined by

d(v, w) = [jv — w]|

Then (V,d) is a metric space.



Proof. We must verify that d satisfies all the properties of a

metric.
1. Let v,w € V. Then by definition, d(v,w) = |lv — w| > 0
(why?), and

Jecto add A

dlv,w) =0 & |lv—w| =0 :
& v—wZO/ e
s (v+(~w)+wvw=w __—
S v+ ((—w)+w) =w Jc o= O
S v+ 0=w _L s Y= ~XK
=< UV=w

%\%WM%..Q. First, note that foranyxze¢V,0-2=(040)-2=0-2+0-x,
so0-z=0. Then0=0-2=(1-1)-z2=1-2z4(-1) -2 =

’\" W
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© - x4+ (=1) -z, sowe have (=1) -z = (—xz). Then let v,w e V.

d(v,w)

v —w

— 1ffjv — w]
(=) (v + (—w))|
(=Dv+ (=1)(—w)|
— v+ w||

w + (—v)|

w — v

d(w, v)
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3. Let u,w,ve V.

dlu,w) = |lu— w|
u+ (—v+v) —wl
= lo—v+@ -]
< lu =l + v —wl

d(u,v) + d(v, w)

Thus dis a metric on V.
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Normed Spaces and Norms

Examples

e E": n-dimensional Euclidean space.

n

V=R" [z|2=|z| = J > (2)°

1=1

%o e U

—

n
e V=R", |z|s = X |z;| (the "taxi cab” norm or L! norm)

1 =1

o V =R" |z]co = max{|z1]|,...,|zn|} (the maximum norm, or

sup norm, or L° norm)
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\J =
e C([0,1]), [[fllooc = sup{|f(¥)|:t € [0,1]}

0,1, Iifllo = VIEGF)2 dt

N\ -
o C([0,1]), |Ifll1 = Jg |F ()] at
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Normed Spaces and Norms

Theorem 2 (Cauchy-Schwarz Inequality).
If v,w € R", then

n 2 n X n ,
Lew oo > = w2 uaTiwl
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Equivalent Norms

A given vector space may have many different norms: if || - || is
a norm on a vector space V, so are 2||-|| and 3|/ - || and k|| - || for
any k£ > 0.

Less trivially, R"™ supports many different norms as in the ex-
amples above. Different norms on a given vector space yield
different geometric properties.
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unit balls around 0 in different norms 3




Equivalent Norms

Definition 3. Two norms || - || and || - ||* on the same vector
space V are said to be Lipschitz-equivalent ( or equivalent ) if

dm, M >0 s.t. Vz eV,

ml|z|| < [lzf|" < M|z|

Equivalently, Am, M > 0 s.t.|Vxz € V,x #= 0,

*
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Equivalent Norms

In R™ (or any finite-dimensional normed vector space), all norms
are equivalent. Roughly, up to a difference in scaling, for topo-
logical purposes there is a unique norm in R".

Theorem 3. All norms on R"™ are equivalent.

Infinite-dimensional spaces support norms that are not equiva-
lent. For example, on C([0,1]), let f,, be the function

fn(t):{ 1 —nt iftE ,n

0 ftE
Then
| fnllz :ﬁ:_%o T
[frlle 1 2n
W&\ = 3\ LS GO\ o = 3w "



Metrics and Sets

Definition 4. In a metric space (X, d), a subset S C X is bounded
if dx € X, 0 € R)rsuch that Vs € S, d(s,x) < .

In a metric space (X,d), define for <«>o

Be(z) = {yeX:d(yz)<e}
— “open’ball with center x and radius e
Belz] = {y€ X :d(y,z)<e}

“closed ball with center x and radius e
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We can use the metric d to define a generalization of “radius’.
In a metric space (X,d), define the diameter of a subset S C X

by
diam (S) = sup{d(s,s’) : s,s' € S}

Similarly, we can define the distance from a point to a set, and

distance between sets, as follows:
d(A,z) = infd(a,x)
acA
,;\L o d(A,B) = inf d(B,a)

acA
= inf{d(a,b) :a € A,b € B}

But d(A, B) is not a metric.

14
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Convergence of Sequences

Definition 5. Let (X,d) be a metric space. A sequence {xn}
converges to x (written x, — x© or liMp—coc xp = x) if

Ve > 0 aN(;/)/e N s.t. n> N(¢) = d(zn,z) < ¢

Notice that this is exactly the same as the definition of con-
vergence of a sequence of real numbers, except we replace the
standard measure of distance |- | in R by the general metric d.

« «>0 kX o =% N N B W O
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Uniqueness of Limits

Theorem 4 (Uniqueness of Limits). In a metric space (X,d), if

rn — x and x, — x/, then x = «’.

Proof. Suppose {z,} is a sequence in X, =, — x, xn — ', * %= 2’

16



Since x # «/, d(z,z’) > 0. Let

_d(a:,:z:’) 5 ©

2

€

Then there exist N(¢) and N'(e) such that

Choose

n> N(e) = dlxp,x) <e
n> N'(e) = dan,z') <e

n > max{N(e), N'(¢)}

(;(,,\—:-) X-\
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Then

d(z, z) d(z, zn) + d(zn, )
e+e

2¢e

d(z, z')

= d(z,a) < d(z,o)

ANVA

a contradiction.
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Cluster Points

¢
Definition 6. An element c is"a cluster point of a sequence {xn} C ><
in a metric space (X,d) if Ve > O,@iBg(c)}\is an @
set. Equivalently, )

N

Ve >0,N € N dn > N s.t. zn, € Be(c)

Example:

1 -1 if neven
Ln — .
" L if n odd
For n large and odd, =z, is close to zero; for n large and even,

Tn 1S Close to one. The sequence does not converge; the set of
cluster points is {0, 1}.

™~ c:dcg W e~y
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Subsequences

If {zn} is a sequence and n; < np <nz < --- then {xy, } is called
a subsequence. ok A %n _ \0&@% N
Vs N

Note that a subsequence is formed by taking some,of the ele-
ments of the parent sequence, in the same order.

s~ e

Example: z, = %, so {zp} = <1,%,%,...). If n, = 2k, then

— (1 11
fond = (5 3.3,.).

19



Cluster Points and Subsequences

Theorem 5 (2.4 in De La Fuente, plus ...). Let (X,d) be a
metric space, ¢ € X, and {xzn} a sequence in X. Then c is a

cluster point of {xzyp} if and only if there is a subsequence {zn, } [N
such that limg_, xn, = c.

- Proof. Suppose c is a cluster point of {x,}. We inductively con-

struct a subsequence that converges to c¢. For kK =1,
{n : xn € B1(c)} is infinite, so nonempty; let

ni1 = min{n : z, € B1(c)}

Now, suppose we have chosen n1 < no < -+ < ng such that
Tn,; € Bi(c) for j=1,...k
J

20



{n:xn € B 1 (c)} is infinite, so it contains at least one element
E+1

bigger than ng, so let

Nk4-1 :min{n:n>nk, anBHLl(C)}

Thus, we have chosen n; <np <--- <mng <ngyp such that
zn; € Bi(c) for j=1,... kk+1
Thus, by induction, wejobtain a subsequence {zn,} such that
T, € B%(c) RS

Given any ¢ > 0, by the Archimedean property, there exists
N(e) > 1/e.

k> N(e) = xn, € Bi(c) N
k ¥ D x T F
— xnk EBg(C)
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Conversely, suppose that there is a subsequence {z,, } converging
to ¢. Given any € > 0, there exists K € N such that

k > K = d(xnk,C) < €= xnk c Bg(C)

T herefore,

{n:xn € Be(e)} 2 {nKk+1,"K+2: MK +3)-- -}

Since ng41 < ngyo < ng43z < ---, this set is infinite, so c is a
cluster point of {z,}. L]



Sequences in R and R™

Definition 7. A sequence of real numbers {z,} is increasing (de-
creasing) if 41 > on (xp41 < xn ) for all n.

Definition 8. If {x,} is a sequence of real numbers, {x,} tends
to infinity (written x, — oo or limx, = oo) if

VK e RIN(K) s.t. n>N(K) = xzp > K

Similarly define xz, — —oo or lim xz,;, = —o0.
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Increasing and Decreasing Sequences

Theorem 6 (Theorem 3.1"). Let {z,} be an increasing (decreas-
ing) sequence of real numbers. Then

lim xp = sup{zn :n € N}
n—oo

( im ap = inf{xy :n € N} )

In particular, the limit exists.

\ ) O~ <
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Lim Sups and Lim Infs

Consider a sequence {zp} of real numbers. Let

an = sup{xr:k>n} XS
= SUD{Q?n, Tp415Tp42; - - }
Bn = inflzy : k>n} X o~

inf{xn, Tp41,Tp4o,...}

N~
Either ay, = 400 for all n, or ap € R and a1 > a» > az > ---.

}.&r\
Either 8, = —oco for alln, or Bp e R and 81 <GB, < (B3 < -+,

23



Lim Sups and Lim Infs

Definition 9.
. . +oc0  Iif ay, = +00 for all n
Ilfrrp—>solép tn = { lima,, otherwise.
L . —oo  If B, = —oo for all n
iminten = { lim 8, otherwise.

Theorem 7. Let {z,,} be a sequence of real numbers. Then

liMmp—ooxn =7 € RU{—00,00}
&S limsup, oo Tn = liMinfp,—ooxn = 7

24



Increasing and Decreasing Subsequences

Theorem 8 (Theorem 3.2, Rising Sun Lemma). Every sequence

of real numbers contains an increasing subsequence or a decreas-
ing subsequence or both.

n
@ — & & &
[ ] o o e <@
[ ] o
>
~
T —
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Proof. Let

S={seN:xzs>xn Vn> s}

Either S is infinite, or S is finite. (v exrern)

If S is infinite, let

ni
n2

n3

NE41

min S
min (S\ {n1})
min (S'\ {n1,n2})

min (S\ {n1,no0,...,n%})



Thenny <npo <ng<---.

Tny > Tn, SiNCe€ni €S and no > ng
Tn, > Tpng  SiNCe€ mp € .S and n3 > nop

Tny, > Tnyy,  SINCe€ mp € S and ngyq > nyg

so {zn,} is a strictly decreasing subsequence of {zn}.

If S is finite and nonempty, let ny = (maxS) + 1; if S =0, let
n1 = 1. Then

ny €S so dno >njy S.t. Tn, > Tng
no € S so dnz > np S.t. xpg > Tn,

ng €S SO dngpiq1>ng st xn, > T,



so {xn,} is a (weakly) increasing subsequence of {zy}.
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Bolzano-Weierstrass T heorem

Theorem 9 (Thm. 3.3, Bolzano-Weierstrass). Every bounded
sequence of real numbers contains a convergent subsequence.

Proof. Let {z,} be a bounded sequence of real numbers. By the
Rising Sun Lemma, find an increasing or decreasing subsequence
{zn,}. If {zn,} is increasing, then by Theorem 3.1’,

lim xp, = sup{zn, : k€ N} <sup{znp:nc N} < oo

since the sequence is bounded; since the limit is finite, the sub-
sequence converges. Similarly, if the subsequence is decreasing,
it converges. [ ]
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