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Lecture 7

Outline

1. Connected Sets

2. Correspondences

3. Continuity for Correspondences
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Connected Sets

Definition 1. Two sets A, B in a metric space are separated if

Ā ∩ B = A ∩ B̄ = ∅

A set in a metric space is connected if it cannot be written as

the union of two nonempty separated sets.
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Connected Sets

Example: [0,1) and [1,2] are disjoint but not separated:

[0,1) ∩ [1,2] = [0,1] ∩ [1,2] = {1} 6= ∅

[0,1) and (1,2] are separated:

[0,1) ∩ (1,2] = [0,1] ∩ (1,2] = ∅

[0,1) ∩ (1,2] = [0,1) ∩ [1,2] = ∅

Note that d([0,1), (1,2]) = 0 even though the sets are separated.
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Connected Sets

• Note that separation does not require that Ā ∩ B̄ = ∅.

For example,

[0,1) ∪ (1,2]

is not connected.

• A common equivalent definition: A set Y in a metric space

X is connected if there do not exist open sets A and B such

that A ∩ B = ∅, Y ⊆ A ∪ B and A ∩ Y 6= ∅ and B ∩ Y 6= ∅.
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Connected Sets

Theorem 1 (Thm. 9.2). A set S ⊆ E1 is connected if and only

if it is an interval, i.e. if x, y ∈ S and z ∈ (x, y), then z ∈ S.

Proof. First, we show that if S is connected then S is an interval.

We do this by proving the contrapositive: if S is not an interval,

then it is not connected. If S is not an interval, find

x, y ∈ S, x < z < y, z 6∈ S

Let

A = S ∩ (−∞, z), B = S ∩ (z,∞)
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Then

Ā ∩ B ⊆ (−∞, z) ∩ (z,∞) = (−∞, z] ∩ (z,∞) = ∅

A ∩ B̄ ⊆ (−∞, z) ∩ (z,∞) = (−∞, z) ∩ [z,∞) = ∅

A ∪ B = (S ∩ (−∞, z)) ∪ (S ∩ (z,∞))

= S \ {z}

= S

x ∈ A, so A 6= ∅

y ∈ B, so B 6= ∅

So S is not connected. We have shown that if S is not an

interval, then S is not connected; therefore, if S is connected,

then S is an interval.

Now, we need to show that if S is an interval, it is connected.

This is much like the proof of the Intermediate Value Theorem.

See de la Fuente for the details.



Continuity and Connectedness

In a general metric space, continuity will preserve connectedness.

Theorem 2 (Thm. 9.3). Let X and Y be metric spaces and

f : X → Y be continuous. If C is a connected subset of X, then

f(C) is connected.

Proof. We prove the contrapositive: if f(C) is not connected,

then C is not connected. Suppose f(C) is not connected. Then

there exist P, Q such that P 6= ∅ 6= Q, f(C) = P ∪ Q, and

P̄ ∩ Q = P ∩ Q̄ = ∅

Let

A = f−1(P ) ∩ C and B = f−1(Q) ∩ C
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Then

A ∪ B =
(

f−1(P ) ∩ C
)

∪
(

f−1(Q) ∩ C
)

=
(

f−1(P ) ∪ f−1(Q)
)

∩ C

= f−1(P ∪ Q) ∩ C

= f−1(f(C)) ∩ C

= C

Also, A = f−1(P ) ∩ C 6= ∅ and B = f−1(Q) ∩ C 6= ∅. Then note

A = f−1(P ) ∩ C ⊆ f−1(P ) ⊆ f−1 (

P̄
)

Since f is continuous, f−1(P̄ ) is closed, so

Ā ⊆ f−1 (

P̄
)

Similarly,

B = f−1(Q) ∩ C ⊆ f−1(Q) ⊆ f−1 (

Q̄
)



and f−1(Q̄) is closed, so

B̄ ⊆ f−1 (

Q̄
)

Then

Ā ∩ B ⊆ f−1 (

P̄
)

∩ f−1(Q)

= f−1 (

P̄ ∩ Q
)

= f−1(∅)

= ∅

and similarly

A ∩ B̄ ⊆ f−1(P ) ∩ f−1 (

Q̄
)

= f−1 (

P ∩ Q̄
)

= f−1(∅)

= ∅



So C is not connected. We have shown that f(C) not connected

implies C not connected; therefore, C connected implies f(C)

connected.

You can view this result as a generalization of the Intermediate

Value Theorem.



Intermediate Value Theorem, Yet Again

This lets us give a third, and slickest, proof of the Intermediate

Value Theorem.

Corollary 1 (Intermediate Value Theorem). If f : [a, b] → R is

continuous, and f(a) < d < f(b), then there exists c ∈ (a, b) such

that f(c) = d.

Proof. Since [a, b] is an interval, it is connected. So f([a, b]) is

connected, hence f([a, b]) is an interval. f(a) ∈ f([a, b]), and

f(b) ∈ f([a, b]), and d ∈ [f(a), f(b)]; since f([a, b]) is an interval,

d ∈ f([a, b]), i.e. there exists c ∈ [a, b] such that f(c) = d. Since

f(a) < d < f(b), c 6= a, c 6= b, so c ∈ (a, b).
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Correspondences

Definition 2. A correspondence Ψ : X → 2Y from X to Y is a

function from X to 2Y , that is, Ψ(x) ⊆ Y for every x ∈ X.
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Correspondences

Examples:

1. Let u : Rn
+ → R be a continuous utility function, y > 0 and

p ∈ Rn
++, that is, pi > 0 for each i.

Define Ψ : Rn
++ × R++ → 2

Rn
+ by

Ψ(p, y) = argmaxu(x)

s.t. x ≥ 0

p · x ≤ y

Ψ is the demand correspondence associated with the utility

function u; typically Ψ(p, y) is multi-valued.
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2. Let f : X → Y be a function. Define Ψ : X → 2Y by

Ψ(x) = {f(x)} for each x ∈ X

That is, we can consider a function to be the special case of

a correspondence that is single-valued for each x.



Continuity for Correspondences

We want to talk about continuity of correspondences analogous

to continuity of functions. What should continuity mean?

We will discuss three main notions of continuity for correspon-

dences, each of which can be motivated by thinking about what

continuity means for a function f : Rn → R.
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Continuity for Correspondences

One way a function f : Rn → R may be discontinuous at a point

x0 is that it “jumps downward at the limit:”

∃xn → x0 s.t. f(x0) < lim inf f(xn)

It could also “jump upward at the limit:”

∃xn → x0 s.t. f(x0) > lim sup f(xn)

In either case, it doesn’t matter whether the sequence xn ap-

proaches x0 from the left or the right (or both).
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Continuity for Correspondences

What should it mean for a set to “jump down” at the limit x0?

It should mean the set suddenly gets smaller – it “implodes in

the limit” – that is, there is a sequence xn → x0 and points

yn ∈ Ψ(xn) that are far from every point of Ψ(x0) as n → ∞.
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Continuity for Correspondences

Similarly, what should it mean for a set to “jump up” at the

limit?

This should mean that that the set suddenly gets bigger – it

“explodes in the limit” – that is, there is a point y in Ψ(x0) and

a sequence xn → x0 such that y is far from every point of Ψ(xn)

as n → ∞.
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Continuity for Correspondences

Definition 3. Let X ⊆ En, Y ⊆ Em, and Ψ : X → 2Y .

• Ψ is upper hemicontinuous (uhc) at x0 ∈ X if, for every open

set V ⊇ Ψ(x0), there is an open set U with x0 ∈ U such that

Ψ(x) ⊆ V for every x ∈ U ∩ X

• Ψ is lower hemicontinuous (lhc) at x0 ∈ X if, for every open

set V such that Ψ(x0) ∩ V 6= ∅, there is an open set U with

x0 ∈ U such that

Ψ(x) ∩ V 6= ∅ for every x ∈ U ∩ X

18



• Ψ is continuous at x0 ∈ X if it is both uhc and lhc at x0.

• Ψ is upper hemicontinuous (respectively lower hemicontinu-

ous, continuous) if it is uhc (respectively lhc, continuous) at

every x ∈ X.



Continuity for Correspondences

Upper hemicontinuity reflects the requirement that Ψ doesn’t

“implode in the limit” at x0; lower hemicontinuity reflects the

requirement that Ψ doesn’t “explode in the limit” at x0.

Notice that upper and lower hemicontinuity are not nested: a cor-

respondence can be upper hemicontinuous but not lower hemi-

continuous, or lower hemicontinuous but not upper hemicontin-

uous.
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Continuity for Correspondences

An alternative notion of continuity looks instead at properties of

the graph of the correspondence.

The graph of a correspondence Ψ : X → 2Y is the set

graph Ψ = {(x, y) ∈ X × Y : y ∈ Ψ(x)}
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Continuity for Correspondences

Recall that a function f : Rn → R is continuous if and only if

whenever xn → x, f(xn) → f(x). We can translate this into a

statement about its graph.

Suppose {(xn, yn)} ⊆ graph f and (xn, yn) → (x, y). Since f is a

function, (xn, yn) ∈ graph f ⇐⇒ yn = f(xn).

So f is continuous ⇒ y = lim yn = lim f(xn) = f(x)

⇒ (x, y) ∈ graph f

So if f is continuous then each convergent sequence {(xn, yn)} in

graph f converges to a point (x, y) in graph f , that is, graph f

is closed.
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Closed Graph

Definition 4. Let X ⊆ En, Y ⊆ Em. A correspondence Ψ : X →

2Y has closed graph if its graph is a closed subset of X × Y ,

that is, if for any sequences {xn} ⊆ X and {yn} ⊆ Y such that

xn → x ∈ X, yn → y ∈ Y and yn ∈ Ψ(xn) for each n, then

y ∈ Ψ(x).
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Closed Graph

Example: Consider the correspondence

Ψ(x) =

{
{

1
x

}

if x ∈ (0,1]

{0} if x = 0

Let V = (−0.1,0.1). Then Ψ(0) = {0} ⊂ V , but no matter how

close x is to 0,

Ψ(x) =

{

1

x

}

6⊆ V

so Ψ is not uhc at 0. However, note that Ψ has closed graph.
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Continuity for Correspondences

Example: Consider the correspondence

Ψ(x) =

{
{

1
x

}

if x ∈ (0,1]

R+ if x = 0

Ψ(0) = [0,∞), and Ψ(x) ⊆ Ψ(0) for every x ∈ [0,1]. So if

V ⊇ Ψ(0) then V ⊇ Ψ(x) for all x. Thus, Ψ is uhc, and has

closed graph.
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Upper Hemicontinuity and Closed Graph

For a function, upper hemi-continuity and continuity coincide.

Theorem 3. Let X ⊆ En, Y ⊆ Em and f : X → Y . Let Ψ : X →
2Y be the correspondence given by Ψ(x) = {f(x)} for all x ∈ X.

Then Ψ is uhc if and only if f is continuous.

Proof. We consider the metric spaces (X, d) and (Y, d), where d

is the Euclidean metric. Fix V open in Y . Then

f−1(V ) = {x ∈ X : f(x) ∈ V }

= {x ∈ X : Ψ(x) ⊆ V }

Thus, f is continuous if and only if f−1(V ) is open in X for each

open V in Y , if and only if {x ∈ X : Ψ(x) ⊆ V } is open in X for

each open V in Y , if and only if Ψ is uhc (as an exercise, think

through why this last equivalence holds).
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Continuity for Correspondences

For a general correspondence, these notions are not nested:

• A closed graph correspondence need not be uhc, as the first

example above illustrates.

• Conversely an uhc correspondence need not have closed graph,

or even have closed values.
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Continuity for Correspondences

Definition 5. A correspondence Ψ : X → 2Y is called closed-

valued if Ψ(x) is a closed subset of Y for all x; Ψ is called

compact-valued if Ψ(x) is compact for all x.

For closed-valued correspondences these concepts can be more

tightly connected.

• A closed-valued and upper hemicontinuous correspondence

must have closed graph.

• For a closed-valued correspondence with a compact range,

upper hemicontinuity is equivalent to closed graph.
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Upper Hemicontinuity and Closed Graph

Theorem 4 (Not in de la Fuente). Suppose X ⊆ En and Y ⊆ Em,

and Ψ : X → 2Y .

(i) If Ψ is closed-valued and uhc, then Ψ has closed graph.

(ii) If Ψ has closed graph and there is an open set W with x0 ∈ W

and a compact set Z such that x ∈ W ∩X ⇒ Ψ(x) ⊆ Z, then

Ψ is uhc at x0.

(iii) If Y is compact, then Ψ has closed graph ⇐⇒ Ψ is closed-

valued and uhc.
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Proof. (i) Suppose Ψ is closed-valued and uhc. If Ψ does not

have closed graph, we can find a sequence (xn, yn) → (x0, y0),

where (xn, yn) lies in the graph of Ψ (so yn ∈ Ψ(xn)) but (x0, y0)

does not lie in the graph of Ψ (so y0 6∈ Ψ(x0)). Since Ψ is

closed-valued, Ψ(x0) is closed. Since y0 6∈ Ψ(x0), there is some

ε > 0 such that

Ψ(x0) ∩ B2ε(y0) = ∅

so

Ψ(x0) ⊆ E
m \ Bε[y0]

Let V = Em \ Bε[y0]. Then V is open, and Ψ(x0) ⊆ V . Since Ψ

is uhc, there is an open set U with x0 ∈ U such that

x ∈ U ∩ X ⇒ Ψ(x) ⊆ V



Since (xn, yn) → (x0, y0), xn ∈ U for n sufficiently large, so

yn ∈ Ψ(xn) ⊆ V

Thus for n sufficiently large, ‖yn − y0‖ ≥ ε, which implies that

yn 6→ y0, and (xn, yn) 6→ (x0, y0), a contradiction. Thus Ψ is

closed-graph.

(ii) Now, suppose Ψ has closed graph and there is an open set

W with x0 ∈ W and a compact set Z such that

x ∈ W ∩ X ⇒ Ψ(x) ⊆ Z

Since Ψ has closed graph, it is closed-valued. Let V be any open

set such that V ⊇ Ψ(x0). We need to show there exists an open

set U with x0 ∈ U such that

x ∈ U ∩ X ⇒ Ψ(x) ⊆ V



If not, we can find a sequence xn → x0 and yn ∈ Ψ(xn) such that

yn 6∈ V ∀n. Since xn → x0, xn ∈ W ∩X for all n sufficiently large,

and thus Ψ(xn) ⊆ Z for n sufficiently large. Since Z is compact,

we can find a convergent subsequence ynk → y′. Then

(xnk
, ynk

) → (x0, y′)

Since Ψ has closed graph, y′ ∈ Ψ(x0), so y′ ∈ V . Since V is

open, ynk
∈ V for all k sufficiently large, a contradiction. Thus,

Ψ is uhc at x0.

(iii) Follows from (i) and (ii).



Sequential Characterizations

Upper and lower hemicontinuity can be given sequential charac-

terizations that are useful in applications.

Theorem 5 (Thm. 11.2). Suppose X ⊆ En and Y ⊆ Em. A

compact-valued correspondence Ψ : X → 2Y is uhc at x0 ∈ X

if and only if, for every sequence {xn} ⊆ X with xn → x0, and

every sequence {yn} such that yn ∈ Ψ(xn) for every n, there is a

convergent subsequence {ynk
} such that lim ynk

∈ Ψ(x0).

Proof. See de la Fuente.

Note that this characterization of upper hemicontinuity requires

the correspondence to have compact values.
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Sequential Characterizations

Theorem 6 (Thm. 11.3). A correspondence Ψ : X → 2Y is lhc

at x0 ∈ X if and only if, for every sequence {xn} ⊆ X with xn →

x0, and every y0 ∈ Ψ(x0), there exists a companion sequence

{yn} with yn ∈ Ψ(xn) for every n such that yn → y0.

Proof. See de la Fuente.
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