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Lecture 8
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Linear Combinations and Spans

Definition 1. Let X be a vector space over a field F. A linear
combination of xz1,...,xzn € X IS a vector of the form

n
e
yzz%-xi where aq,...,ap € F oo S
i=1 PNV

a; IS the coefficient of x; in the linear combination.

If' V C X, the span of V, denoted spanV, is the set of all linear
combinations of elements of V.

A set V C X spans X if spanV = X.



Linear Dependence and Independence

Definition 2. A set V C X is linearly dependent if there éxist
v1,...,op €V and ay,...,an € F not all zero such that

—_—

n
Z OV, — 0
1=1
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A setV C X jslinearly independent if it is not linearly dependent.

Thus V C X is linearly independent if and only if

n
EZO@WZO, v, €V Vi=>a; =0 Vs
=1



Bases

Definition 3. A Hamel basis (often just called a basis) of a vector
space X is a linearly independent set of vectors in X that spans
X.

Example: {(1,0),(0,1)} is a basis for R? (this is the standard
basis).
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Example, cont: {(1,1),(—1,1)} is another basis for R?:

Suppose (x,y) a(l,1)+ 38(—1,1) for some o, 3 € R

r = a—p = Coe = fo atxf)
y = a+p
r+y = 2«
= o = Tty
2
y—x = 20
_ y==
=0 = _2|_
— Y gL

Since (z,y) is an arbitrary element of R?, {(1,1),(—1,1)} spans
R2. If (z,y) = (0,0),



so the coefficients are all zero, so {(1,1),(—1,1)} is linearly in-

dependent. Since it is linearly independent and spans RQ, it is a
basis.

Example: {(1,0,0),(0,1,0)} is not a basis of R3, because it
does not span R3. (X w2\ wd 22X O st o g
Example: {(1,0),(0,1),(1,1)} is not a basis for R2.

SO the set is not linearly independent.



Bases

Theorem 1 (Thm. 1.2"). Let V be a Hamel basis for X. Then
every vector x € X has a unique representation as a linear combi-

nation of a finite number of elements of V (with all coefficients
nonzero).*

Proof. Let x € X. Since V spans X, we can write

where S1 is finite, as € F', as # 0, and vs € V for each s € 57.
Now, suppose

L — Z AsVs — Z Bsvs

s€ES sESH

) — =~ - - —_—
—_—_ =— - =

*The unique representation of 0 is 0 =}, a;b;.
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where S5 is finite, Bs € F', Bs # 0, and vs € V for each s € S5.
Let S = 57 USo, and define

as =0 for se& Sy\ Sy
Bs =0 for se&S1\ 5

Then
O = z—=x

= Z AsVs — Z Bsvs
s€ES sESH

— Z AsVs — Z Bsvs
SES SES

— Z (as — Bs)vs
seS

Since V is linearly independent, we must have as — 8s = 0, sO
as = O, for all s € S.

seES1asFF0&5 080 s€ 55



SO S1 = 55 and as = (s for s € S = S5, so the representation is
unique. [ ]



Bases

Theorem 2. Every vector space has a Hamel basis.

Proof. The proof uses the Axiom of Choice. Indeed, the theorem
is equivalent to the Axiom of Choice. [ ]



Bases

A closely related result, from which you can derive the previous

result, shows that any linearly independent set V in a vector
space X can be extended to a basis of X.

Theorem 3. If X is a vector space andV C X is linearly indepen-

dent, then there exists a linearly independent set W C X such
that

VCCWCspanW =X



Bases

Theorem 4. Any two Hamel bases of a vector space X have the
same cardinality (are numerically equivalent).

Proof. The proof depends on the so-called Exchange Lemma,
whose idea we sketch. Suppose that V = {v), : A € A} and
W = {wy : v € '} are Hamel bases of X. Remove one vector
Vg from V, so that it no longer spans (if it did still span, then
vy, Would be a linear combination of other elements of V', and
V' would not be linearly independent). If wy € span(V \ {vy,})
for every v € I', then since W spans, V \ {v,,} would also span,
contradiction. Thus, we can choose g € I' such that

W~y € SPan <V \ {”/\o})



7¢

N
Because w,, € spanV, we can write

n
Wyo = Z QiU
1=0

where aq, the coefficient of Vg is not zero (if it were, then we

would have wy, € span <V \ {U)\O})). Since ag #= 0, we can solve
for vy, as a linear combination of wy, and vy,,...,vy,, SO

span ((V\ {oxp}) Ufwso}) 2 Vi,

D spanV = S@%m@“ VM) o ‘L‘C\J)
= X

SO
((V\ {ag}) U{wro})
spans X. From the fact that w,, € span <V\{U>\O}) one can



show that

((V\ {vag}) U{wyo})
is linearly independent, so it is a basis of X. Repeat this process
to exchange every element of V with an element of W (when
V is uncountable, this is done by a process called transfinite
induction). At the end, we obtain a bijection from V to W, so
that V and W are numerically equivalent. [ ]



Dimension

Definition 4. The dimension of a vector space X, denoted dim X,
is the cardinality of any basis of X.

For V C X, |V| denotes the cardinality of the set V.
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Dimension

Example: The set of all m X n real-valued matrices is a vector
space over R. A basis is given by

{Eij:1<i<m,1<j<n;} B MmN IRES NS
where

X~
KQ, Q/‘"“&J\j\, <

MMOD\"J:\\P ” EZ])k'E:

The dimension of the vector space of m X n matrices is mn.

1l fk=2and =
0O otherwise.
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Dimension and Dependence

Theorem 5 (Thm. 1.4). SupposedimX =n e N. IfV C X and
V| >n, then V is linearly dependent.
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Dimension and Dependence

Theorem 6 (Thm. 1.5"). Suppose dimX =ne N, V C X, and
V| =n.

e ITV is linearly independent, then V spans X, soV is a Hamel
basis.

e ITV spans X, then V is linearly independent, soV is a Hamel
basis. _ ,
O OXuweronse, exkend N = o et W & X
wixa N W = Lol > WIL=
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Linear Transformations

Definition 5. Let X and Y be two vector spaces over the field
F. WesayT : X — Y is a linear transformation if

T(ayzy + aoxp) = a1 (1) + a1 (xzp) Vri,x0 € X,a1,a0 € F
\/\f_/‘/
\ULX dvvés\ < QL&‘%L \gL:TCX«L)

¢
Let L(X,Y) denote the set o?rall\\inear transformations from X
to Y.

(=]

L quivole Ay
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T (e A %aN= NN+ TTOR) NN .

-
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Linear Transformations

Theorem 7. L(X,Y) is a vector space over F'.

QLT,LJV m},_, ‘-‘;X —7 \_(

Proof. First, define linear combinations in L(X,Y) as follows.
For T1,1T> € L(X,Y) and «,3 € F, define oIy + 815 by

(a1 + BT%)(z) = oT1(z) + BT>(x)
We need to show that aT7 4+ 871> € L(X,Y).

(o171 4+ BT%)(yx1 + dx2) o
aTy(yz1 + dx2) + BT>(yx1 + dx2) el AN

= a(YT1(z1) + 0T1(22)) + B (7T2(21) + 6T2(22)) [T To Vomee)
= v (aTy(z1) + BT2(z1)) + 6 (aT1(z2) + BT2(22)) Leatedk “wrmd)
v (T + BT5) (x1) + 6 (aTy + BT5) (x5) (el LiRon o)
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so o1y + B1» € L(X,Y).

The rest of the proof involves straightforward checking of the
vector space axioms. [ ]



Compositions of Linear Transformations

X) \& , T Neokor SPecesS o Sove (tld F

Given R € L(X,Y) and S € L(Y,Z), SoR : X — Z. We will
show that SoR € L(X,Z), that is, the composition of two linear
transformations is linear.

(So R)(axy1 + Bxo) S(R(ax1 + Bxo)) ((del~ & S=R)
= S(aR(z1) + BR(z2)) (R S near )
= aS(R(z1)) + BS(R(z2)) (S Laeer)
a(SoR)(x1) + B(SoR)(x2) (dofn =

so SoR € L(X, Z). S=&)
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Kernel and Rank
Definition 6. Let T € L(X,Y).

¢ Theimage of T isImT =T(X) < \{
¢ Con <Ss\how T\ s o ek s gw\f_\.g\?m é; \l

o The kernel of T iskerT = {zx € X : T(x) =0} (nu\ gpoc= SS\'TS

e Therank of T is RankT = dim(ImT)

Recad * ® W & 7& 1S ow Neak=r SW\QS\E:Q_C_Q__ \g\- xS o
Ne ke %@qc_e_ QN F NN U o a , 5\‘\!‘?::.\’\"\ X

L ¢ Ll o Neoxs/r  cuallpaceyy
SEVR RS DI £ g ¢
(=D g W, We €W N pet
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Rank-Nullity Theorem

Theorem 8 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem).
Let X be a finite-dimensional vector space, T' € L(X,Y). Then
Im T and ker ' are vector subspaces of Y and X respectively, and

dimX =dimkerT 4+ RankT

" -
AN Ty Y

T\ \ cxor  Subg paces
g%ef‘&‘c\m % o g\,\c\,_s v\ ) Wer owse Nt P

Yo Ne 3\ NI ,f.)\JA o lbasig A= e A
\J\-)f:x o \51{\& grc‘( >§
’T

s

- Q’*}({N& _\._c, i\[\J ,_)\)%_\u\.\.),_
o U\ ow Slﬁv\-\’) \\ y °77 >
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Kernel and Rank

Theorem 9 (Thm. 2.13).T € L(X,Y) is one-to-one if and only
if kerT = {0}.

- Proof. Suppose T is one-to-one. Suppose xz € ker1I'. Then

T(x) = 0. But since T is linear, T(0) =T(0-0) =0-T7T(0) = 0.
Since T is one-to-one, x = 0, so kerT = {0}.

. Conversely, suppose that kerT = {0}. Suppose T(x1) = T (x3).

Then v ("\1) "U/CX&)

T(x1 — x2) T(x1) — T (x2)
0

which says 1 —xo € ker1', sO x1 — x> =0, SO x1 = xo. Thus, T
is one-to-one. [ ]

{ u\ ~e o~
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Invertible Linear Transformations

Definition 7.7 € L(X,Y) is invertible if there exists a function
S:Y — X such that
S(T(x)) = = Vze X NCUEREY
T(S(y) = y Vyey Tos = &
Denote S by T 1.

Note that T is invertible if and only if it is one-to-one and onto.
This is just the condition for the existence of an inverse function.
The linearity of the inverse follows from the linearity of T.j

Cooe wov W\ Qe L)
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Invertible Linear Transformations

Theorem 10 (Thm. 2.11).If T € L(X,Y) is invertible, then
T-1e L(Y,X), i.e. T is linear.

Proof. Suppose o, € FFand v,w € Y. Since T is invertible, there
exist unique v/, w’ € X such that

T = v T 1) = o
T(w) = w T Hw) = o
Then ~ W
T Y av+ pw) = 71 (aTEv’) +5T&u’)) P ERELEN
== T_l <T(ow’—|—6w’)) (< L;_f\o_@_r\
= av’' + Bu’ (deSn & T

oT 1) + BT M w) (gefor & ~, =)

21



so 71
e L(Y, X).
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Linear Transformations and Bases

Theorem 11 (Thm. 3.2).Let X and Y be two yector spaces
over the same field F, and let V. = {vy : A & A} be a basis

for X. Then a linear transformation T € L(X,Y) Is completely
determined by its values on V', that is:

1. Given any set {yy : A€ N} CY,dT € L(X,Y) s.t.

T(UA) =Yy, VAEN

2. IfF S, T € L(X,Y) and S(vy) =T(vy) forallXxe N, then S =T.

22



Proof. 1. If x € X, x has a unique representation of the form

n
L = Zai?})\i Ozi#Oi:].,...,n
1=1

(Recall that if £ = 0, then n = 0.) Define
n e AL

T(z) = ) ayy,

(Sc
Then T'(z) € Y. The verification that T is linear is left as an

exercise.

23



2. Suppose S(vy) = T(vy) for all A € A. Given z € X,

so S ="1T.

S(x)

S ( zn: O‘z'v)\z)

i ;S <v>\i) (S U ~eor

[

)
|
[EY

i o1’ <v>\i) L L o~V aguee

o~ )L\J%;;Q//\S

mn
T (Z ozz-vxz-) [T\ mear )
=1



Isomorphisms

Definition 8. Two vector spaces X and Y over a field F are
isomorphic if there is an invertible T € L(X,Y).

T € L(X,Y) is an isomorphism if it is invertible (one-to-one and
onto).

Isomorphic vector spaces are essentially indistinguishable as vec-
tor spaces.

24



Isomorphisms

Theorem 12 (Thm. 3.3). Two vector spaces X andY over the
same field are isomorphic if and only if dimX =dimY.

. Proof. Suppose X and Y are isomorphic, and let T e L(X,Y) be
an isomorphism. Let

U= {UJ)\ T A E /\}
be a basis of X, and let vy, = T'(u)) for each A € A. Set
V = {U)\ T E /\}

Since T is one-to-one, U and V have the same cardinality. If
\\

— (W)
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y €Y, then there exists x € X such that
LT ‘1,5. cm‘\c‘:’\

y = T(x)
n
= T ZOQ\Z.UAZ
i=1
n \ .
= Y T <UA) (U ~aoridy ok V)
ot
Zn
= Q) V), [defom o% Vo)
i=1

which shows that V spans Y. To see that V is linearly indepen-



dent, suppose

0 = Zﬁz?))\z
i=1
m \
— ZﬁzT <u)\z) ( daden S N
i=1
m
= T | ) Biuy, (v \Uimeor )
1=1
Since T is one-to-one, kerT = {0}, so
m
Y Biuy, =0
i=1
Since U is a basis, we have 1 = --- = 85, = 0, so V is lin-

early independent. Thus, V is a basis of Y since U and V are
numerically equivalent, dimX = dimY.

ol A



— = Now suppose dimX =dimY. Let
U=A{uy: AXeA}and V ={vy,: A €N}

be bases of X and Y; note we can use the same index set A for
both because dimX = dimY. By Theorem 3.2, there is a unique

%

EJR\J;Q’\}L ‘jﬁ%u-'bk



T € L(X,Y) such that T'(uy) = vy forall A e A. If T'(z) = 0, then

1 ﬁL:D =L 7 0 = T(a:)

n
= T(Z Oéz'UAZ-)
1=1

oL’ <u>\z) (T Waeer D

O{iUAi (v L N = ~N N \d'ﬁu)

a1 =+ =ap =0 since V is a basis
$:O = _\ZOL‘\; k)‘,\'u
vEoN

kerT = {0}
T is one-to-one

L 44l



T s oAto:
IfyeY, write y = 2?7’:1 ﬁi?))\z.. Let

m
z =) Biuy,

i=1
T hen

T(zx) = T (Z 5#’0\2-)
= Z BiT(uy,) (v Qs

:y_

so T is onto, so T is an isomorphism and X,Y are isomorphic. [





