Economics 204 Summer /Fall 2023
Lecture 11-Monday August 7, 2023

Sections 4.1-4.3 (Unified)

Definition 1 Let f: I — R, where I C R is an open interval. f is differentiable at x € I if
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Recall that the limit considers h near zero, but not h = 0.

Definition 2 If X C R"is open, f: X — R™ is differentiable at x € X if!

a7, € L(R",R™) s.t. ,lim |f(z+h) - (|£|($) + T (h))|

0 1)

f is differentiable if it is differentiable at all x € X.

Note that T, is uniquely determined by Equation (1). h is a small, nonzero element
of R™; h — 0 from any direction, from above, below, along a spiral, etc. The definition
requires that one linear operator T, works no matter how h approaches zero. In this case,
f(z) + T.(h) is the best linear approximation to f(x + h) for small h.

Notation:

e y=0(|h|") as h — 0 — read “y is big-Oh of |h|"” — means

JK,0 > 0s.t. |h| < = |y| < K|h|"

'Recall | - | denotes the Euclidean distance.



e y=o0(|h|™) as h — 0 — read “y is little-oh of |h|"” — means

lim v] =

=0
A ]

Note that the statement y = O(|h|"*!) as h — 0 implies y = o(|h|") as h — 0.

Also note that if y is either O(|h|™) or o(|h|™), then y — 0 as h — 0; the difference in
whether y is “big-Oh” or “little-oh” tells us something about the rate at which y — 0.

Using this notation, note that f is differentiable at x < 37, € L(R"™, R™) such that

flx+h)= f(x)+T.(h)+o(h) as h — 0
Notation:

e df, is the linear transformation 7

e Df(x) is the matrix of df, with respect to the standard basis.

This is called the Jacobian or Jacobian matriz of f at x

o E¢(h) = f(x+h)— (f(x) + dfs(h)) is the error term

Using this notation,

f is differentiable at © < E;(h) = o(h) as h — 0

Now compute Df(z) = (a;j). Let {e1,...,e,} be the standard basis of R". Look in
direction e; (note that |ye;| = |7]).

o(v) = flx+ne)— (f(x)+ Tulve)))

0
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Fori=1,...,m, let f* denote the i** component of the function f:

Fi(x +9e;) = (Fi(@) +ya) = o(y)
oft

S0 a;; = (x)

al’j

Theorem 3 (Thm. 3.3) Suppose X C R™ is open and f : X — R™ is differentiable at
reX. Then% exists at x for 1 <i<m, 1 <j<n, and

W) - L(x)
Df(zx) = : . :
U z) e U (a)

i.e. the Jacobian at x is the matrixz of partial derivatives at x.

Remark: If f is differentiable at x, then all first-order partial derivatives %IL; exist at x.
However, the converse is false: existence of all the first-order partial derivatives does not
imply that f is differentiable. The missing piece is continuity of the partial derivatives:

Theorem 4 (Thm. 3.4) If all the first-order partial derivatives %ﬁ 1<i<m,1<j5<
J
n) exist and are continuous at x, then f is differentiable at x.

Directional Derivatives:
Suppose X C R” open, f: X — R™ is differentiable at x, and |u| = 1.
f@+yu) = (f(z) + Ta(yu) = o(y) asy — 0
= flz+yu) = (f(2) +7T:(uw) = o(y) as v — 0

N J,ii%f(g:+7:) f(z) _ To(u) = Df(x)u

i.e. the directional derivative in the direction u (with |u| = 1) is

Df(x)u e R™

Theorem 5 (Thm. 3.5, Chain Rule) Let X C R", Y C R™ be open, f : X — Y,
g:Y = RP. Letxg € X and F = go f. If f is differentiable at xo and g is differentiable at
f(zg), then F = g o f is differentiable at xy and

dfy, = dgf(mo) o dfy,
(composition of linear transformations)

DF(x0) = Dg(f(z0))Df(x0)
(matriz multiplication)



Remark: The statement is exactly the same as in the univariate case, except we replace the
univariate derivative by a linear transformation. The proof is more or less the same, with a
bit of linear algebra added.

Theorem 6 (Thm. 1.7, Mean Value Theorem, Univariate Case) Leta,b € R. Sup-
pose f : [a,b] — R is continuous on |a,b] and differentiable on (a,b). Then there exists
c € (a,b) such that

that is, such that

Then g(a) =0 = g(b). See Figure 1. Note that for x € (a,b),

g = ) - 1O =10
so it suffices to find ¢ € (a, b) such that ¢'(c) = 0.

Case I: If g(z) = 0 for all = € [a, b], choose an arbitrary ¢ € (a,b), and note that ¢'(c) = 0,
so we are done.

Case II: Suppose g(z) > 0 for some = € [a,b]. Since g is continuous on [a, b], it attains
its maximum at some point ¢ € (a,b). Since g is differentiable at ¢ and ¢ is an interior point
of the domain of g, we have ¢’(c) = 0, and we are done.

Case III: If g(z) < 0 for some x € [a, b], the argument is similar to that in Case II. m

Remark: The Mean Value Theorem is useful for estimating bounds on functions and error
terms in approximation of functions.

Notation:
Uz,y) ={az+ (1 —a)y:ac0,1]}

is the line segment from z to y.

Theorem 7 (Mean Value Theorem) Suppose f : R" — R is differentiable on an open
set X CR™, x,y € X and l(x,y) C X. Then there exists z € {(x,y) such that

fly) = f(x) = Df(2)(y — x)



Remark: This statement is different from Theorem 3.7 in de la Fuente. Notice that the
statement is exactly the same as in the univariate case. For f : R" — R™, we can apply the
Mean Value Theorem to each component, to obtain z1, ..., z, € ¢(x,y) such that

') — fi(x) = Df (z:)(y — x)

However, we cannot find a single z which works for every component. Note that each
zi € l(x,y) C R™; there are m of them, one for each component in the range.

The following result plays the same role in estimating function values and error terms for
functions taking values in R™ as the Mean Value Theorem plays for functions from R to R.

Theorem 8 Suppose X C R" is open and f : X — R™ 1is differentiable. If v,y € X and
Ux,y) € X, then there exists z € l(x,y) such that

£ (y) = f(2)] |df-(y — )]

<
< [ldf:llly — x|

Remark: To understand why we don’t get equality, consider f : [0,1] — R? defined by
f(t) = (cos 2rt, sin 27t)

f maps [0,1] to the unit circle in R%. Note that f(0) = f(1) = (1,0), so |f(1) — f(0)] = 0.
However, for any z € [0, 1],

|df.(1—=0)] = |27(—sin27z,cos2mz)|

= 27T\/ sin? 27z + cos? 2wz

= 27
Section 4.4. Taylor’s Theorem

Theorem 9 (Thm. 1.9, Taylor’s Theorem in R') Let f : I — R be n-times differen-
tiable, where I C R is an open interval. If x,x + h € I, then

n—1 f(k) (I)hk

flath) = @)+ 3 =]

+ E,
k=1

where %) is the k" derivative of f and

B o (x + Ah)R™
N n!

E, for some X € (0,1)



Motivation: Let

Ty = f+ 3 I
k=1 :

1" (n) n

= f(=)+ f(x)h+ ! (g)hz +---+%

T0) = )
so T,,(h) is the unique n'* degree polynomial such that

7.(0) = f(z)
7,00) = [f(z)

TO0) = f()

The proof of the formula for the remainder F), is essentially the Mean Value Theorem;
the problem in applying it is that the point x + Ah is not known in advance.

Theorem 10 (Alternate Taylor’s Theorem in R!') Let f : I — R be n times differen-
tiable, where I C R is an open interval and x € I. Then

B (@) h* n

f(x+h) :f(I)+1;T+O(h ) ash—0
If f is (n+ 1) times continuously differentiable (i.e. all derivatives up to order n + 1 exist
and are continuous), then
f0 () ¥
!

f(x+h) :f(a?)—l—zn:T—l—O(h"H) as h — 0
k=1

Remark: The first equation in the statement of the theorem is essentially a restatement of
the definition of the n'* derivative. The second statement is proven from Theorem 1.9, and
the continuity of the derivative, hence the boundedness of the derivative on a neighborhood
of x.



Definition 11 Let X C R"” be open. A function f : X — R™ is continuously differentiable
on X if

e f is differentiable on X and

e df, is a continuous function of x from X to L(R"™, R™), with operator norm ||df,||

f is C* if all partial derivatives of order less than or equal to k exist and are continuous in
X.

Theorem 12 (Thm. 4.3) Suppose X C R" is open and f: X — R™. Then f is continu-
ously differentiable on X if and only if f is C*.

Remark: The notation in Taylor’s Theorem is difficult. If f : R®* — R™, the quadratic
terms are not hard for m = 1; for m > 1, we handle each component separately. For cubic
and higher order terms, the notation is a mess.

Linear Terms:

Theorem 13 Suppose X C R"™ is open and x € X. If f : X — R™ 1is differentiable, then
fx+h)=f(x)+ Df(x)h+o(h) as h— 0

The previous theorem is essentially a restatement of the definition of differentiability.

Theorem 14 (Corollary of 4.4) Suppose X C R" is open and xz € X. If f: X — R™ is
C?, then
f(x+h) = f(x)+ Df(x)h + O (|h?) ash —0

Quadratic Terms:

We treat each component of the function separately, so consider f : X — R, X C R" an
open set. Let
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= D?f(x) is symmetric
= D?f(x) has an orthonormal basis of eigenvectors

and thus can be diagonalized



Theorem 15 (Stronger Version of Thm. 4.4) Let X C R" be open, f : X - R, f €
C*(X), and v € X. Then

Fle 1) = f(x) + Df(a)h+ ZhT (D Fa)h -+ o (0P) ash — 0
If f € O3,

fle 1) = f(x) + Df(a)h+ ZhT(D* F(a))h+ O ([Af*) ash—0

Remark: de la Fuente assumes X is convex. X is said to be convez if, for every x,y € X
and a € [0,1], ar + (1 — o)y € X. Notice we don’t need this. Since X is open,

reX=30>0st. Bs(r)CX

and Bj(z) is convex.

Definition 16 We say f has a saddle at x if D f(z) = 0 but f has neither a local maximum
nor a local minimum at z.

Corollary 17 Suppose X C R" is open and v € X. If f : X — R is C?, then there is
an orthonormal basis {vy,...,v,} and corresponding eigenvalues My, ..., A\, € R of D*f(x)
such that

fl@+h) = flx+mv+-+7v)
= @)+ Y (Df @)+ 5 Y A? +o (1)
=1

i=1

where v; = h - v;.

1. If f € C3, we may strengthen o (|y]?) to O (|7?).

2. If f has a local maximum or local minimum at x, then

Df(x)=0
3. If Df(x) =0, then
AMyoo s Ap >0 = f has a local minimum at x
Ay s An <0 = f has a local mazximum at x
Ai <0 for some i, A\j >0 for some j = [ has a saddle at x
A,y Ap >0, N\ >0 for somei = f has a local minimum

or a saddle at ©
Ay ooy An <0, N <0 for some 1

4

f has a local mazimum
or a saddle at x

AM=--=X,=0 gives no information.



Proof: (Sketch) From our study of quadratic forms, we know the behavior of the quadratic
terms is determined by the signs of the eigenvalues. If \; = 0 for some i, then we know
that the quadratic form arising from the second partial derivatives is identically zero in the
direction v;, and the higher derivatives will determine the behavior of the function f in the
direction v;. For example, if f(x) = x®, then f'(0) = 0, f”(0) = 0, but we know that f has
a saddle at x = 0; however, if f(z) = x?, then again f/(0) = 0 and f”(0) = 0 but f has a
local (and global) minimum at x = 0.m
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Figure 1: The Mean Value Theorem.
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