Economics 204 Summer/Fall 2023

Lecture 11-Monday August 7, 2023

Sections 4.1-4.3 (Unified)

Definition 1 Let $f: I \rightarrow \mathbf{R}$, where $I \subseteq \mathbf{R}$ is an open interval. f is differentiable at $x \in I$ if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=a
$$

for some $a \in \mathbf{R}$.

This is equivalent to $\exists a \in \mathbf{R}$ such that:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-(f(x)+a h)}{h}=0 \\
\Leftrightarrow & \forall \varepsilon>0 \exists \delta>0 \text { s.t. } 0<|h|<\delta \Rightarrow\left|\frac{f(x+h)-(f(x)+a h)}{h}\right|<\varepsilon \\
\Leftrightarrow & \forall \varepsilon>0 \exists \delta>0 \text { s.t. } 0<|h|<\delta \Rightarrow \frac{|f(x+h)-(f(x)+a h)|}{|h|}<\varepsilon \\
\Leftrightarrow & \lim _{h \rightarrow 0} \frac{|f(x+h)-(f(x)+a h)|}{|h|}=0
\end{aligned}
$$

Recall that the limit considers h near zero, but not $h=0$.

Definition 2 If $X \subseteq \mathbf{R}^{n}$ is open, $f: X \rightarrow \mathbf{R}^{m}$ is differentiable at $x \in X$ if ${ }^{1}$

$$
\begin{equation*}
\exists T_{x} \in L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right) \text { s.t. } \lim _{h \rightarrow 0, h \in \mathbf{R}^{n}} \frac{\left|f(x+h)-\left(f(x)+T_{x}(h)\right)\right|}{|h|}=0 \tag{1}
\end{equation*}
$$

f is differentiable if it is differentiable at all $x \in X$.

Note that T_{x} is uniquely determined by Equation (1). h is a small, nonzero element of $\mathbf{R}^{n} ; h \rightarrow 0$ from any direction, from above, below, along a spiral, etc. The definition requires that one linear operator T_{x} works no matter how h approaches zero. In this case, $f(x)+T_{x}(h)$ is the best linear approximation to $f(x+h)$ for small h.

Notation:

- $y=O\left(|h|^{n}\right)$ as $h \rightarrow 0$ - read " y is big-Oh of $|h|^{n}$ " - means

$$
\exists K, \delta>0 \text { s.t. }|h|<\delta \Rightarrow|y| \leq K|h|^{n}
$$

[^0]- $y=o\left(|h|^{n}\right)$ as $h \rightarrow 0$ - read " y is little-oh of $|h|^{n "}$ - means

$$
\lim _{h \rightarrow 0} \frac{|y|}{|h|^{n}}=0
$$

Note that the statement $y=O\left(|h|^{n+1}\right)$ as $h \rightarrow 0$ implies $y=o\left(|h|^{n}\right)$ as $h \rightarrow 0$.
Also note that if y is either $O\left(|h|^{n}\right)$ or $o\left(|h|^{n}\right)$, then $y \rightarrow 0$ as $h \rightarrow 0$; the difference in whether y is "big-Oh" or "little-oh" tells us something about the rate at which $y \rightarrow 0$.

Using this notation, note that f is differentiable at $x \Leftrightarrow \exists T_{x} \in L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$ such that

$$
f(x+h)=f(x)+T_{x}(h)+o(h) \text { as } h \rightarrow 0
$$

Notation:

- $d f_{x}$ is the linear transformation T_{x}
- $D f(x)$ is the matrix of $d f_{x}$ with respect to the standard basis.

This is called the Jacobian or Jacobian matrix of f at x

- $E_{f}(h)=f(x+h)-\left(f(x)+d f_{x}(h)\right)$ is the error term

Using this notation,

$$
f \text { is differentiable at } x \Leftrightarrow E_{f}(h)=o(h) \text { as } h \rightarrow 0
$$

Now compute $D f(x)=\left(a_{i j}\right)$. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of \mathbf{R}^{n}. Look in direction e_{j} (note that $\left.\left|\gamma e_{j}\right|=|\gamma|\right)$.

$$
\begin{aligned}
o(\gamma) & =f\left(x+\gamma e_{j}\right)-\left(f(x)+T_{x}\left(\gamma e_{j}\right)\right) \\
& =f\left(x+\gamma e_{j}\right)-\left(f(x)+\left(\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\gamma \\
0 \\
\vdots \\
0
\end{array}\right)\right) \\
& =f\left(x+\gamma e_{j}\right)-\left(f(x)+\left(\begin{array}{c}
\gamma a_{1 j} \\
\vdots \\
\gamma a_{m j}
\end{array}\right)\right)
\end{aligned}
$$

For $i=1, \ldots, m$, let f^{i} denote the $i^{\text {th }}$ component of the function f :

$$
\begin{aligned}
f^{i}\left(x+\gamma e_{j}\right)-\left(f^{i}(x)+\gamma a_{i j}\right) & =o(\gamma) \\
\text { so } a_{i j} & =\frac{\partial f^{i}}{\partial x_{j}}(x)
\end{aligned}
$$

Theorem 3 (Thm. 3.3) Suppose $X \subseteq \mathbf{R}^{n}$ is open and $f: X \rightarrow \mathbf{R}^{m}$ is differentiable at $x \in X$. Then $\frac{\partial f^{i}}{\partial x_{j}}$ exists at x for $1 \leq i \leq m, 1 \leq j \leq n$, and

$$
D f(x)=\left(\begin{array}{ccc}
\frac{\partial f^{1}}{\partial x_{1}}(x) & \cdots & \frac{\partial f^{1}}{\partial x_{n}}(x) \\
\vdots & \ddots & \vdots \\
\frac{\partial f^{m}}{\partial x_{1}}(x) & \cdots & \frac{\partial f^{m}}{\partial x_{n}}(x)
\end{array}\right)
$$

i.e. the Jacobian at x is the matrix of partial derivatives at x.

Remark: If f is differentiable at x, then all first-order partial derivatives $\frac{\partial f^{i}}{\partial x_{j}}$ exist at x. However, the converse is false: existence of all the first-order partial derivatives does not imply that f is differentiable. The missing piece is continuity of the partial derivatives:

Theorem 4 (Thm. 3.4) If all the first-order partial derivatives $\frac{\partial f^{i}}{\partial x_{j}}(1 \leq i \leq m, 1 \leq j \leq$ $n)$ exist and are continuous at x, then f is differentiable at x.

Directional Derivatives:

Suppose $X \subseteq \mathbf{R}^{n}$ open, $f: X \rightarrow \mathbf{R}^{m}$ is differentiable at x, and $|u|=1$.

$$
\begin{aligned}
& f(x+\gamma u)-\left(f(x)+T_{x}(\gamma u)\right)=o(\gamma) \text { as } \gamma \rightarrow 0 \\
& \quad \Rightarrow f(x+\gamma u)-\left(f(x)+\gamma T_{x}(u)\right)=o(\gamma) \text { as } \gamma \rightarrow 0 \\
& \quad \Rightarrow \lim _{\gamma \rightarrow 0} \frac{f(x+\gamma u)-f(x)}{\gamma}=T_{x}(u)=D f(x) u
\end{aligned}
$$

i.e. the directional derivative in the direction u (with $|u|=1$) is

$$
D f(x) u \in \mathbf{R}^{m}
$$

Theorem 5 (Thm. 3.5, Chain Rule) Let $X \subseteq \mathbf{R}^{n}, Y \subseteq \mathbf{R}^{m}$ be open, $f: X \rightarrow Y$, $g: Y \rightarrow \mathbf{R}^{p}$. Let $x_{0} \in X$ and $F=g \circ f$. If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$, then $F=g \circ f$ is differentiable at x_{0} and

$$
\begin{aligned}
d F_{x_{0}}= & d g_{f\left(x_{0}\right)} \circ d f_{x_{0}} \\
& (\text { composition of linear transformations) } \\
D F\left(x_{0}\right)= & D g\left(f\left(x_{0}\right)\right) D f\left(x_{0}\right) \\
& \text { (matrix multiplication) }
\end{aligned}
$$

Remark: The statement is exactly the same as in the univariate case, except we replace the univariate derivative by a linear transformation. The proof is more or less the same, with a bit of linear algebra added.

Theorem 6 (Thm. 1.7, Mean Value Theorem, Univariate Case) Let $a, b \in \mathbf{R}$. Suppose $f:[a, b] \rightarrow \mathbf{R}$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

that is, such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Proof: Consider the function

$$
g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a)
$$

Then $g(a)=0=g(b)$. See Figure 1. Note that for $x \in(a, b)$,

$$
g^{\prime}(x)=f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}
$$

so it suffices to find $c \in(a, b)$ such that $g^{\prime}(c)=0$.
Case I: If $g(x)=0$ for all $x \in[a, b]$, choose an arbitrary $c \in(a, b)$, and note that $g^{\prime}(c)=0$, so we are done.

Case II: Suppose $g(x)>0$ for some $x \in[a, b]$. Since g is continuous on $[a, b]$, it attains its maximum at some point $c \in(a, b)$. Since g is differentiable at c and c is an interior point of the domain of g, we have $g^{\prime}(c)=0$, and we are done.

Case III: If $g(x)<0$ for some $x \in[a, b]$, the argument is similar to that in Case II.
Remark: The Mean Value Theorem is useful for estimating bounds on functions and error terms in approximation of functions.

Notation:

$$
\ell(x, y)=\{\alpha x+(1-\alpha) y: \alpha \in[0,1]\}
$$

is the line segment from x to y.

Theorem 7 (Mean Value Theorem) Suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is differentiable on an open set $X \subseteq \mathbf{R}^{n}, x, y \in X$ and $\ell(x, y) \subseteq X$. Then there exists $z \in \ell(x, y)$ such that

$$
f(y)-f(x)=D f(z)(y-x)
$$

Remark: This statement is different from Theorem 3.7 in de la Fuente. Notice that the statement is exactly the same as in the univariate case. For $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, we can apply the Mean Value Theorem to each component, to obtain $z_{1}, \ldots, z_{m} \in \ell(x, y)$ such that

$$
f^{i}(y)-f^{i}(x)=D f^{i}\left(z_{i}\right)(y-x)
$$

However, we cannot find a single z which works for every component. Note that each $z_{i} \in \ell(x, y) \subset \mathbf{R}^{n}$; there are m of them, one for each component in the range.

The following result plays the same role in estimating function values and error terms for functions taking values in \mathbf{R}^{m} as the Mean Value Theorem plays for functions from \mathbf{R} to \mathbf{R}.

Theorem 8 Suppose $X \subset \mathbf{R}^{n}$ is open and $f: X \rightarrow \mathbf{R}^{m}$ is differentiable. If $x, y \in X$ and $\ell(x, y) \subseteq X$, then there exists $z \in \ell(x, y)$ such that

$$
\begin{aligned}
|f(y)-f(x)| & \leq\left|d f_{z}(y-x)\right| \\
& \leq\left\|d f_{z}\right\||y-x|
\end{aligned}
$$

Remark: To understand why we don't get equality, consider $f:[0,1] \rightarrow \mathbf{R}^{2}$ defined by

$$
f(t)=(\cos 2 \pi t, \sin 2 \pi t)
$$

f maps $[0,1]$ to the unit circle in \mathbf{R}^{2}. Note that $f(0)=f(1)=(1,0)$, so $|f(1)-f(0)|=0$. However, for any $z \in[0,1]$,

$$
\begin{aligned}
\left|d f_{z}(1-0)\right| & =|2 \pi(-\sin 2 \pi z, \cos 2 \pi z)| \\
& =2 \pi \sqrt{\sin ^{2} 2 \pi z+\cos ^{2} 2 \pi z} \\
& =2 \pi
\end{aligned}
$$

Section 4.4. Taylor's Theorem

Theorem 9 (Thm. 1.9, Taylor's Theorem in \mathbf{R}^{1}) Let $f: I \rightarrow \mathbf{R}$ be n-times differentiable, where $I \subseteq \mathbf{R}$ is an open interval. If $x, x+h \in I$, then

$$
f(x+h)=f(x)+\sum_{k=1}^{n-1} \frac{f^{(k)}(x) h^{k}}{k!}+E_{n}
$$

where $f^{(k)}$ is the $k^{\text {th }}$ derivative of f and

$$
E_{n}=\frac{f^{(n)}(x+\lambda h) h^{n}}{n!} \text { for some } \lambda \in(0,1)
$$

Motivation: Let

$$
\begin{aligned}
T_{n}(h) & =f(x)+\sum_{k=1}^{n} \frac{f^{(k)}(x) h^{k}}{k!} \\
& =f(x)+f^{\prime}(x) h+\frac{f^{\prime \prime}(x) h^{2}}{2}+\cdots+\frac{f^{(n)}(x) h^{n}}{n!} \\
T_{n}(0) & =f(x) \\
T_{n}^{\prime}(h) & =f^{\prime}(x)+f^{\prime \prime}(x) h+\cdots+\frac{f^{(n)}(x) h^{n-1}}{(n-1)!} \\
T_{n}^{\prime}(0) & =f^{\prime}(x) \\
T_{n}^{\prime \prime}(h) & =f^{\prime \prime}(x)+\cdots+\frac{f^{(n)}(x) h^{n-2}}{(n-2)!} \\
T_{n}^{\prime \prime}(0) & =f^{\prime \prime}(x) \\
& \vdots \\
T_{n}^{(n)}(0) & =f^{(n)}(x)
\end{aligned}
$$

so $T_{n}(h)$ is the unique $n^{\text {th }}$ degree polynomial such that

$$
\begin{aligned}
T_{n}(0) & =f(x) \\
T_{n}^{\prime}(0) & =f^{\prime}(x) \\
& \vdots \\
T_{n}^{(n)}(0) & =f^{(n)}(x)
\end{aligned}
$$

The proof of the formula for the remainder E_{n} is essentially the Mean Value Theorem; the problem in applying it is that the point $x+\lambda h$ is not known in advance.

Theorem 10 (Alternate Taylor's Theorem in \mathbf{R}^{1}) Let $f: I \rightarrow \mathbf{R}$ be n times differentiable, where $I \subseteq \mathbf{R}$ is an open interval and $x \in I$. Then

$$
f(x+h)=f(x)+\sum_{k=1}^{n} \frac{f^{(k)}(x) h^{k}}{k!}+o\left(h^{n}\right) \text { as } h \rightarrow 0
$$

If f is $(n+1)$ times continuously differentiable (i.e. all derivatives up to order $n+1$ exist and are continuous), then

$$
f(x+h)=f(x)+\sum_{k=1}^{n} \frac{f^{(k)}(x) h^{k}}{k!}+O\left(h^{n+1}\right) \text { as } h \rightarrow 0
$$

Remark: The first equation in the statement of the theorem is essentially a restatement of the definition of the $n^{t h}$ derivative. The second statement is proven from Theorem 1.9, and the continuity of the derivative, hence the boundedness of the derivative on a neighborhood of x.

Definition 11 Let $X \subseteq \mathbf{R}^{n}$ be open. A function $f: X \rightarrow \mathbf{R}^{m}$ is continuously differentiable on X if

- f is differentiable on X and
- $d f_{x}$ is a continuous function of x from X to $L\left(\mathbf{R}^{n}, \mathbf{R}^{m}\right)$, with operator norm $\left\|d f_{x}\right\|$
f is C^{k} if all partial derivatives of order less than or equal to k exist and are continuous in X.

Theorem 12 (Thm. 4.3) Suppose $X \subseteq \mathbf{R}^{n}$ is open and $f: X \rightarrow \mathbf{R}^{m}$. Then f is continuously differentiable on X if and only if f is C^{1}.

Remark: The notation in Taylor's Theorem is difficult. If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, the quadratic terms are not hard for $m=1$; for $m>1$, we handle each component separately. For cubic and higher order terms, the notation is a mess.

Linear Terms:

Theorem 13 Suppose $X \subseteq \mathbf{R}^{n}$ is open and $x \in X$. If $f: X \rightarrow \mathbf{R}^{m}$ is differentiable, then

$$
f(x+h)=f(x)+D f(x) h+o(h) \text { as } h \rightarrow 0
$$

The previous theorem is essentially a restatement of the definition of differentiability.

Theorem 14 (Corollary of 4.4) Suppose $X \subseteq \mathbf{R}^{n}$ is open and $x \in X$. If $f: X \rightarrow \mathbf{R}^{m}$ is C^{2}, then

$$
f(x+h)=f(x)+D f(x) h+O\left(|h|^{2}\right) \text { as } h \rightarrow 0
$$

Quadratic Terms:

We treat each component of the function separately, so consider $f: X \rightarrow \mathbf{R}, X \subseteq \mathbf{R}^{n}$ an open set. Let

$$
\begin{aligned}
D^{2} f(x) & =\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{2}^{2}}(x) & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}}(x) \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) & \frac{\partial^{2} f}{\partial x_{2}^{2}}(x) & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}}(x) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}}(x) & \cdots & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}(x)
\end{array}\right) \\
f \in C^{2} & \Rightarrow \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x) \\
& \Rightarrow D^{2} f(x) \text { is symmetric } \\
& \Rightarrow D^{2} f(x) \text { has an orthonormal basis of eigenvectors } \\
& \text { and thus can be diagonalized }
\end{aligned}
$$

Theorem 15 (Stronger Version of Thm. 4.4) Let $X \subseteq \mathbf{R}^{n}$ be open, $f: X \rightarrow \mathbf{R}, f \in$ $C^{2}(X)$, and $x \in X$. Then

$$
f(x+h)=f(x)+D f(x) h+\frac{1}{2} h^{\top}\left(D^{2} f(x)\right) h+o\left(|h|^{2}\right) \text { as } h \rightarrow 0
$$

If $f \in C^{3}$,

$$
f(x+h)=f(x)+D f(x) h+\frac{1}{2} h^{\top}\left(D^{2} f(x)\right) h+O\left(|h|^{3}\right) \text { as } h \rightarrow 0
$$

Remark: de la Fuente assumes X is convex. X is said to be convex if, for every $x, y \in X$ and $\alpha \in[0,1], \alpha x+(1-\alpha) y \in X$. Notice we don't need this. Since X is open,

$$
x \in X \Rightarrow \exists \delta>0 \text { s.t. } B_{\delta}(x) \subseteq X
$$

and $B_{\delta}(x)$ is convex.

Definition 16 We say f has a saddle at x if $D f(x)=0$ but f has neither a local maximum nor a local minimum at x.

Corollary 17 Suppose $X \subseteq \mathbf{R}^{n}$ is open and $x \in X$. If $f: X \rightarrow \mathbf{R}$ is C^{2}, then there is an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$ and corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}$ of $D^{2} f(x)$ such that

$$
\begin{aligned}
f(x+h) & =f\left(x+\gamma_{1} v_{1}+\cdots+\gamma_{n} v_{n}\right) \\
& =f(x)+\sum_{i=1}^{n}\left(D f(x) v_{i}\right) \gamma_{i}+\frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \gamma_{i}^{2}+o\left(|\gamma|^{2}\right)
\end{aligned}
$$

where $\gamma_{i}=h \cdot v_{i}$.

1. If $f \in C^{3}$, we may strengthen $o\left(|\gamma|^{2}\right)$ to $O\left(|\gamma|^{3}\right)$.
2. If f has a local maximum or local minimum at x, then

$$
D f(x)=0
$$

3. If $D f(x)=0$, then

$$
\begin{aligned}
\lambda_{1}, \ldots, \lambda_{n}>0 & \Rightarrow f \text { has a local minimum at } x \\
\lambda_{1}, \ldots, \lambda_{n}<0 & \Rightarrow f \text { has a local maximum at } x \\
\lambda_{i}<0 \text { for some } i, \lambda_{j}>0 \text { for some } j & \Rightarrow f \text { has a saddle at } x \\
\lambda_{1}, \ldots, \lambda_{n} \geq 0, \lambda_{i}>0 \text { for some } i & \Rightarrow f \text { has a local minimum } \\
& \text { or a saddle at } x \\
\lambda_{1}, \ldots, \lambda_{n} \leq 0, \lambda_{i}<0 \text { for some } i & \Rightarrow f \text { has a local maximum } \\
& \text { or a saddle at } x \\
\lambda_{1}=\cdots=\lambda_{n}=0 & \text { gives no information. }
\end{aligned}
$$

Proof: (Sketch) From our study of quadratic forms, we know the behavior of the quadratic terms is determined by the signs of the eigenvalues. If $\lambda_{i}=0$ for some i, then we know that the quadratic form arising from the second partial derivatives is identically zero in the direction v_{i}, and the higher derivatives will determine the behavior of the function f in the direction v_{i}. For example, if $f(x)=x^{3}$, then $f^{\prime}(0)=0, f^{\prime \prime}(0)=0$, but we know that f has a saddle at $x=0$; however, if $f(x)=x^{4}$, then again $f^{\prime}(0)=0$ and $f^{\prime \prime}(0)=0$ but f has a local (and global) minimum at $x=0$.

Figure 1: The Mean Value Theorem.

[^0]: ${ }^{1}$ Recall $|\cdot|$ denotes the Euclidean distance.

