Economics 204 Summer /Fall 2023
Lecture 3—Wednesday July 26, 2023

Section 2.1. Metric Spaces and Normed Spaces

Here we seek to generalize notions of distance and length in R" to abstract settings.

Definition 1 A metric space is a pair (X,d), where X is a set and d : X x X — Ry a
function satisfying

1. d(z,y) >0, dlz,y) =0 =y Vr,ye X

2. d(z,y) = d(y,z) Yo,y € X

3. triangle inequality:
d(z,z) < d(z,y) +d(y, z) Vo,y,z€ X

y
/ N

A function d : X x X — R, satisfying 1-3 is called a metric on X.
A metric gives a notion of distance between elements of X.

Definition 2 Let V' be a vector space over R. A norm on V is a function || - || : V — R4
satisfying

1. |z >0Vz eV

2. |z =0 2=0Vr eV

3. triangle inequality:
[z +yll < [zl + [lyll Vz,y € V

T
x )/ N Y
0 — T+vy
Y\ /S x
Yy

4. ||laz|| = |af||z|| Yo € R,z € V

A normed vector space is a vector space over R equipped with a norm.
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A norm gives a notion of length of a vector in V.

Example: In R"”, the standard notion of distance between two vectors z and y measures
the length of the difference x — y, i.e., d(x,y) = ||z — y| = \/Z?Zl(zvi — )%

In an abstract normed vector space, the norm can be used analogously to define a notion
of distance.

Theorem 3 Let (V.|| -||) be a normed vector space. Letd:V x V = Ry be defined by
d(v, w) = [jv — w|

Then (V,d) is a metric space.

Proof: We must verify that d satisfies all the properties of a metric.

1. Let v,w € V. Then by definition, d(v,w) = |[[v — w| > 0 (why?), and

dv,w)=0 & |lv—w| =0

&S v—w=0

& (v+ (—w)tw=w
& v+ ((—w)+w)=w
< v+0=w

&S v=w

2. First, note that forany z € V, 0-2 =(040)-2 =0-24+0-2,80 0-2x = 0. Then
0=0-z=(1-1)-z2=1-24+(-1)- 2 =x+(—1) -z, so we have (—1) -z = (—z).
Then let v,w € V.

d(v,w) = |v—wl
= | = 1f}v = w]|
= (=D (v + (—w))|l
= [[(=Dv+ (=) (-w)]
= [|—v+w]
= Jlw+ (=v)||
= |lw -
= d(w,v)

3. Let u,w,v e V.
d(u,w) = |lu—wl|
= |lu+(=v+v)—w
= |lu—v+v—w|
< u=vll+ [lv —wl]|
= d(u,v) + d(v,w)



Thus d is a metricon V. m

Examples of Normed Vector Spaces

e E": n-dimensional Euclidean space.

n

V=R", ||lz[lz = |z] = | D _(2:)?

i=1

n
V =R", ||z|i = X |z (the “taxi cab” norm or L' norm)
i=1

V =R", ||z|lcc = max{|z1],...,|xs|} (the maximum norm, or sup norm, or L> norm)
C([0,1]), [Iflloe = sup{[f(£)] : ¢ € [0,1]}

C([0,1]), [|fll2 =/ Jo (f(2))*dt

C([0,1]), [Ifll = Jo IF(£)]dt

Theorem 4 (Cauchy-Schwarz Inequality)

If v,w e R, then
n 2
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Proof: Read the proof in de La Fuente. m

The Cauchy-Schwarz Inequality is essential in proving the triangle inequality in E”.
Deriving the triangle inequality in E" from the Cauchy-Schwarz inequality is a good exercise.
The Cauchy-Schwarz inequality can also be viewed as a consequence of geometry in R?, in
particular the law of cosines. Note that for v,w € R? v -w = |v||w|cos@ where 6 is the
angle between v and w; see Figure 1.1

Notice that a given vector space may have many different norms. As a trivial example,
if || - || is a norm on a vector space V', so are 2|| - || and 3|| - || and k|| - || for any k& > 0. Less
trivially, R™ supports many different norms as in the examples above. Different norms on a
given vector space yield different geometric properties; for example, see Figure 2 for different
norms on R2.

From the law of cosines, (v—w)-(v—w) = v-v+w-w—2|v||w| cosf. On the other hand, (v—w)-(v—w) =
veov—20-w+w-w,sov-w= |v||w|cosb.



Figure 1: 6 is the angle between v and w.
Definition 5 Two norms |- || and || - ||* on the same vector space V' are said to be Lipschitz-
equivalent ( or equivalent ) if Im, M > 0 s.t. Vo € V|
mjz]| < )" < Mllz]]

Equivalently, 3m, M > 0 s.t. Vo € V,x # 0,

<M

If two norms are equivalent, then they define the same notions of convergence and con-
tinuity. For topological purposes, equivalent norms are indistinguishable. For example,
suppose two norms || - || and || - ||* on the vector space V are equivalent, and fix x € V. Let
B.(z, | - ||) denote the || - ||-ball of radius ¢ about z; similarly, let B.(z, || - ||*) denote the
|| - [|*-ball of radius ¢ about z. That is,

Be(w, [-1) = {yeV:le—yl<e}
Be(w, [|-1") = {yeV:lz—yl" <e}

Then for any € > 0,
Be(a, | -]) € Be(a, [ - ") € Be(z, || - ]])

See Figure 3.

In R” (or any finite-dimensional normed vector space), all norms are equivalent. This
says roughly that, up to a difference in scaling, for topological purposes there is a unique
norm in R".

Theorem 6 All norms on R™ are equivalent.’

2The statement of the theorem in de la Fuente (Theorem 10.8, p. 107) is correct, but the proof has a
problem.



However, infinite-dimensional spaces support norms that are not equivalent. For example,
on C([0,1]), let f,, be the function

1—nt ifte 0,2
nt - "
Fnlt) {0 ifte(%ﬁ

Then )
b &1,
[falle 1 2n

Definition 7 In a metric space (X, d), a subset S C X is bounded if 3x € X, € R such
that Vs € S, d(s,z) < .

In a metric space (X, d), define
B(z) = {yeX:d(y,z)<e}

open ball with center x and radius €
Bfz] = {ye X :d(y,z)<e}

= closed ball with center x and radius &

We can use the metric d to define a generalization of “radius”. In a metric space (X, d),
define the diameter of a subset S C X by

diam (S) = sup{d(s,s’) : s,s' € S}

Similarly, we can define the distance from a point to a set, and distance between sets, as
follows:

d(A,x) = igﬁd(a,x)

d(A,B) = infd(B,a)
= inf{d(a,b):a € A,b e B}
Note that d(A, z) cannot be a metric (since a metric is a function on X x X, the first and

second arguments must be objects of the same type); in addition, d(A, B) does not define a
metric on the space of subsets of X (why?).?

Section 2.2. Convergence of Sequences in Metric Spaces

Definition 8 Let (X, d) be a metric space. A sequence {x,} converges to x (written z,, — x
or lim, ., =, = x) if

Ve >03dN(e) € Ns.t. n> N(e) = d(zp,x) <€

3 Another, more useful notion of the distance between sets is the Hausdorff distance, given by d(A, B) =
max {sup,c 4 infpep d(a, b), sup,c g infoca d(a,b)}.



Notice that this is exactly the same as the definition of convergence of a sequence of real
numbers, except we replace the standard measure of distance |- | in R by the general metric

d.

Theorem 9 (Uniqueness of Limits) In a metric space (X,d), if x,, — x and z, — 2,
then x = 2.

T
! €
T, !

— _ d(z,2)

~~ E = —2

T

T €

-l’/
Proof: Suppose {z,} is a sequence in X, x,, — x, z,, — 2/, x # 2’. Sincex # ', d(z,z") > 0.
Let

d(z, ")
2

Then there exist N(¢) and N'(¢) such that

n>N(E) = dz,x)<e
n>N() = dz,1)<e

Choose
n > max{N(g), N'(e)}
Then
d(fafl) < d(fafn)‘l'd(fmf/)
< e+4¢
= 2
= d(x,2'
d(z,z") < d(z,2'

a contradiction.m

Definition 10 An element c is a cluster point of a sequence {x,} in a metric space (X, d)
if Ve > 0, {n:x, € B:(c)} is an infinite set. Equivalently,

Ve >0,N € N3dn> N s.t. x, € B(c)



Example:
if n even

1 —
I":{ % if n odd

For n large and odd, x,, is close to zero; for n large and even, z,, is close to one. The sequence
does not converge; the set of cluster points is {0, 1}.

3=

If {x,} is a sequence and ny < ng < ng < --- then {z,, } is called a subsequence.

Note that a subsequence is formed by taking some of the elements of the parent sequence,
in the same order.

Example: z, = %, so {z,} = (1, %, %, . ) If n, = 2k, then {z,, } = (%, i, é, . )

Theorem 11 (2.4 in De La Fuente, plus ...) Let (X,d) be a metric space, ¢ € X, and
{z,} a sequence in X. Then c is a cluster point of {x,} if and only if there is a subsequence
{zn,} such that limy_.o T, = cC.

Proof: Suppose c is a cluster point of {x,}. We inductively construct a subsequence that
converges to c¢. For k =1, {n : z, € Bi(c)} is infinite, so nonempty; let
ny = min{n : x, € Bi(c)}
Now, suppose we have chosen n; < ng < --- < ng such that
T, € B%(c) forj=1,...,k

{n:x, € B#l(c)} is infinite, so it contains at least one element bigger than ny, so let

Npy1 = min{n ‘N> ng, T, € B#l(c)}
Thus, we have chosen ny < ng < --- < ng < ngyq such that
T, EB%(C) forj=1,....k,k+1
Thus, by induction, we obtain a subsequence {z,, } such that
T, € B%(c)
Given any € > 0, by the Archimedean property, there exists N(g) > 1/e.

k> N() = inkEB%(C)
= Ty, € B:(c)

SO
Ty, — Ccask — o0
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Conversely, suppose that there is a subsequence {z,, } converging to c. Given any ¢ > 0,
there exists K € N such that

k>K = d(x,,c) <e=x, € Bc)

Therefore,
{n:a, € Be(c)} 2 {nr+1, K12, K43, - - -}

Since nxi1 < Ngio < g3 < ---, this set is infinite, so ¢ is a cluster point of {z,}. =

Section 2.3. Sequences in R and R™

Definition 12 A sequence of real numbers {x,} is increasing (decreasing) if x,.1 > z,
(Tps1 < zp) for all n.

Definition 13 If {z,} is a sequence of real numbers, {z,} tends to infinity (written z,, — oo
or limx, = 00) if
VK € RIN(K) st. n> N(K) = 2, > K

Similarly define z,, — —o0 or limx,, = —o0.

Notice we don’t say the sequence converges to infinity; the term “converge” is limited to the
case of finite limits.

Theorem 14 (Theorem 3.1°) Let {x,} be an increasing (decreasing) sequence of real num-
bers. Then lim,_, x, = sup{x, : n € N} ( lim,_ z, = inf{x, : n € N} ). In particular,
the limit exists.

Proof: Read the proof in the book, and figure out how to handle the unbounded case. m
Lim Sups and Lim Infs:*

Consider a sequence {z,} of real numbers. Let

a, = sup{z:k>n}
sup{Zn, Tpni1, Tnt2, ...}
Bn = inf{xy:k>n}

Either «,, = +o0 for all n, or a,, € R and a; > ap > a3 > ---. Either 3, = —oo for all n,
or Bo€ Rand By < B2 < B3 < -+

4See the handout for this material.



Definition 15

I B +o0o if o, = +00 for all n
sapIn = lima, otherwise.

.. —oo if B, = —oo for all n
hgrig)lf:cn { lim 3, otherwise.

Theorem 16 Let {x,} be a sequence of real numbers. Then
limy, o 2, =7 € RU{—00,00}

& limsup,, ., n, = liminf, .z, =7

Theorem 17 (Theorem 3.2, Rising Sun Lemma) FEvery sequence of real numbers con-
tains an increasing subsequence or a decreasing subsequence or both.

O — 4 4 — — — — — «— — «— «— S
° ° ° ° O 4 — — «— — «— «— U
L o ° ° ° 0 «— «+«— «— N
[ ] [ ] [ ]
[ ]
Proof: Let
S={seN:xs >z, Vn> s}
Either S is infinite, or S is finite.
If S is infinite, let
ny = minS
No = mln(S\{nl})
ny = min (S \ {n,n2})
mr = min (S {ng,ma, i)

Then n; < ng <ng < ---.

Ty > T, since n; € S and ne > ny

Ty > Ty since ng € S and nz > ns

Ty, > Ty, since n, € S and ngyq > nyg



so {z,, } is a strictly decreasing subsequence of {x,}.
If S is finite and nonempty, let ny = (maxS) + 1; if S =, let ny = 1. Then

ny €S so dng >ng st Ty, > Ty,

ne € S so dng >mng s.t. Ty, > Ty,

ng €S so dnpp >ng st Ty, > Ty,

so {zy, } is a (weakly) increasing subsequence of {z,}. m

Theorem 18 (Thm. 3.3, Bolzano-Weierstrass) Every bounded sequence of real num-
bers contains a convergent subsequence.

Proof: Let {z,} be a bounded sequence of real numbers. By the Rising Sun Lemma, find
an increasing or decreasing subsequence {z,, }. If {x,, } is increasing, then by Theorem 3.1°,
limz,, = sup{z,, : k € N} <sup{z, : n € N} < oo, since the sequence is bounded; since
the limit is finite, the subsequence converges. Similarly, if the subsequence is decreasing, it
converges.
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unit balls around 0 in different norms

Figure 2: The unit ball around 0 in different norms on R?: standard || - |2, || - [ (L' or taxi
cab norm) and || - ||« (sup norm or L* norm).
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norms on R" are equivalent

Figure 3: All norms on R"™ are equivalent.
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