Economics 204 Summer /Fall 2023
Lecture 4-Thursday July 27, 2023

Section 2.4. Open and Closed Sets

Definition 1 Let (X, d) be a metric space. A set A C X is open if
Vee Ade>0st. Be(x) C A
A set C C X is closed if X \ C'is open.

See Figure 1.

Example: (a,b) is open in the metric space E' (R with the usual Euclidean metric). Given
x € (a,b),a <z <b. Let
e =min{r —a,b—z} >0

Then
y€B(x) = ye(x—e,x+¢)
C (x—(xr—a),z+ (b—1x))
= (a>b)

so B.(x) C (a,b), so (a,b) is open.

Notice that € depends on x; in particular, € gets smaller as x nears the boundary of the
set.

Example: In E!, [a,b] is closed. R\ [a,b] = (—00,a) U (b, o) is a union of two open sets,
which must be open.

Example: In the metric space [0,1], [0,1] is open. With [0, 1] as the underlying metric
space, B.(0) ={z € [0,1] : |z — 0| < e} =0,¢).

Thus, openness and closedness depend on the underlying metric space as well as on the
set.

Example: Most sets are neither open nor closed. For example, in E!, [0, 1]U(2, 3) is neither
open nor closed.

Example: An open set may consist of a single point. For example, if X = N and d(m,n) =
|m — n|, then By5(1) = {m € N : |m — 1| < 1/2} = {1}. Since 1 is the only element of the
set {1} and By/5(1) = {1} C {1}, the set {1} is open.

Example: In any metric space (X, d) both () and X are open, and both () and X are closed.
To see that () is open, note that the statement

Vo €0 Je >0 B(x) C0
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is vacuously true since there aren’t any x € (). To see that X is open, note that since B.(z)
is by definition {z € X : d(z,z) < ¢}, it is trivially contained in X. Since () is open, X is
closed; since X is open, () is closed.

Example: Open balls are open sets. Suppose y € B:(z). Then d(z,y) < e. Let § =
e—d(xz,y) > 0. If d(z,y) <9, then

d(z,z) < d(z,y)+d(y,x)
< 0+d(z,y)
)

= €—d(l’,y +d(I>y)

= £

so Bs(y) C Be(z), so B.(x) is open.

Theorem 2 (Thm. 4.2) Let (X,d) be a metric space. Then

1. 0 and X are both open, and both closed.

2. The union of an arbitrary (finite, countable, or uncountable) collection of open sets is
open.

3. The intersection of a finite collection of open sets is open.

Proof:

1. We have already shown this.

2. Suppose {A)}aen is a collection of open sets.

X € UA)\ = HAQEAS.t.ZEEA)\O

A€A

= Je>0s.t. Bo(z) C Ay, C | Ax
AEA

S0 Uxepa Ay is open.
3. Suppose Aj,..., A, C X are open sets. If x € N’ ; A;, then
r €A, x €Ay ...,k €A,

SO
Je1 > 0,...,6, >0s.t. B, (x) CAy,...,B., (x) CA,

Let
e =min{ey,...,e,} >0



(Note this is where we need the fact that we are taking a finite intersection. The
infimum of an infinite set of positive numbers could be zero. And the intersection of
an infinite collection of open sets need not be open.)

Then
B.(z) C B.,(z) C Ay,..., Be(z) C B, (z) C A,
SO .
i=1
which proves that N}'_; A; is open.
[ |
Definition 3 e The interior of A, denoted int A, is the largest open set contained in A

(the union of all open sets contained in A).

e The closure of A, denoted A, is the smallest closed set containing A (the intersection
of all closed sets containing A)

e The exterior of A, denoted ext A, is the largest open set contained in X \ A.

e The boundary of A, denoted 04 = (X \ A)N A

Example: Let A =[0,1] U (2,3). Then
intA = (0,1)U(2,3)
A = [0,1]U[2,3]
ext A = int(X\A)
= (—00,0)U(1,2) U(3,+00)
A = (X\A)NA
= ((—00,0]U[1,2] U [3,400)) N ([0,1] U[2,3])
= {0,1,2,3}

Theorem 4 (Thm. 4.13) A set A in a metric space (X, d) is closed if and only if
{z,} CAx,—w2xeX=>2€A

Proof:! Suppose A is closed. Then X \ A is open. Consider a convergent sequence x,, —
x € X, with z,, € Aforalln. If x € A, © € X \ A, so there is some ¢ > 0 such that
B.(x) € X \ A. (See Figure 2.) Since z,, — z, there exists N(e) such that
n> N(e) = x, € B(x)
= r, € X\A
= 2, €A

! This is different from the proof in de la Fuente: he puts the meat of the proof into Theorem 4.12
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contradiction. Therefore,
r, CAx,—w2r€eX=>0€A

Conversely, suppose
{z,} CAx,—w2xeX=>0€A

We need to show that A is closed, i.e. X \ A is open. Suppose not, so X \ A is not open.
Then there exists x € X \ A such that for every € > 0,

Be(z) £ X\ A
so there exists y € B.(x) such that y ¢ X \ A. Then y € A, hence
B.(x)MA#

See Figure 3. Construct a sequence {x,} as follows: for each n, choose =, € Bi(x) N A.

Given € > 0, we can find N(e) such that N(¢) > 1 by the Archimedean Property, so

n > N(e) = % < ﬁ < ¢, 80z, — x. Then {z,} C A, x,, — z, so x € A, contradiction.

Therefore, X \ A is open, so A is closed. m
Section 2.5. Limits of Functions
Note: Read this section of de la Fuente on your own.

Note that we may have lim,_, f(x) = y even though

e f is not defined at a; or

e f is defined at a but f(a) # v.

The existence and value of the limit depends on values of f near a but not at a.

Section 2.6. Continuity in Metric Spaces

Definition 5 Let (X, d) and (Y, p) be metric spaces. A function f : X — Y is continuous
at a point xg € X if Ve > 0 3d(xp,e) > 0 s.t. d(x,z0) < §(z0,¢) = p(f(z), f(x0)) < €.

f is continuous if it is continuous at every element of its domain.

Note that ¢ depends on zy and &.

This is a straightforward generalization of the definition of continuity in R. Continuity
at xg requires:

e f(xp) is defined; and



e cither

— o is an isolated point of X, i.e. 3¢ > 0 s.t. B.(z) = {«x}; or

— lim, .., f(x) exists and equals f(zo)

Suppose f: X — Y and A CY. Define [~ (A)={zr € X : f(z) € A}.

Theorem 6 (Thm. 6.14) Let (X,d) and (Y, p) be metric spaces, and f: X — Y. Then f
15 continuous if and only if

fH(A) is open in X VACY s.t. Ais openinY

Proof:? Suppose f is continuous. Given A C Y, A open, we must show that f~1(A) is open
in X. Suppose zg € f71(A). Let yo = f(x9) € A. Since A is open, we can find € > 0 such
that B.(yo) € A. Since f is continuous, there exists § > 0 such that

d(z,z9) <6 = p(f(x), f(zo)) <e
= f(z) € B:(yo)
= f(x)e A
= xc f1(A)

so Bs(xg) C f71(A), so f71(A) is open. (See Figure 4.)
Conversely, suppose
f'(A) is open in X VA CY s.t. Aisopen in Y

We need to show that f is continuous. Let zp € X, ¢ > 0. Let A = B.(f(x¢)). A is an open
ball, hence an open set, so f~1(A) is open in X. zy € f~1(A), so there exists § > 0 such
that Bs(zo) C f~'(A). (See Figure 5.)

d(z,zg) <§ = x € Bs(xo)
= xe f (A
= f(r)e A
= p(f(x), f(x0)) <€

Thus, we have shown that f is continuous at xg; since x( is an arbitrary point in X, f is
continuous.m

Theorem 7 (Slightly weaker version of Thm. 6.10) Let (X,dx), (Y,dy) and (Z,dy)
be metric spaces. If f : X — Y and g : Y — Z are continuous, then go f : X — Z is
continuous.

2We give a direct proof; de la Fuente works via closed sets.
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Proof: Suppose A C Z is open. Since g is continuous, g~*(A) is open in Y since f is
continuous, f~!(g7'(A)) is open in X.

We claim that
FHg™H(A) = (go £)7H(A)

Observe

which establishes the claim. This shows that (go f)™'(A) is open in X, so go f is continuous.
n

Definition 8 [Uniform Continuity] Suppose f : (X,d) — (Y, p). f is uniformly continuous
if
Ve >0 30(e) > 0 s.t. Vg € X, d(x,z0) < d(e) = p(f(x), f(zg)) <&

Notice the important contrast with continuity: f is continuous means

Vag € X,e >0 36(zg,€) > 0 s.t. d(z,x0) < d(xo,€) = p(f(x), f(z0)) < €

Example: Consider

1
=—, v€(0,1
flz)=—, z€(0,1]
f is continuous (why?). We will show that f is not uniformly continuous. Fix ¢ > 0 and

o € (0, 1] Ifl’ = ﬁ, then

l+exg > 1

2o <
= T
1‘|‘€l’0 0
1 1
= >0
X Zo
1 1
F@) = f@ol = |5 -+
11
N X ZTo
. 1‘|‘€l’0 1
N ZTo ZTo
. EXo
= o
= €



Thus, d(xo, ) must be chosen small enough so that

Zo

— > 0(xo, €
’1—|—€l’0 To| =2 ($07 )
5(1’0,8) S l’o—lfi$
0

_ e(wo)”

1‘|‘€l’0

< 8(1’0)2

which converges to zero as zg — 0. (See Figure 6.) So there is no §(¢) that will work for all
Xo € (0, 1]

Example: If f : R — R and f’(z) is defined and uniformly bounded on an interval [a, b],
then f(z) is uniformly continuous on [a,b]. However, even a function with an unbounded
derivative may be uniformly continuous. Consider

flz) =z, z€l0,1]

f is continuous (why?). We will show that f is uniformly continuous. Given € > 0, let
§ = 2. Then given any zy € [0,1], |z — 29| < ¢ implies by the Fundamental Theorem of
Calculus

[f(x) = f(xo)] =

z ]
——=dt
/960 2\/1_5 |
lz—z0] 1
——dt
/0 2Vt

I
)
I
8
o

Thus, f is uniformly continuous on [0, 1], even though f'(z) — co as x — 0.

Definition 9 Let X,Y be normed vector spaces, £ C X. f: X — Y is Lipschitz on E if
K >0 s.t. ||f(x) = f)|ly < K|z —z||x Vx,z€FE
f is locally Lipschitz on E if

Vag € E Je > 0 s.t. f is Lipschitz on B.(zo) N E



Remark: de la Fuente only defines Lipschitz and locally Lipschitz in the context of normed

vector spaces. The notions can also be defined analogously in metric spaces as follows: Let
(X,d) and (Y, p) be metric spaces, £ C X. f: X — Y is Lipschitz on E if

K > 0 s.t. p(f(x), f(2) < Kd(z,z) Vx,z€ E
Similarly, f is locally Lipschitz on E if

Vag € E Je > 0 s.t. f is Lipschitz on B.(zo) N E

Lipschitz continuity is stronger than either continuity or uniform continuity:

locally Lipschitz = continuous

Lipschitz = uniformly continuous

Every C! function is locally Lipschitz. (Recall that a function f: R™ — R™ is said to
be C! if all its first partial derivatives exist and are continuous.)

Definition 10 ? Let (X, d) and (Y, p) be metric spaces. A function f : X — Y is called a
homeomorphism if it is one-to-one, onto, continuous, and its inverse function is continuous.

Now suppose that f is a homeomorphism and U C X. Let g : Y — X be the inverse of
fysogof: X — X isthe identity on X, and fog:Y — Y is the identity on Y.

yeg'(U) & gly)=f"eU
& ye fU)
Uopenin X = ¢ '(U)is open in (f(X),p)
= f(U) is open in (f(X),p)

This says that (X, d) and (f(X), ,0|f(X)) are identical in terms of properties that can be
characterized solely in terms of open sets; such properties are called “topological properties.”

3This is the standard definition; de la Fuente instead omits the requirement that f be onto, and requires
that f~! be continous on f(X). See the Corrections handout for a correction to Theorem 6.21
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Figure 1: A is open: for every z € A there is some € > 0 such that B.(x) C A. B is not
open: for z depicted in the picture Ae > 0 such that B.(x) C B.



Figure 2: Sequences and closed sets

10



Figure 3: Sequences and closed sets
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Bs(X,)

B.(Yo)

Figure 4: Proof of Theorem 6.
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Bs(yO)

Figure 5: Proof of Theorem 6.
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Figure 6: f(z) = 1 is not uniformly continuous.
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