
Economics 204 Summer/Fall 2023
Lecture 5–Friday July 28, 2023

Section 2.6 (cont.) Properties of Real Functions

Here we first study properties of functions from R to R, making use of the additional
structure we have in R as opposed to general metric spaces.

Let f : X → R where X ⊆ R. We say f is bounded above if

f(X) = {r ∈ R : f(x) = r for some x ∈ X}

is bounded above. Similarly, we say f is bounded below if f(X) is bounded below. Finally, f
is bounded if f is both bounded above and bounded below, that is, if f(X) is a bounded set.

Theorem 1 (Thm. 6.23, Extreme Value Theorem) Let a, b ∈ R with a ≤ b and let
f : [a, b] → R be a continuous function. Then f assumes its minimum and maximum on
[a, b]. That is, if

M = sup
t∈[a,b]

f(t) m = inf
t∈[a,b]

f(t)

then ∃tM , tm ∈ [a, b] such that f(tM) = M and f(tm) = m.

In particular, f is bounded above and below.

Proof: Let
M = sup{f(t) : t ∈ [a, b]}

If M is finite, then for each n, we may choose tn ∈ [a, b] such that M ≥ f(tn) ≥ M − 1
n

(if
we couldn’t make such a choice, then M − 1

n
would be an upper bound and M would not be

the supremum). If M is infinite, choose tn such that f(tn) ≥ n. By the Bolzano-Weierstrass
Theorem, {tn} contains a convergent subsequence {tnk

}, with

lim
k→∞

tnk
= t0 ∈ [a, b]

Since f is continuous,

f(t0) = lim
t→t0

f(t)

= lim
k→∞

f (tnk
)

= M

so M is finite and
f(t0) = M = sup{f(t) : t ∈ [a, b]}

so f attains its maximum and is bounded above.

The argument for the minimum is similar.
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Theorem 2 (Thm. 6.24, Intermediate Value Theorem) Suppose f : [a, b] → R is
continuous, and f(a) < d < f(b). Then there exists c ∈ (a, b) such that f(c) = d.

Proof: We did a hands-on proof already. Now, we can simplify it a bit. Let

B = {t ∈ [a, b] : f(t) < d}

a ∈ B, so B 6= ∅. By the Supremum Property, sup B exists and is real so let c = sup B.
Since a ∈ B, c ≥ a. B ⊆ [a, b], so c ≤ b. Therefore, c ∈ [a, b]. We claim that f(c) = d.

Let

tn = min
{

c +
1

n
, b

}

≥ c

Either tn > c, in which case tn 6∈ B, or tn = c, in which case tn = b so f(tn) > d, so again
tn 6∈ B; in either case, f(tn) ≥ d. Since f is continuous at c, f(c) = limn→∞ f(tn) ≥ d
(Theorem 3.5 in de la Fuente).

Since c = sup B, we may find sn ∈ B such that

c ≥ sn ≥ c − 1

n

Since sn ∈ B, f(sn) < d. Since f is continuous at c, f(c) = limn→∞ f(sn) ≤ d (Theorem 3.5
in de la Fuente).

Since d ≤ f(c) ≤ d, f(c) = d. Since f(a) < d and f(b) > d, a 6= c 6= b, so c ∈ (a, b).

Monotonic Functions:

Definition 3 A function f : R → R is monotonically increasing if

y > x ⇒ f(y) ≥ f(x)

Theorem 4 (Thm. 6.27) Let a, b ∈ R with a < b, and let f : (a, b) → R be monotonically
increasing. Then the one-sided limits

f(t+) = lim
u→t+

f(u)

f(t−) = lim
u→t−

f(u)

exist and are real numbers for all t ∈ (a, b).

Proof: This is analogous to the proof that a bounded monotone sequence converges.
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Figure 1: A monotonic function has only simple jump discontinuities.

We say that f has a simple jump discontinuity at t if the one-sided limits f(t−) and f(t+)
both exist but f is not continuous at t.1 Note that there are two ways f can have a simple
jump discontinuity at t: either f(t+) 6= f(t−), or f(t+) = f(t−) 6= f(t).

The previous theorem says that monotonic functions have only simple jump discontinu-
ities; note that monotonicity also implies that f(t−) ≤ f(t) ≤ f(t+) for every t. See Figure
1.

Monotonic functions are particularly well-behaved.

Theorem 5 (Thm. 6.28) Let a, b ∈ R with a < b, and let f : (a, b) → R be monotonically
increasing. Then

D = {t ∈ (a, b) : f is discontinuous at t}
is finite (possibly empty) or countable.

As this result shows, a monotonic function is continuous “almost everywhere”.2

1This is also called a discontinuity of the first kind; otherwise, if f is not continuous at t, it is called a
discontinuity of the second kind. An example of a discontinuity of the second kind is given by the indicator
function of the rational numbers, that is f(t) = 1 if t ∈ Q and f(t) = 0 if t 6∈ Q. f is discontinuous at every
t and each discontinuity is of the second kind: f(t+), f(t−) do not exist at every t.

2This statement is also formally correct, as a finite or countable set has Lebesgue measure zero. We
return to formalize this in lectures 12 and 13.
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Proof: If t ∈ D, then f(t−) < f(t+) (if the left- and right-hand limits agreed, then by
monotonicity they would have to equal f(t), so f would be continuous at t). Q is dense in
R, that is, if x, y ∈ R and x < y then ∃r ∈ Q such that x < r < y.3 So for every t ∈ D we
may choose r(t) ∈ Q such that

f(t−) < r(t) < f(t+)

This defines a function r : D → Q.4 Notice that

s > t ⇒ f(s−) ≥ f(t+)

so
s > t, s, t ∈ D ⇒ r(s) > f(s−) ≥ f(t+) > r(t)

so r(s) 6= r(t). Therefore, r is one-to-one, so it is a bijection from D to a subset of Q. Thus
D is finite or countable.

Section 2.7. Complete Metric Spaces, Contraction Mapping Theorem

Roughly, a metric space is complete if “every sequence that ought to converge to a limit
has a limit to converge to.”

To begin to formalize this, recall that xn → x means

∀ε > 0 ∃N(ε/2) s.t. n > N(ε/2) ⇒ d(xn, x) <
ε

2

Observe that if n, m > N(ε/2), then

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ε

2
+

ε

2
= ε

This motivates the following definition:

Definition 6 A sequence {xn} in a metric space (X, d) is Cauchy if

∀ε > 0 ∃N(ε) s.t. n, m > N(ε) ⇒ d(xn, xm) < ε

A Cauchy sequence is trying really hard to converge, but there may not be anything for it
to converge to. Any sequence that does converge must be Cauchy, however, by the argument
above.

Theorem 7 (Thm. 7.2) Every convergent sequence in a metric space is Cauchy.

3This can be shown as a consequence of the Archimedean property. More generally, denseness can be
defined in an arbitrary metric space. For a metric space (X, d), E ⊆ X is dense if Ē = X.

4Here we have used the Axiom of Choice, which says that if we can choose such a rational r for each
t ∈ D, then we can can choose a function r : D → Q.
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Proof: We just did it.

Example: Let X = (0, 1] and d be the Euclidean metric. Let xn = 1
n
. Then xn → 0 in E1,

so {xn} is Cauchy in E1. But the Cauchy property depends only on the sequence and the
metric d, not on the ambient metric space. So {xn} is Cauchy in (X, d), but {xn} does not
converge in (X, d) because the point it is trying to converge to (0) is not an element of X.

Definition 8 A metric space (X, d) is complete if every Cauchy sequence {xn} ⊆ X con-
verges to a limit x ∈ X.

Definition 9 A Banach space is a normed space that is complete in the metric generated
by its norm.

Example: Consider the earlier example of X = (0, 1] with d the usual Euclidean metric.
Since xn = 1

n
is Cauchy but does not converge, ((0, 1], d) is not complete.

Example: Q is not complete in the Euclidean metric. To see this, let

xn =
b10n

√
2c

10n

where as before, byc is the greatest integer less than or equal to y; xn is just equal to
the decimal expansion of

√
2 to n digits past the decimal point. Clearly, xn is rational.

|xn −
√

2| ≤ 10−n, so xn →
√

2 in E1, so {xn} is Cauchy in E1, hence Cauchy in Q; since√
2 6∈ Q, {xn} is not convergent in Q, so Q is not complete.

Theorem 10 (Thm. 7.10) R is complete with the usual metric (so E1 is a Banach space).

Proof:5 Suppose {xn} is a Cauchy sequence in R. Fix ε > 0. Find N(ε/2) such that

n, m > N(ε/2) ⇒ |xn − xm| <
ε

2

Let

αn = sup{xk : k ≥ n}
βn = inf{xk : k ≥ n}

Fix m > N(ε/2). Then

k ≥ m ⇒ k > N(ε/2) ⇒ xk < xm +
ε

2

⇒ αm = sup{xk : k ≥ m} ≤ xm +
ε

2

5This proof is different from the one in de la Fuente.
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Since αm < ∞,

lim supxn = lim
n→∞

αn ≤ αm ≤ xm +
ε

2

since the sequence {αn} is decreasing. Similarly,

lim inf xn ≥ xm − ε

2

Therefore,
0 ≤ lim sup

n→∞

xn − lim inf
n→∞

xn ≤ ε

Since ε is arbitrary,
lim sup

n→∞

xn = lim inf
n→∞

xn ∈ R

so limn→∞ xn exists and is real. Thus {xn} is convergent.

Theorem 11 (Thm. 7.11) En is complete for every n ∈ N.

Proof: See de la Fuente.

Theorem 12 (Thm. 7.9) Suppose (X, d) is a complete metric space and Y ⊆ X. Then
(Y, d) = (Y, d|Y ) is complete if and only if Y is a closed subset of X.

Proof: Suppose (Y, d) is complete. We need to show that Y is closed. Consider a sequence
{yn} ⊆ Y such that yn →(X,d) x ∈ X. Then {yn} is Cauchy in X, hence Cauchy in Y ; since
Y is complete, yn →(Y,d) y for some y ∈ Y . Therefore, yn →(X,d) y. By uniqueness of limits,
y = x, so x ∈ Y . Thus Y is closed.

Conversely, suppose Y is closed. We need to show that Y is complete. Let {yn} be a
Cauchy sequence in Y . Then {yn} is Cauchy in X, hence convergent, so yn →(X,d) x for
some x ∈ X. Since Y is closed, x ∈ Y , so yn →(Y,d) x ∈ Y . Thus Y is complete.

Theorem 13 (Thm. 7.12) Given X ⊆ Rn, let C(X) be the set of bounded continuous
functions from X to R with

‖f‖∞ = sup{|f(x)| : x ∈ X}

Then C(X) is a Banach space.

Contractions:

Definition 14 Let (X, d) be a nonempty complete metric space. An operator is a function
T : X → X. An operator T is a contraction of modulus β if β < 1 and

d(T (x), T (y)) ≤ βd(x, y) ∀x, y ∈ X
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Figure 2: A contraction mapping

A contraction shrinks distances by a uniform factor β < 1. See Figure 2.

Theorem 15 Every contraction is uniformly continuous.

Proof: Let δ = ε
β
.

In fact, note that a contraction is Lipschitz continuous with Lipschitz constant β < 1.
This also shows that contractions are uniformly continuous.

Definition 16 A fixed point of an operator T is element x∗ ∈ X such that T (x∗) = x∗.

Theorem 17 (Thm. 7.16, Contraction Mapping Theorem) Let (X, d) be a nonempty
complete metric space and T : X → X a contraction with modulus β < 1. Then

1. T has a unique fixed point x∗.

2. For every x0 ∈ X, the sequence defined by

x1 = T (x0)

x2 = T (x1) = T (T (x0)) = T 2(x0)
...

xn+1 = T (xn) = T n(x0)

converges to x∗.

7



	 
 � � 	 
 
 � � � � 	 
 
 


�

� �

� � �

�

�

Figure 3: The Contraction Mapping Theorem

Note that the theorem asserts both the existence and uniqueness of the fixed point, as well
as giving an algorithm to find the fixed point of a contraction. Later in the course we will
discuss more general fixed point theorems which, in contrast, only guarantee existence. See
Figure 3.

Proof: Define the sequence {xn} as above by first fixing x0 ∈ X and then letting xn =
T (xn−1) = T n(x0) for n = 1, 2, . . ., where T n = T ◦ T ◦ . . . ◦ T is the n-fold iteration of T .

We first show that {xn} is Cauchy, and hence converges to a limit x. Then

d(xn+1, xn) = d(T (xn), T (xn−1))

≤ βd(xn, xn−1)

≤ β2d(xn−1, xn−2)
...

≤ βnd(x1, x0)
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Then for any n > m,

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

≤ (βn−1 + βn−2 + · · · + βm)d(x1, x0)

= d(x1, x0)
n−1
∑

`=m

β`

< d(x1, x0)
∞
∑

`=m

β`

=
βm

1 − β
d(x1, x0) (sum of a geometric series)

Fix ε > 0. Since βm

1−β
d(x1, x0) → 0 as m → ∞, choose N(ε) such that for any m > N(ε),

βm

1−β
d(x1, x0) < ε. Then for n, m > N(ε),

d(xn, xm) ≤ βm

1 − β
d(x1, x0) < ε

Therefore, {xn} is Cauchy. Since (X, d) is complete, xn → x∗ for some x∗ ∈ X.

Next, we show that x∗ is a fixed point of T .

T (x∗) = T
(

lim
n→∞

xn

)

= lim
n→∞

T (xn) since T is continuous

= lim
n→∞

xn+1

= x∗

so x∗ is a fixed point of T .

Finally, we show that there is at most one fixed point. Suppose x∗ and y∗ are both fixed
points of T , so T (x∗) = x∗ and T (y∗) = y∗. Then

d(x∗, y∗) = d(T (x∗), T (y∗))

≤ βd(x∗, y∗)

⇒ (1 − β)d(x∗, y∗) ≤ 0

⇒ d(x∗, y∗) ≤ 0

So d(x∗, y∗) = 0, which implies x∗ = y∗.

Theorem 18 (Thm. 7.18’, Continuous Dependence on Parameters) Let (X, d) and
(Ω, ρ) be two metric spaces and T : X ×Ω → X. For each ω ∈ Ω let Tω : X → X be defined
by

Tω(x) = T (x, ω)
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Suppose (X, d) is complete, T is continuous in ω, that is T (x, ·) : Ω → X is continuous for
each x ∈ X, and ∃β < 1 such that Tω is a contraction of modulus β ∀ω ∈ Ω. Then the fixed
point function x∗ : Ω → X defined by

x∗(ω) = Tω(x∗(ω))

is continuous.

Remark: See the comments in the Corrections handout. Theorem 7.18 in de la Fuente
only requires that each map Tω be a contraction of modulus βω < 1. However, his proof
assumes that there is a single β < 1 such that each Tω is a contraction of modulus β. I do
not know whether de la Fuente’s Theorem 7.18 is correct as stated.

An important result due to Blackwell gives a set of sufficient conditions for an operator
to be a contraction that is particularly useful in dynamic programming problems.

Let X be a set, and let B(X) be the set of all bounded functions from X to R. Then
(B(X), ‖ · ‖∞) is a normed vector space.

Notice that below we use shorthand notation that identifies a constant function with its
constant value in R, that is, we write interchangeably a ∈ R and a : X → R to denote the
function such that a(x) = a ∀x ∈ X.

Theorem 19 (Blackwell’s Sufficient Conditions) Consider B(X) with the sup norm
‖ · ‖∞. Let T : B(X) → B(X) be an operator satisfying

1. (monotonicity) f(x) ≤ g(x) ∀x ∈ X ⇒ (Tf)(x) ≤ (Tg)(x) ∀x ∈ X

2. (discounting) ∃β ∈ (0, 1) such that for every a ≥ 0 and x ∈ X,

(T (f + a)) (x) ≤ (Tf)(x) + βa

Then T is a contraction with modulus β.

Proof: Fix f, g ∈ B(X). By the definition of the sup norm,

f(x) ≤ g(x) + ‖f − g‖∞ ∀x ∈ X

Then
(Tf)(x) ≤ (T (g + ‖f − g‖∞)) (x) ≤ (Tg)(x) + β‖f − g‖∞ ∀x ∈ X

where the first inequality above follows from monotonicity, and the second from discounting.
Thus

(Tf)(x) − (Tg)(x) ≤ β‖f − g‖∞ ∀x ∈ X
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Reversing the roles of f and g above gives

(Tg)(x)− (Tf)(x) ≤ β‖f − g‖∞ ∀x ∈ X

Thus
‖T (f)− T (g)‖∞ ≤ β‖f − g‖∞

Thus T is a contraction with modulus β
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