Economics 204 Summer /Fall 2023
Lecture 6-Monday July 31, 2023

Section 2.8. Compactness

Definition 1 A collection of sets
U={Uy:Xe A}
in a metric space (X, d) is an open cover of A if U, is open for all A € A and

UxealUy 2 A
Notice that A may be finite, countably infinite, or uncountable.

Definition 2 A set A in a metric space is compact if every open cover of A contains a finite
subcover of A. In other words, if {U, : A € A} is an open cover of A, there exist n € N and
A1,y An € A such that

ACUy\U---UU,,

It is important to understand what this definition does not say. In particular, it does not
say “A has a finite open cover;” note that every set is contained in X, and X is open, so
every set has a cover consisting of exactly one open set. Like the -9 definition of continuity,
in which you are given an arbitrary € > 0 and are challenged to specify an appropriate ¢,
here you are given an arbitrary open cover and challenged to specify a finite subcover of the
given open cover.

Example: (0, 1] is not compact in E'. To see this, let
1
uz{Umz (—,2) :mEN}
m

UmeNUm = (0> 2) ) (0> 1]
Given any finite subset {U,,,,...,Un,} of U, let

Then

m = max{mys,...,my}

Then
1

U, =Un = (+:2) 2 0.1]

so (0, 1] is not compact. See Figure 1.



Note that this argument does not work for [0,1]. Given an open cover {Uy : A € A},
there must be some A € A such that 0 € Uy, and therefore Uy 2 [0, ¢) for some € > 0, and
a finite number of the U,,’s we used to cover (0, 1] would cover the interval (e,1]. This is
not a proof that [0, 1] is compact, since we need to show that every open cover has a finite
subcover, but it is suggestive, and we will soon see that [0, 1] is indeed compact.

Example: [0, 00) is closed but not compact. To see that [0,00) is not compact, let
U={U,=(—1,m): me N}

Given any finite subset
{Unis - Un, }
of U, let

m = max{mys,...,my}

Then
Un, U---UUp, =(—1,m) 2 [0, 00)

See Figure 2.

Theorem 3 (Thm. 8.14) Ewvery closed subset A of a compact metric space (X, d) is com-
pact.

Proof: Let {Uy : A € A} be an open cover of A. In order to use the compactness of X, we
need to produce an open cover of X. There are two ways to do this:

U, = UyU(X\A)
N = AU{NY, Uy =X\ A

We choose the first path, and let
Uy=UyU(X\A)
See Figures 3 and 4.

Since A is closed, X \ A is open; since U, is open, so is Uy. Then x € X = = € A or
reX\A Ifze A, INeAst. z €Uy, CU,. Ifinstead x € X \ A, then VA € A, x € U§.
Therefore, X C UyeaUj, so {Uj : A € A} is an open cover of X.

Since X is compact,
I, A EAst X CUy U---UUy,
Then

ac€A = acX
= a € Uy, for some i
= acUy,,U(X\A
= a €U,

2



SO
ACU, U---UU,y,

Thus A is compact. m

As the second example above illustrates, a closed subset of a metric space need not be
compact. The converse is always true, however.

Theorem 4 (Thm. 8.15) If A is a compact subset of the metric space (X, d), then A is
closed.

Proof: Suppose by way of contradiction that A is not closed. Then X \ A is not open,
so we can find a point x € X \ A such that, for every ¢ > 0, AN B.(z) # (), and hence
AN B.[z] # 0. For n € N, let

U, = X \ Bi/n|z]

See Figure 5. Each U, is open, and

since x ¢ A. Therefore, {U,, : n € N} is an open cover for A. Since A is compact, there is a
finite subcover {U,,, ..., Uy, }. Let n = max{n4,...,ni}. Then

Uy, = X\ Byylz]
U, 2 U0,
oA

But AN Byf[z] # 0,50 AZ X\ Byylz] = U,. This is a contradiction, which proves that A
is closed. m

Next we look at a sequential notion of compactness.

Definition 5 A set A in a metric space (X, d) is sequentially compact if every sequence of
elements of A contains a convergent subsequence whose limit lies in A.

This gives rise to a sequential characterization of compactness for metric spaces.

Theorem 6 (Thms. 8.5, 8.11) A set A in a metric space (X, d) is compact if and only if
it 18 sequentially compact.

Proof: Suppose A is compact. We will show that A is sequentially compact. If not, we can
find a sequence {x,} of elements of A such that no subsequence converges to any element of
A. Recall that a is a cluster point of the sequence {x,} means that

Ve >0 {n:x, € B:(a)} is infinite
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and this is equivalent to the statement that there is a subsequence {z,, } converging to a.
Thus, no element a € A can be a cluster point for {z,}, and hence

Va € A Je, > 0s.t. {n:x, € B, (a)} is finite (1)

Then
{B.,(a):a€ A}

is an open cover of A (if A is uncountable, it will be an uncountable open cover). Since A is
compact, there is a finite subcover

{Bewy (@), Boy, (am) }
Then
N = {n:z,€ A}
C {n:ane (Bey(@) U UB.,, ()}
= {n:x,€B, (@)} U---U{n:z, € B, (am)}

so N is contained in a finite union of sets, each of which is finite by Equation (1). Thus, N
must be finite, a contradiction which proves that A is sequentially compact.

For the converse, see de la Fuente. m

Next we explore connections between compactness and notions of boundedness.

Definition 7 A set A in a metric space (X, d) is totally bounded if, for every ¢ > 0,

Ay, ..., 2, € Ast. AC UL, B(xy)

This is the standard definition; de la Fuente’s definition is equivalent to this. See the
comments in the Corrections handout for further discussions.

Example: Take A = [0, 1] with the Euclidean metric. Given ¢ > 0, let n > 1. Then we

may take
2 n—1

s, g = —y.o.y Tp—1 =
n

xr1 =

S|

n
Then [0, 1] C Uy} B.(£).

Example: Consider X = [0, 1] with the discrete metric
1 ifr#y
d(z,y) _{ 0 ifx=y
X is not totally bounded. To see this, take ¢ = 4. Then for any x, B.(z) = {z}, so given
any finite set xq,...,x,,

U?ZlBg(l’i) = {1’1, P ,l’n} 2 [0, 1]
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However, X is bounded because X = By(0).

Note that any totally bounded set in a metric space (X, d) is also bounded. To see this,
let A C X be totally bounded. Then Jz4,...,z, € A such that A C By(z1) U--- U By(xz,).
Let

M =14+d(xy,z2) + -+ d(xp_1, %)

Then M < oco. Now fix a € A. We claim d(a,x;) < M. To see this, notice that there is
some n, € {1,...,n} for which a € By(x,,). Then

n

da,z1) < d(a,zn,)+ Y d(zr, Tr)

k=1

< 14+ Z d(l’k,l’k_H)
k=1

= M

See also Figure 6.

Remark 8 Fix ¢ and consider the open cover
U. = {B:(a) :a € A}

If A is compact, then every open cover of A has a finite subcover; in particular, Y. must
have a finite subcover, but this just says that A is totally bounded.

Theorem 9 (Thm. 8.16) Let A be a subset of a metric space (X,d). Then A is compact
if and only if A is complete and totally bounded.

Proof: Here is a sketch of the proof; see de la Fuente for details. Compact implies totally
bounded (Remark 8). Suppose {z,} is a Cauchy sequence in A. Since A is compact, A is
sequentially compact, hence {z,} has a convergent subsequence x,, — a € A. Since {z,} is
Cauchy, =, — a (why?), so A is complete.

Conversely, suppose A is complete and totally bounded. Let {x,} be a sequence in A.
Because A is totally bounded, we can extract a Cauchy subsequence {z,, } (why?). Because
A is complete, z,, — a for some a € A, which shows that A is sequentially compact and
hence compact. m

From lecture 5, we know that a subset of a complete metric space is complete if and only if
it is closed. So for a complete metric space, we have the following alternative characterization
of compactness.

Corollary 10 Let A be a subset of a complete metric space (X,d). Then A is compact if
and only if it is closed and totally bounded.



Notice that by putting these results together we conclude that a compact subset of a
metric space must be closed and bounded.

Example: [0,1] is compact in E!. To see this, note that E! is complete, and [0,1] C E! is
closed and totally bounded.

In R™ we can simplify this characterization even further by the following extremely
important results.

Theorem 11 (Thm. 8.19, Heine-Borel) If A C E!, then A is compact if and only if A
15 closed and bounded.

Proof: Let A be a closed, bounded subset of R. Then A C [a, b] for some interval [a, b]. Let
{z,} be a sequence of elements of [a, b]. By the Bolzano-Weierstrass Theorem, {x,} contains
a convergent subsequence with limit z € R. Since [a, b] is closed, = € [a,b]. Thus, we have
shown that [a, 0] is sequentially compact, hence compact. A is a closed subset of [a, b], hence
A is compact.

Conversely, if A is compact, then A is closed and totally bounded, hence closed and
bounded. m

Theorem 12 (8.20, Heine-Borel) If A C E", then A is compact if and only if A is closed
and bounded.

Proof: See de la Fuente.m
Example: The closed interval

la,b] ={z € R" :a;, <x; <b; foreachi=1,...,n}
is compact in E" for any a,b € R".

Next we study the implications of compactness for continuous functions, and derive a
general version of the Extreme Value Theorem.

Theorem 13 (Thm. 8.21) Let (X,d) and (Y, p) be metric spaces. If f : X — Y s con-
tinuous and C' is a compact subset of (X, d), then f(C') is compact in (Y, p).

Proof: There is a proof in de la Fuente using sequential compactness. Here we give an
alternative proof using directly the open cover definition of compactness:

Let {U, : A € A} be an open cover of f(C). For each ¢ € C, f(c) € f(C) so f(c) € Uy,
for some \. € A, that is, ¢ € f~1 (U,,). Thus the collection {f~! (Uy) : A € A} is a cover of
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C; in addition, since f is continuous, each set f~1 (U,) is open in C, so {f~1 (U,) : A € A}
is an open cover of C'. Since C' is compact, there is a finite subcover

{FHO0), - 7))

of C. Given x € f(C), there exists ¢ € C such that f(c¢) = z, and ¢ € f~! (U,,) for some i,
so € Uy,. Thus, {U),,...,U,,} is a finite subcover of f(C), so f(C) is compact. =

Corollary 14 (Thm. 8.22, Extreme Value Theorem) Let C be a compact set in a met-
ric space (X, d), and suppose f: C — R is continuous. Then f is bounded on C' and attains
its minimum and mazimum on C.

Proof: Since C is compact and f is continuous, f(C') C R is compact, hence closed and
bounded. Let M = sup f(C); M < oco. Then VYm > 0 there exists y,,, € f(C) such that

1
M__SymSM
m

S0 ym — M and {y,,} C f(C). Since f(C) is closed, M € f(C), i.e. there exists ¢ € C such
that f(c) = M = sup f(C), so f attains its maximum at c. The proof for the minimum is
similar.m

Theorem 15 (Thm. 8.24) Let (X,d) and (Y, p) be metric spaces, C' a compact subset of
X, and f : C =Y a continuous function. Then f is uniformly continuous on C.

Proof: Fix ¢ > 0. We ignore X and consider f as defined on the metric space (C,d). Given
c € C, find 6(c) > 0 such that

7€ C, dlr,c) < 20(c) = plf(2), f(c) < 5
Let
Uc - BJ(C) (C)
Then
{U.:ceC}
is an open cover of C'. Since C' is compact, there is a finite subcover
{Uey, ..., U}
Let

d =min{d(c1),...,0(cn)}
Given z,y € C with d(z,y) < §, note that x € U,, for some i € {1,...,n}, sod(x,¢;) < d(¢;).

d(y> Ci) < d(y> l’) + d($> Ci)
d+6(c)
6(¢;) +6(cs)

IN A
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(f(2), fe)) + p(f(ci), F(y)
_I_

=
=
=
=
s
A IA
Mol

€
2

which proves that f is uniformly continuous.m
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Figure 1: (0, 1] is not compact: {U, : n € N} covers (0, 1] but has no finite subcover.



Figure 2: [0, 00) is closed but not compact: {U, : n € N} covers [0,00) but has no finite
subcover.
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Figure 3: {U, : A € A} is an open cover of A.

U’ =U, U (X\A)
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Figure 4: {U} : A € A} is an open cover of X with U} = U, U (X \ A).

11



U, =X\ Byn[] X

—
7
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~

Figure 5: {U,, : n € N} with U,, = X \ B1[z] is an open cover of A.

Figure 6: Every totally bounded subset of a metric space is bounded.
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