Economics 204 Summer /Fall 2023
Lecture 8—~Wednesday August 2, 2023

Chapter 3. Linear Algebra
Section 3.1. Bases

Definition 1 Let X be a vector space over a field F'. A linear combinationof x1,...,x, € X
is a vector of the form

n
y = Zaizi where aq,...,a, € F
i—1

«; is the coefficient of x; in the linear combination.

If V C X, the span of V| denoted span V', is the set of all linear combinations of elements of
V. The set V C X spans X if spanV = X.

Definition 2 Aset V C X is linearly dependent if there exist v1,...,v, € Vand ay,...,q, €
F not all zero such that .

Z ;0 = 0

i=1
A set V C X is linearly independent if it is not linearly dependent.

Thus V C X is linearly independent if and only if

ZO&Z"UZ':O, v, €VYVi=aq =0V
=1

Definition 3 A Hamel basis (often just called a basis) of a vector space X is a linearly
independent set of vectors in X that spans X.

Example: {(1,0),(0,1)} is a basis for R? (this is the standard basis).

{(1,1),(—1,1)} is another basis for R*: Suppose

(x,y) = «a(l,1) 4+ B(—1,1) for some a, 3 € R
r = a—p
y = a+p
r+y = 2«
r+y
= =
“ 2



y—x = 20

y—x
= =
p 2
=@y = o+ L
Since (z,y) is an arbitrary element of R?, {(1,1),(—1,1)} spans R2. If (z,y) = (0,0),
0+0 0—
o= =0 =

so the coefficients are all zero, so {(1,1),(—1,1)} is linearly independent. Since it is linearly
independent and spans R?, it is a basis.

Example: {(1,0,0),(0,1,0)} is not a basis of R3, because it does not span R3.

Example: {(1,0),(0,1),(1,1)} is not a basis for R2.
1(1,0) + 1(0,1) + (—=1)(1,1) = (0,0)

so the set is not linearly independent.

Theorem 4 (Thm. 1.2°) ' Let V be a Hamel basis for X. Then every vector x € X has a
unique representation as a linear combination of a finite number of elements of V' (with all
coefficients nonzero).?

Proof: Let x € X. Since V spans X, we can write
x = Z QUsUs
SEST
where S is finite, as € F', as # 0, and vs € V for each s € S;. Now, suppose

€T = Z AsVs = Z ﬁsvs

s€S1 sE€S2

where S5 is finite, 05 € F, §5s # 0, and vs € V for each s € Ss.
Let S = 571 U.S,, and define

a; =0 for se€ S\ 9
ﬁszo for 8651\52

Then
0 = z—=2

= Z AsVs — Z ﬁsvs
s€S1 s€S2

= Z QsVs — Z ﬁsvs
seS seS

= Z(as - ﬁs)vs
ses

'See Corrections handout.
?The unique representation of 01is 0 =Y, a;b;.



Since V' is linearly independent, we must have ay — 35 = 0, so ay = 3, for all s € S.
seES T as#F0& [, A0 s €5

so S1 =5 and az = B, for s € 57 = S5, so the representation is unique. m
Theorem 5 Fvery vector space has a Hamel basis.

Proof: The proof uses the Axiom of Choice. Indeed, the theorem is equivalent to the Axiom
of Choice. m

A closely related result, from which you can derive the previous result, shows that any
linearly independent set V' in a vector space X can be extended to a basis of X.

Theorem 6 If X is a vector space and V C X 1is linearly independent, then there exists a
linearly independent set W C X such that

VW CspanW =X

Theorem 7 Any two Hamel bases of a vector space X have the same cardinality (are nu-
merically equivalent).

Proof: The proof depends on the so-called Exchange Lemma, whose idea we sketch. Suppose
that V ={v) : A € A} and W = {w, : v € I'} are Hamel bases of X. Remove one vector vy,
from V', so that it no longer spans (if it did still span, then vy, would be a linear combination
of other elements of V', and V' would not be linearly independent). If w., € span (V' \ {vy,})
for every v € I, then since W spans, V' \ {v),} would also span, contradiction. Thus, we can
choose vy € I" such that

Wy, & span (V- {vx, })

Because w,, € span V', we can write

n
Wy = Z Qi)
=0

where o, the coeflicient of vy, is not zero (if it were, then we would have w.,, € span (V' \ {vy,})).

Since ag # 0, we can solve for vy, as a linear combination of w,, and vy,,...,vy,, so
span ((V'\ {oa.}) U {wy,})
DO spanV
= X
SO

(VA {uae}) U {wy})

3



spans X. From the fact that w,, ¢ span (V '\ {vy,}) one can show that

(VA {uae}) U {wy})

is linearly independent, so it is a basis of X. Repeat this process to exchange every element
of V with an element of W (when V is infinite, this is done by a process called transfinite
induction). At the end, we obtain a bijection from V' to W, so that V' and W are numerically
equivalent. m

Definition 8 The dimension of a vector space X, denoted dim X, is the cardinality of any
basis of X.

Definition 9 Let X be a vector space. If dim X = n for some n € N, then X is finite-
dimensional. Otherwise, X is infinite-dimensional.

Recall that for V' C X, [V| denotes the cardinality of the set V.3

Example: The set of all m x n real-valued matrices is a vector space over R. A basis is
given by
{Eij:1<i<m,1<j<n}
where
_J 1 ifk=dand =}
(B )i = { 0 otherwise.

The dimension of the vector space of m x n matrices is mn.

Theorem 10 (Thm. 1.4) Suppose dimX =n € N. If V C X and |V| > n, then V is
linearly dependent.

Proof: If not, so V is linearly independent, then there is a basis W for X that contains V.
But [W| > |V]| > n = dim X, a contradiction. m

Theorem 11 (Thm. 1.5’) Suppose dimX =n € N and V C X, |V| =n.

o [fV is linearly independent, then V spans X, soV is a Hamel basis.

o IfV spans X, then V is linearly independent, so V is a Hamel basis.

Proof: (Sketch)

3See the Appendix to Lecture 2 for some facts about cardinality.



e If V does not span X, then there is a basis W for X that contains V' as a proper subset.
Then |W| > |V| =n = dim X, a contradiction.

e If V is not linearly independent, then there is a proper subset V' of V' that is linearly
independent and for which span V' = span V' = X. But then |[V'| < |V]| =n = dim X,
a contradiction.

Note: Read the material on Affine Spaces on your own.
Section 3.2. Linear Transformations

Definition 12 Let X and Y be two vector spaces over the field F'. Wesay T: X — Y is a
linear transformation if

T(Oéll’l + Oézl’g) = OqT(l’l) + OégT(l’g) VI’l,l’g c X, a1, Q9 € F

Let L(X,Y') denote the set of all linear transformations from X to Y.
Theorem 13 L(X,Y') is a vector space over F.

The hard part of proving this theorem is figuring out what you are being asked to prove.
Once you figure that out, this is completely trivial, although writing out a complete proof that
checks all the vector space axioms is rather tedious. The key is to define scalar multiplication
and vector addition, and show that a linear combination of linear transformations is a linear
transformation.

Proof: First, define linear combinations in L(X,Y) as follows. For 71,7, € L(X,Y) and
a, 8 € F, define oT + 315 by

(o1 + BT)(x) = T (x) + BTs(x)
We need to show that o7 + 01> € L(X,Y).

(oTy + BT5)(yxy + dxg)
= oTi(yxy + dxa) + BTo(yz1 + 0x2)
= a(VTi(z1) + 0T (22)) + B (vTa(21) + 612(72))
= v (aTi(z1) + BTa(z1)) + 6 (T (x2) + BT(x2))
= v (a1 + BT13) (z1) + 6 (a1 + BT3) (x2)

so oIy + Ty € L(X,Y).

The rest of the proof involves straightforward checking of the vector space axioms. m



Composition of Linear Transformations

Given R € L(X,Y)and S € L(Y, Z), SoR : X — Z. We will show that SoR € L(X, Z),

that is, the composition of two linear transformations is also linear.

(SoR)(axy + fra) = S(R(axy+ fx2))
= S(aR(x1)+ fR(x2))
= aS(R(x1)) + BS(R(zz))
= a(SoR)(x1) + [(5 0 R)(x2)

so SoR e L(X,Z).

Definition 14 Let 7' € L(X,Y).

e The image of T is ImT = T'(X)
e The kernel of T is kerT' = {x € X : T'(z) = 0}

e The rank of T is Rank 7' = dim(Im 7T")

Theorem 15 (Thms. 2.9, 2.7, 2.6: The Rank-Nullity Theorem) Let X be a finite-
dimensional vector space and T' € L(X,Y). Then ImT and ker T' are vector subspaces of Y

and X respectively, and
dim X = dimkerT" + Rank T’

Proof: (Sketch) First show that Im 7 is a vector subspace of Y and ker 7" is a vector subspace
of X (exercise).

Then let V' = {vy,..., v} be a basis for kerT (note that kerT C X so dimkerT <
dimX = n). If kerT = {0}, take k = 0 so V = (). Extend V to a basis W for X with
W =A{v,...,v5,w1,...,w}. Then {T(wn),...,T(w,)} is a basis for Im7T" (do this as an
exercise).

By definition, dimker 7" = k and dim Im 7" = r. Since W is a basis for X, k+r = |W| =
dim X, that is,
dim X = dim ker 7"+ Rank T

Theorem 16 (Thm. 2.13) T € L(X,Y) is one-to-one if and only if ker T = {0}.

Proof: Suppose T is one-to-one. Suppose x € kerT'. Then T'(z) = 0. But since T is linear,
T(0)=T(0-0)=0-7(0) =0. Since T is one-to-one, x = 0, so kerT" = {0}.
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Conversely, suppose that kerT" = {0}. Suppose T'(x1) = T'(z2). Then
T(l’l — 1’2) = T(l’l) — T(l’g)
=0

which says 1 — x9 € kerT', so vy — x5 =0, or 1 = x9. Thus, T is one-to-one. m

Definition 17 T € L(X,Y') is invertible if there is a function S : Y — X such that

S(T(x)) = =z Vxe X
T(S(y) = y VyeY

In other words S ol = idy and T o S = idy, where id denotes the identity map. In this
case denote S by T 1.

Note that T is invertible if and only if it is one-to-one and onto. This is just the condition
for the existence of an inverse function. The linearity of the inverse follows from the linearity
of T.

Theorem 18 (Thm. 2.11) If T € L(X,Y) is invertible, then T~ € L(Y, X), i.e. T is
linear.

Proof: Suppose a, 3 € F and v,w € Y. Since T is invertible, there exists unique v’, w’ € X
such that

TW) = v T v) = v
Tw) = w T Hw) = w'"
Then
T Hav + Bw) = T (aT W)+ BT(w))
= T7HT(aw' + Bu'))
= av’ + pu
= ol ' (v)+ BT H(w)

soT'e (Y, X). m

Theorem 19 (Thm. 3.2) Let X,Y be two vector spaces over the same field F', and let
V = {ur: X € A} be a basis for X. Then a linear transformation T € L(X,Y) is completely
determined by its values on V', that is:

1. Given any set {yx: A€ A} CY, T € L(X,Y) s.t.
T(’U)\) = UYx VAe A

2. If S,T € L(X,Y) and S(vy) = T(vy) for all X € A, then S =T.



Proof:

1. If z € X, x has a unique representation of the form

:B:Zaiv,\i with a; Z0Vi=1,...,n

=1

(Recall that if = 0, then n = 0.) Define
T(I) = Z QYN
i=1

Then T'(z) € Y. The verification that 7" is linear is left as an exercise.

2. Suppose S(vy) = T(vy) for all A € A. Given = € X,
S(x) = S <zn: aiv,\i>
i=1
= iaiS (vy,)
= éaiT (va,)
=T <zn: aiv,\i>
i=1

= T(x)

soS=1T.

Section 3.3. Isomorphisms

Definition 20 Two vector spaces X,Y over a field F' are isomorphic if there is an invertible
TeLX)Y).

T € L(X,Y) is an isomorphism if it is invertible (one-to-one and onto).

Isomorphic vector spaces are essentially indistinguishable as vector spaces.

Theorem 21 (Thm. 3.3) Two vector spaces X,Y over the same field are isomorphic if
and only if dim X = dimY.



Proof: Suppose X, Y are isomorphic, and let 7' € L(X,Y’) be an isomorphism. Let
U= {U)\ A€ A}

be a basis of X, and let
Vy = T(U)\), V = {'U)\ A€ A}

Since 1" is one-to-one, U and V have the same cardinality. If y € Y, then there exists z € X
such that

y = T(z)

=T (Z Oé)\i'lL)\i)
i=1
= Z O‘MT (u&)
i=1
= ZO()\Z.’U)\Z.
i=1
which shows that V spans Y. To see that V is linearly independent, suppose
0 = Z ﬁi'U)\i
i=1
= Z ﬁZT (u&)
i=1
rfg)
i=1

Since T' is one-to-one, kerT' = {0}, so

Z ﬁiU)\i =0
i=1
Since U is a basis, we have 3; = --- = [3,, = 0, so V is linearly independent. Thus, V is a

basis of Y; since U and V' are numerically equivalent, dim X = dimY'.
Now suppose dim X = dimY. Let
U={uy: AeA}land V ={uvy: A€ A}

be bases of X and Y'; note we can use the same index set A for both because dim X = dimY'.
By Theorem 3.2, there is a unique 7' € L(X,Y) such that T'(uy) = vy for all A € A. If
T(z) =0, then

0 = T(z)

= T(ZO@U,\Z)
i=1



n
= Z o T (u&)
1=1
n
= Z (07A%W
1=1

= o =---=qa, = 0since V is a basis
= =0

= kerT = {0}

= T is one-to-one

IfyeY, writey =37, Bivy,. Let
T = Z Biuy,
i=1
Then
i=1
= Z ﬁZT(qu)
i=1

= Z ﬁi'U)\i
=1
= Yy

so T is onto, hence 7' is an isomorphism and X, Y are isomorphic. m
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