Economics 204 Summer/Fall 2023
 Lecture 9-Thursday August 3, 2023

Section 3.3. Quotient Vector Spaces ${ }^{1}$

Given a vector space X over a field F and a vector subspace W of X, define an equivalence relation by

$$
x \sim y \Longleftrightarrow x-y \in W
$$

Form a new vector space X / W : the set of elements of X / W is

$$
\{[x]: x \in X\}
$$

where $[x]$ denotes the equivalence class of x with respect to $\sim . X / W$ is read " $X \bmod W$ ". Note that the vectors in X / W are sets of vectors in X : for $x \in X$,

$$
[x]=\{x+w: w \in W\}
$$

We claim that X / W can be viewed as a vector space over F. Define the vector space operations,$+ \cdot$ in X / W as follows:

$$
\begin{aligned}
{[x]+[y] } & =[x+y] \\
\alpha[x] & =[\alpha x]
\end{aligned}
$$

The exercise below asks you to verify that these operations are well-defined. Then X / W is a vector space over F with these definitions for + and \cdot

Exercise: Verify that \sim above is an equivalence relation and that vector addition and scalar multiplication are well-defined, i.e.

$$
\begin{aligned}
{[x]=\left[x^{\prime}\right],[y]=\left[y^{\prime}\right] } & \Rightarrow[x+y]=\left[x^{\prime}+y^{\prime}\right] \\
{[x]=\left[x^{\prime}\right], \alpha \in F } & \Rightarrow[\alpha x]=\left[\alpha x^{\prime}\right]
\end{aligned}
$$

Example: Let $X=\mathbf{R}^{3}$ and let $W=\left\{x \in \mathbf{R}^{3}: x_{1}=x_{2}=0\right\}$. Then for $x, y \in \mathbf{R}^{3}$,

$$
\begin{aligned}
x \sim y & \Longleftrightarrow x-y \in W \\
& \Longleftrightarrow x_{1}-y_{1}=0, x_{2}-y_{2}=0 \\
& \Longleftrightarrow x_{1}=y_{1}, x_{2}=y_{2}
\end{aligned}
$$

and

$$
[x]=\{x+w: w \in W\}=\left\{\left(x_{1}, x_{2}, z\right): z \in \mathbf{R}\right\}
$$

So the equivalence class corresponding to x is the line in \mathbf{R}^{3} through x parallel to the axis of the third coordinate. See Figure 1. What is X / W ? Intuitively this equivalence relation ignores the third coordinate, and we can identify the equivalence class $[x]$ with the vector $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$. The next two results show how to formalize this connection.

[^0]Theorem 1 If X is a vector space with $\operatorname{dim} X=n$ for some $n \in \mathbf{N}$ and W is a vector subspace of X, then

$$
\operatorname{dim}(X / W)=\operatorname{dim} X-\operatorname{dim} W
$$

Proof: (Sketch) Begin with a basis $\left\{w_{1}, \ldots, w_{c}\right\}$ for W, and a basis $\left\{\left[x_{1}\right], \ldots,\left[x_{k}\right]\right\}$ for X / W. Show that

$$
\left\{w_{1}, \ldots, w_{c}\right\} \cup\left\{x_{1}, \ldots, x_{k}\right\}
$$

is a basis for X.

Theorem 2 Let X and Y be vector spaces over the same field F and $T \in L(X, Y)$. Then $\operatorname{Im} T$ is isomorphic to $X / \operatorname{ker} T$.

Proof: Notice that if X is finite-dimensional, then

$$
\begin{aligned}
\operatorname{dim}(X / \operatorname{ker} T) & =\operatorname{dim} X-\operatorname{dim} \operatorname{ker} T \quad \text { (by the previous theorem) } \\
& =\operatorname{Rank} T \quad \text { (by the Rank-Nullity Theorem) } \\
& =\operatorname{dim} \operatorname{Im} T
\end{aligned}
$$

so $X / \operatorname{ker} T$ is isomorphic to $\operatorname{Im} T$.
We prove that this is true in general, and that the isomorphism is natural.
Define $\tilde{T}: X / \operatorname{ker} T \rightarrow \operatorname{Im} T$ by

$$
\tilde{T}([x])=T(x)
$$

We first need to check that this is well-defined, that is, that if $[x]=\left[x^{\prime}\right]$ then $\tilde{T}([x])=\tilde{T}\left(\left[x^{\prime}\right]\right)$.

$$
\begin{aligned}
{[x]=\left[x^{\prime}\right] } & \Rightarrow x \sim x^{\prime} \\
& \Rightarrow x-x^{\prime} \in \operatorname{ker} T \\
& \Rightarrow T\left(x-x^{\prime}\right)=0 \\
& \Rightarrow T(x)=T\left(x^{\prime}\right)
\end{aligned}
$$

so \tilde{T} is well-defined.
Clearly, $\tilde{T}: X / \operatorname{ker} T \rightarrow \operatorname{Im} T$. It is easy to check that \tilde{T} is linear, so $\tilde{T} \in L(X / \operatorname{ker} T, \operatorname{Im} T)$. Next we show that \tilde{T} is an isomorphism.

$$
\begin{aligned}
\tilde{T}([x])=\tilde{T}([y]) & \Rightarrow T(x)=T(y) \\
& \Rightarrow T(x-y)=0 \\
& \Rightarrow x-y \in \operatorname{ker} T \\
& \Rightarrow x \sim y \\
& \Rightarrow[x]=[y]
\end{aligned}
$$

so \tilde{T} is one-to-one.

$$
\begin{aligned}
y \in \operatorname{Im} T & \Rightarrow \exists x \in X \text { s.t. } T(x)=y \\
& \Rightarrow \tilde{T}([x])=y
\end{aligned}
$$

so \tilde{T} is onto, hence \tilde{T} is an isomorphism.
Example: Consider $T \in L\left(\mathbf{R}^{3}, \mathbf{R}^{2}\right)$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}\right)
$$

Then $\operatorname{ker} T=\left\{x \in \mathbf{R}^{3}: x_{1}=x_{2}=0\right\}$ is the x_{3}-axis. (Also notice $\operatorname{ker} T=W$ from the previous example.)

Given x, the equivalence class $\left[\left(x_{1}, x_{2}, x_{3}\right)\right]$ is just the line through x parallel to the x_{3}-axis. $\tilde{T}([x])=T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}\right)$.

$$
\operatorname{Im} T=\mathbf{R}^{2}, \quad X / \operatorname{ker} T \cong \mathbf{R}^{2}=\operatorname{Im} T
$$

as we suggested intuitively above (here the symbol \cong denotes isomorphism, that is, we write $Y \cong Z$ if Y and Z are isomorphic.)

Every real vector space X with dimension n is isomorphic to \mathbf{R}^{n}. What's the isomorphism?

Let X be a finite-dimensional vector space over \mathbf{R} with $\operatorname{dim} X=n$. Fix any Hamel basis $V=\left\{v_{1}, \ldots, v_{n}\right\}$ of X. Any $x \in X$ has a unique representation

$$
x=\sum_{j=1}^{n} \beta_{j} v_{j}
$$

(here, we allow $\beta_{j}=0$). (Generally, vectors are represented as column vectors, not row vectors.) Then given the representation of x above, we write

$$
\operatorname{crd}_{V}(x)=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{n}
\end{array}\right) \in \mathbf{R}^{n}
$$

That is, $\operatorname{crd}_{V}(x)$ is the vector of coordinates of x with respect to the basis V.

$$
\operatorname{crd}_{V}\left(v_{1}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right) \quad \operatorname{crd}_{V}\left(v_{2}\right)=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0 \\
0
\end{array}\right) \quad \operatorname{crd} d_{V}\left(v_{n}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

$c r d_{V}$ is an isomorphism from X to \mathbf{R}^{n}.

Matrix Representation of a Linear Transformation

Suppose $T \in L(X, Y), \operatorname{dim} X=n$ and $\operatorname{dim} Y=m$. Fix bases

$$
\begin{aligned}
V & =\left\{v_{1}, \ldots, v_{n}\right\} \text { of } X \\
W & =\left\{w_{1}, \ldots, w_{m}\right\} \text { of } Y
\end{aligned}
$$

$T\left(v_{j}\right) \in Y$, so

$$
T\left(v_{j}\right)=\sum_{i=1}^{m} \alpha_{i j} w_{i}
$$

Define

$$
\operatorname{Mtx}_{W, V}(T)=\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 n} \\
\vdots & \ddots & \vdots \\
\alpha_{m 1} & \cdots & \alpha_{m n}
\end{array}\right)
$$

Notice that the columns are the coordinates (expressed with respect to W) of $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$.
Observe

$$
\left(\begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1 n} \\
\vdots & \ddots & \vdots \\
\alpha_{m 1} & \cdots & \alpha_{m n}
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
\alpha_{11} \\
\vdots \\
\alpha_{m 1}
\end{array}\right)
$$

so

$$
\begin{aligned}
\operatorname{Mtx}_{W, V}(T) \cdot \operatorname{crd}_{V}\left(v_{j}\right) & =\operatorname{crd}_{W}\left(T\left(v_{j}\right)\right) \\
\operatorname{Mtx}_{W, V}(T) \cdot \operatorname{crd}_{V}(x) & =\operatorname{crd}_{W}(T(x)) \forall x \in X
\end{aligned}
$$

Multiplying a vector by a matrix does two things:

- Computes the action of T
- Accounts for the change in basis

Example: $X=Y=\mathbf{R}^{2}, V=\{(1,0),(0,1)\}, W=\{(1,1),(-1,1)\}, T=i d$, that is, $T(x)=x$ for all x.

$$
\operatorname{Mtx}_{W, V}(T) \neq\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$\operatorname{Mtx}_{W, V}(T)$ is the matrix that changes basis from V to W. How do we compute it?

$$
\begin{aligned}
v_{1}=(1,0) & =\alpha_{11}(1,1)+\alpha_{21}(-1,1) \\
\alpha_{11}-\alpha_{21} & =1 \\
\alpha_{11}+\alpha_{21} & =0 \\
2 \alpha_{11} & =1, \alpha_{11}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{21} & =-\frac{1}{2} \\
v_{2}=(0,1) & =\alpha_{12}(1,1)+\alpha_{22}(-1,1) \\
\alpha_{12}-\alpha_{22} & =0 \\
\alpha_{12}+\alpha_{22} & =1 \\
2 \alpha_{12} & =1, \alpha_{12}=\frac{1}{2} \\
\alpha_{22} & =\frac{1}{2} \\
\operatorname{Mtx}_{W, V} & (i d)=\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

Theorem 3 (Thm. 3.5') Let X and Y be vector spaces over the same field F, with $\operatorname{dim} X=$ n, $\operatorname{dim} Y=m$. Then $L(X, Y)$, the space of linear transformations from X to Y, is isomorphic to $F_{m \times n}$, the vector space of $m \times n$ matrices over F. If $V=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for X and $W=\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis for Y, then

$$
M t x_{W, V} \in L\left(L(X, Y), F_{m \times n}\right)
$$

and $M t x_{W, V}$ is an isomorphism from $L(X, Y)$ to $F_{m \times n}$.

Theorem 4 (From Handout) Let X, Y, Z be finite-dimensional vector spaces over the same field F with bases U, V, W respectively. Let $S \in L(X, Y)$ and $T \in L(Y, Z)$. Then

$$
M t x_{W, V}(T) \cdot M t x_{V, U}(S)=M t x_{W, U}(T \circ S)
$$

i.e. matrix multiplication corresponds via the matrix representation isomorphism to composition of linear transformations.

Proof: See handout.
Note that $M t x_{W, V}$ is a function from $L(X, Y)$ to the space $F_{m \times n}$ of $m \times n$ matrices, while $\operatorname{Mtx}_{W, V}(T)$ is an $m \times n$ matrix.

The theorem can be summarized by the following "Commutative Diagram:"

We say the diagram commutes because you get the same answer any way you go around the diagram (in directions allowed by the arrows). The crd arrows go in both directions because $c r d$ is an isomorphism.

Section 3.5. Change of Basis and Similarity

Let X be a finite-dimensional vector space with basis V. If $T \in L(X, X)$ it is customary to use the same basis in the domain and range. In this case,

$$
\operatorname{Mtx}_{V}(T) \text { denotes } M t x_{V, V}(T)
$$

Question: If W is another basis for X, how are $\operatorname{Mtx}_{V}(T)$ and $\operatorname{Mtx}_{W}(T)$ related?

$$
\begin{aligned}
\operatorname{Mtx}_{V, W}(i d) \cdot \operatorname{Mtx}_{W}(T) \cdot M t x_{W, V}(i d) & =\operatorname{Mtx}_{V, W}(i d) \cdot M t x_{W, V}(T \circ i d) \\
& =M t x_{V, V}(i d \circ T \circ i d) \\
& =\operatorname{Mtx}_{V}(T)
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Mtx}_{V, W}(i d) \cdot \operatorname{Mtx}_{W, V}(i d) & =\operatorname{Mtx}_{V, V}(i d) \\
& =\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right)
\end{aligned}
$$

So this says that

$$
\operatorname{Mtx}_{V}(T)=P^{-1} M t x_{W}(T) P
$$

for the invertible matrix

$$
P=M t x_{W, V}(i d)
$$

that is the change of basis matrix. On the other hand, if P is any invertible matrix, then P is also a change of basis matrix for appropriate corresponding bases (see handout).

Definition 5 Square matrices A and B are similar if

$$
A=P^{-1} B P
$$

for some invertible matrix P.

Theorem 6 Suppose that X is a finite-dimensional vector space.

1. If $T \in L(X, X)$ then any two matrix representations of T are similar. That is, if U, W are any two bases of X, then $\operatorname{Mtx}_{W}(T)$ and $M t x_{U}(T)$ are similar.
2. Conversely, two similar matrices represent the same linear transformation T, relative to suitable bases. That is, given similar matrices A, B with $A=P^{-1} B P$ and any basis U, there is a basis W and $T \in L(X, X)$ such that

$$
\begin{aligned}
B & =\operatorname{Mtx}_{U}(T) \\
A & =\operatorname{Mtx}_{W}(T) \\
P & =\operatorname{Mtx}_{U, W}(i d) \\
P^{-1} & =M t x_{W, U}(i d)
\end{aligned}
$$

Proof: See Handout on Diagonalization and Quadratic Forms.

Section 3.6. Eigenvalues and Eigenvectors

Here, we define eigenvalues and eigenvectors of a linear transformation and show that λ is an eigenvalue of T if and only if λ is an eigenvalue for some matrix representation of T if and only if λ is an eigenvalue for every matrix representation of T.

Definition 7 Let X be a vector space and $T \in L(X, X)$. We say that λ is an eigenvalue of T and $v \neq 0$ is an eigenvector corresponding to λ if $T(v)=\lambda v$.

Theorem 8 (Theorem 4 in Handout) Let X be a finite-dimensional vector space, and U a basis. Then λ is an eigenvalue of T if and only if λ is an eigenvalue of $M t x_{U}(T) . v$ is an eigenvector of T corresponding to λ if and only if $\operatorname{crd}_{U}(v)$ is an eigenvector of $M t x_{U}(T)$ corresponding to λ.

Proof: By the Commutative Diagram Theorem,

$$
\begin{aligned}
T(v)=\lambda v & \Leftrightarrow \operatorname{crd}_{U}(T(v))=\operatorname{crd} d_{U}(\lambda v) \\
& \Leftrightarrow \operatorname{Mtx}_{U}(T)\left(c r d_{U}(v)\right)=\lambda\left(\operatorname{crd}_{U}(v)\right)
\end{aligned}
$$

Computing eigenvalues and eigenvectors:

Suppose $\operatorname{dim} X=n$; let I be the $n \times n$ identity matrix. Given $T \in L(X, X)$, fix a basis U and let

$$
A=M t x_{U}(T)
$$

Find the eigenvalues of T by computing the eigenvalues of A :

$$
\begin{aligned}
A v=\lambda v & \Longleftrightarrow(A-\lambda I) v=0 \\
& \Longleftrightarrow(A-\lambda I) \text { is not invertible } \\
& \Longleftrightarrow \operatorname{det}(A-\lambda I)=0
\end{aligned}
$$

We have the following facts:

- If $A \in \mathbf{R}_{n \times n}$,

$$
f(\lambda)=\operatorname{det}(A-\lambda I)
$$

is an $n^{t h}$ degree polynomial in λ with real coefficients; it is called the characteristic polynomial of A.

- f has n roots in C, counting multiplicity:

$$
f(\lambda)=\left(c_{1}-\lambda\right)\left(c_{2}-\lambda\right) \cdots\left(c_{n}-\lambda\right)
$$

where $c_{1}, \ldots, c_{n} \in \mathbf{C}$ are the eigenvalues; the c_{j} 's are not necessarily distinct. Notice that $f(\lambda)=0$ if and only if $\lambda \in\left\{c_{1}, \ldots, c_{n}\right\}$, so the roots are the solutions of the equation $f(\lambda)=0$.

- the roots that are not real come in conjugate pairs:

$$
f(a+b i)=0 \Leftrightarrow f(a-b i)=0
$$

- if $\lambda=c_{j} \in \mathbf{R}$, there is a corresponding eigenvector in \mathbf{R}^{n}.
- if $\lambda=c_{j} \notin \mathbf{R}$, the corresponding eigenvectors are in $\mathbf{C}^{n} \backslash \mathbf{R}^{n}$.

Diagonalization

Definition 9 Suppose X is a finite-dimensional vector space with basis U. Given a linear transformation $T \in L(X, X)$, let

$$
A=M t x_{U}(T)
$$

We say that A can be diagonalized (or is diagonalizable) if there is a basis W for X such that $M t x_{W}(T)$ is diagonal, i.e.

$$
\operatorname{Mtx}_{W}(T)=\left(\begin{array}{cccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

Notice that the eigenvectors of $\operatorname{Mtx}_{W}(T)$ are exactly the standard basis vectors of \mathbf{R}^{n}. But w_{j} is an eigenvector of T corresponding to λ_{j} if and only if $\operatorname{cr} d_{W}\left(w_{j}\right)$ is an eigenvector of $M t x_{W}(T)$, and $\operatorname{cr} d_{W}\left(w_{j}\right)$ is the $j^{\text {th }}$ standard basis vector of \mathbf{R}^{n}, so $W=\left\{w_{1}, \ldots, w_{n}\right\}$ where w_{j} is an eigenvector corresponding to λ_{j}.

Then the action of T is clear: it stretches each basis element w_{i} by the factor λ_{i}.

Theorem 10 (Thm. 6.7') Let X be an n-dimensional vector space, $T \in L(X, X), U$ any basis of X, and $A=M t x_{U}(T)$. Then the following are equivalent:

1. A can be diagonalized
2. there is a basis W for X consisting of eigenvectors of T
3. there is a basis V for \mathbf{R}^{n} consisting of eigenvectors of A

Proof: Follows from Theorem 6.7 in de la Fuente and Theorem 4 from the Handout.

Theorem 11 (Thm. 6.8') Let X be a vector space and $T \in L(X, X)$.

1. If $\lambda_{1}, \ldots, \lambda_{m}$ are distinct eigenvalues of T with corresponding eigenvectors v_{1}, \ldots, v_{m}, then $\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent.
2. If $\operatorname{dim} X=n$ and T has n distinct eigenvalues, then X has a basis consisting of eigenvectors of T; consequently, if U is any basis of X, then $M t x_{U}(T)$ is diagonalizable.

Proof: This is an adaptation of the proof of Theorem 6.8 in de la Fuente.

Figure 1: An illustration of X / W where $X=\mathbf{R}^{3}$ and $W=\left\{x \in \mathbf{R}^{3}: x_{1}=x_{2}=0\right\}$. Here $[x]=\left\{\left(x_{1}, x_{2}, z\right): z \in \mathbf{R}\right\}$ is the line through x parallel to the axis of the third coordinate.

[^0]: ${ }^{1}$ The first part of this material is not in de la Fuente.

