
Econ 204 – Problem Set 11

Solutions

1. Use induction to prove the following:

(a) For every r ∈ N and x ∈ [−1,∞), (1 + x)r ≥ 1 + rx.

(b)
∑n

k=1 k
2 = n(n+1)(2n+1)

6 for all n ∈ N.

Solution: (a) The case x = −1 is trivial, so we can focus on x > −1.

Base step: Let r = 1. Note that

(1 + x)r = 1 + x = 1 + rx

and so the formula is valid. Assume now that this is true for r. We then have that

(1 + x)r+1 = (1 + x)r(1 + x) by definition

≥ (1 + rx)(1 + x) by the induction step and x > −1

= 1 + rx+ x+ rx2 by the distributive property

= 1 + (r + 1)x+ rx2

≥ 1 + (r + 1)x (rx2 ≥ 0)

(b) For n = 1, we have

n∑
k=1

k2 = 1

=
1 ∗ 2 ∗ 3

6

=
n(n+ 1)(2n+ 1)

6

Assume now that this is true for n. We then have

1In case of any problems with the solution to the exercises please email brunosmaniotto@berkeley.edu
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n+1∑
k=1

k2 =

n∑
k=1

k2 + (n+ 1)2 by definition

=
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 by the induction step

=
n+ 1

6
(n(2n+ 1) + 6 ∗ (n+ 1))

=
n+ 1

6
(2n2 + 7n+ 6)

=
n+ 1

6
(n+ 2)(2n+ 3)

=
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6

2. Prove the following statements:

(a) Let X an infinite set. Prove that there exists A ⊆ X such that A is countable.

(b) Show that if X is an infinite set, then there is an injection r : N→ X. (Recall from lecture

2 this implies |N| ≤ |X|, thus the cardinality of the natural numbers N is less than or equal

to the cardinality of any infinite set.)

Solution:

(a) We will proceed by induction showing that for all n ∈ N there exists a subset of X with n

distinct elements.

Case n = 1: Since X is infinite, there exists x ∈ X, denote this by x1.

Suppose now that we have found x1, . . . , xn such that xi ̸= xj for i ̸= j. Since X is infinite,

there exists y ∈ X \ {x1, . . . , xn}, let xn+1 = y. We then have that {x1, . . . , xn+1} is a subset of

X with n+ 1 distinct elements.

Let An = {x1, . . . , xn} and A =
⋃∞

n=1An. Since An ⊆ X for all n, A ⊆ X. Let f : N → A be

defined as f(n) = xn. By construction, f is bijective, and thus A is countable.

(b) Let X be an arbitrary infinite set. By (a), we know that there exists A ⊂ X such that A is

countable. Define f : A → X as f(a) = a, which is well defined and injective by construction. Let

g : N→ A be a bijection, which exists because A is countable. The composition f ◦ g : N→ X

is an injective function, which proves the result.

3. Let A, B be sets. Show that

(a) A ⊆ B ⇐⇒ A ∩BC = ∅
(b) A = B ⇐⇒ (A ∩BC) ∪ (AC ∩B) = ∅
(c) A function f : A → B is injective iff ∀X ⊆ A f(A \X) = f(A) \ f(X)

Solution:
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(a) We will first show ⇒. Suppose that A ⊆ B. Then

x ∈ A ⇒ x ∈ B

⇒ x ̸∈ BC

Thus, for any x ∈ A we have that x ̸∈ BC , and A ∩BC = ∅
We now show ⇐.

Suppose A ∩ BC = ∅. Suppose, by contradiction, that ∃a ∈ A such that a ̸∈ B. Then

a ∈ A and a ∈ BC , and thus a ∈ A ∩BC , a contradiction

(b) We will do both implications for this one at once

A = B ⇐⇒ A ⊆ B ∧B ⊆ A

⇐⇒ (A ∩BC = ∅) ∧ (AC ∩B = ∅) (by 1.a)

⇐⇒ (A ∩BC) ∪ (AC ∩B) = ∅

(c) Let’s assume that f is injective and let X ⊆ A be arbitrary. Notice that

y ∈ f(A \X) ⇐⇒ ∃x ∈ A \X f(x) = y

⇐⇒ ∃x ∈ A f(x) = y ∧ ∀z ∈ X f(z) ̸= y (f is injective)

⇐⇒ y ∈ f(A) ∧ y ̸∈ f(X)

⇐⇒ y ∈ f(A) \ f(X)

Now let’s assume that ∀X ⊆ Af(A\X) = f(A)\f(X) and let’s suppose, by contradiction,

that f is not injective.

Since f is not injective, there exist x, z ∈ A such that x ̸= z and f(x) = f(z) = y. Let

X = {x}. Since z ̸= x, we have that z ∈ A \X, and thus

y ∈ f(A \X)

But since y = f(x), we have that y ∈ f(X), and thus y ̸∈ f(A) \ f(X). Thus f(A \X) ̸=
f(A) \ f(X), which contradicts our initial assumption.

4. In this exercise we will practice working with sets whose elements are sets as well. For this, we

will need the following definition:

Sigma-Algebra: Let Ω be a set and F ⊆ 2Ω be a collection of subsets of Ω. We say that F is

a sigma-algebra if the following properties hold:

� Ω ∈ F
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� If A ∈ F , then AC ∈ F .

� If {An}n∈N is a countable collection of sets such that ∀n ∈ N An ∈ F , then ∪n∈NAn ∈ F .

(a) Prove that if F is a sigma-algebra and A,B ∈ F , then A ∩B ∈ F .

(b) Prove that if F is a sigma-algebra, then ∅ ∈ F

(c) Prove that {∅,Ω} is a sigma-algebra. Argue that this is the smallest sigma-algebra over

the set Ω.

(d) Prove that 2Ω is a sigma-algebra. Argue that this is the largest sigma-algebra over the set

Ω.

(e) Prove that if F1,F2 are sigma-algebras, then F1 ∩ F2 is a sigma-algebra.

(f) Prove that if {Fa}a∈A is a collection of sigma-algebras, then ∩a∈AFa is a sigma-algebra.

(Note that we have made no restriction on the set A.)

(g) Prove or provide a counterexample to the following statement: If F1,F2 are sigma-algebras,

then F1 ∪ F2 is a sigma-algebra.

(h) Let Ω = {1, 2, 3}. List all the possible sigma-algebras over Ω. (There are surprisingly few).

Solution:

(a) Since A,B ∈ F , we have that AC , BC ∈ F . Since AC , BC ∈ F , we have that AC ∪BC ∈ F ,

and thus (AC ∪BC)C ∈ F . By DeMorgan’s Law, A ∩B = (AC ∪BC)C ∈ F .

(b) Since F is a sigma-algebra, we know that Ω ∈ F . Since Ω ∈ F , we have that ∅ = ΩC ∈ F .

(c) We automatically have that Ω ∈ {∅,Ω}, so the first property holds.

Let now A be an element of {∅,Ω}. If A = ∅, then AC = Ω ∈ {∅,Ω}. If A = Ω, then

AC = ∅ ∈ {∅,Ω}, and thus the second property holds.

Let {An}n∈N be a countable collection of sets such that ∀n ∈ N An ∈ F .

Case 1: ∀n ∈ N An = ∅. Then ∪n∈NAn = ∅ ∈ F .

Case 2: ∃n ∈ N An = Ω. Then ∪n∈NAn = Ω ∈ F .

This is the smallest sigma-algebra over Ω since we have already shown that if F is any

other sigma-algebra, {∅,Ω} ⊆ F
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(d) Ω ∈ 2Ω trivially. If A ⊆ Ω, then AC = Ω \A ⊆ Ω, and thus AC ∈ 2Ω. Lastly, if {An}n∈N is

a countable collection of sets such that ∀n ∈ N An ∈ F , then

∀n ∈ N An ⊆ Ω ⇒ ∪n∈NAn ⊆ Ω ⇒ ∪n∈NAn ∈ 2Ω

Since F ⊆ 2Ω for any sigma-algebra F , 2Ω is the largest possible sigma-algebra.

(e) Let F1,F2 be sigma-algebras.

Since F1,F2 are sigma-algebras, Ω ∈ F1 and Ω ∈ F2, and thus Ω ∈ F1 ∩ F2.

Let A ∈ F1 ∩ F2. Since,A ∈ F1, A
C ∈ F1. Since,A ∈ F2, A

C ∈ F2. Thus, A
C ∈ F1 ∩ F2.

Let {An}n∈N be a countable collection of sets such that ∀n ∈ N An ∈ F1 ∩ F2.

Since ∀n ∈ N An ∈ F1, we have that ∪n∈NAn ∈ F1. Since ∀n ∈ N An ∈ F2, we have that

∪n∈NAn ∈ F2. Thus ∪n∈NAn ∈ F1 ∩ F2.

(f) Let {Fa}a∈A be a collection of sigma-algebras.

Since {Fa}a∈A are sigma-algebras, ∀a ∈ A Ω ∈ Fa, and thus Ω ∈ ∩a∈AFa.

Let A ∈ ∩a∈AFa. Since,∀a ∈ A A ∈ Fa, A
C ∈ Fa∀a ∈ A. Thus, AC ∈ ∩a∈AFa.

Let {An}n∈N be a countable collection of sets such that ∀n ∈ N An ∈ ∩a∈AFa.

Let a ∈ A be arbitrary. Since ∀n ∈ N An ∈ Fa, we have that ∪n∈NAn ∈ Fa. Thus

∪n∈NAn ∈ Fa∀a ∈ A, and ∪n∈NAn ∈ ∩a∈AFa.

(g) Let Ω = {1, 2, 3}, F1 = {∅, {1}, {2, 3}, {1, 2, 3}} and F2 = {∅, {2}, {1, 3}, {1, 2, 3}}. Check-
ing that these are sigma-algebras is part of the next question.

Note that F1 ∪F2 = {∅, {1}, {2}, {2, 3}, {1, 3}, {1, 2, 3}}. Note that {2, 3} ∩ {1, 3} = {3} /∈
F1∪F2. By the first exercise of this problem, this implies that F1∪F2 is not a sigma-algebra.

(h) The possible sigma algebras are:

i. {∅, {1, 2, 3}},
ii. {∅, {1}, {2, 3}, {1, 2, 3}}
iii. {∅, {2}, {1, 3}, {1, 2, 3}}
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iv. {∅, {3}, {1, 2}, {1, 2, 3}}
v. {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}

The reasoning is as follows. If a sigma-algebra does not contain a singleton, then it must not

contain any set with two elements, since sigma-algebras are closed by taking complements.

In this case, the only sigma-algebra possible is i).

If a sigma-algebra contains one singleton, there are two cases. If it contains only one

singleton, it must also contain its complement, and these are cases ii-iv. If it contains two

singletons, it must contain their union, and since the complement of their union is the

remaining singleton, we must be on the last case.

5. In this exercise we will practice working with unions and intersections of sets. Let Ω be a set

{An}n∈N be a countable collection of subsets of Ω. Define:

lim sup(An) =
⋂
m≥1

⋃
k≥m

Ak

lim inf(An) =
⋃
m≥1

⋂
k≥m

Ak

(a) Show that:

lim sup(An) = {x ∈ Ω | ∀m ∈ N∃k ≥ m ∈ N x ∈ Ak}
lim inf(An) = {x ∈ Ω | ∃m ∈ N∀k ≥ m ∈ N x ∈ Ak}

Argue that lim sup(An) is the set of points that appear infinitely often in the sequence of

sets {An}n∈N, and lim inf(An) is the set of points that are “eventually” in the sequence of

sets {An}n∈N. (You don’t have to argue this formally, I just want you to practice developing

an intuitive understanding for the definition of sets using symbols).

(b) Show that lim inf(An) ⊆ lim sup(An)

(c) Find an example of {An}n∈N such that lim sup(An) ̸⊆ lim inf(An)

(d) Find an example of {An}n∈N such that ∀k ∈ N Ak ⊂ lim sup(An) and lim inf(An) = ∅

(e) Suppose that {An}n∈N is such that ∀n ∈ N An ⊆ An+1. Prove that lim inf(An) =

lim sup(An)

(f) Show that lim inf(An) = (lim sup(AC
n ))

C

(g) Let F be a sigma-algebra and {An}n∈N be such that ∀n ∈ NAn ∈ F . Show that

lim inf(An), lim sup(An) ∈ F . (See Problem 4 for the definition of a sigma-algebra.)
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Solution:

(a) Note that

x ∈ lim inf(An) ⇐⇒ x ∈
⋃
n≥1

⋂
k≥n

Ak

⇐⇒ ∃n ∈ N x ∈
⋂
k≥n

Ak

⇐⇒ ∃n ∈ N∀k ≥ n x ∈ Ak

x ∈ lim sup(An) ⇐⇒ x ∈
⋂
n≥1

⋃
k≥n

Ak

⇐⇒ ∀n ∈ N x ∈
⋃
k≥n

Ak

⇐⇒ ∀n ∈ N∃k ≥ n x ∈ Ak

Given x ∈ lim sup(An) and any n ∈ N, we can find index k ≥ n such that x ∈ Ak. By

repeating this argument for larger and larger indices, we see that it must be the case that

x ∈ Am for infinitely many indices m. Conversely, if it is not true that x ∈ Am for infinitely

many indices m, then there must exist N ∈ N such that ∀n > N x ̸∈ An. This implies that

x ̸∈
⋃

k≥N Ak, and thus x ̸∈ lim sup(An).

If x ∈ lim inf(An), there exists N ∈ N such that x ∈
⋂

k≥N Ak. This implies that ∀k ≥
N x ∈ Ak, and thus x is eventually in all sets An. Conversely, if x is not eventually in all sets

An, for any N ∈ N we can find k ≥ n such that x ̸∈ Ak. This implies that x ̸∈
⋂

k≥N Ak.

Since N was taken arbitrary, x ̸∈
⋃

n≥1

⋂
k≥nAk = lim inf(An).

(b) Let x ∈ lim inf(An). By definition, there exists nx ∈ N such that ∀k ≥ nx x ∈ Ak.

Let now n ∈ N be arbitrary. Notice that for k = max{n, nx}, we have that k ≥ nx, and

thus x ∈ Ak. Since k ≥ n, we also have that x ∈
⋃

k≥nAk. Since n was arbitrary, we have

that ∀n ∈ N x ∈
⋃

k≥nAk, and thus x ∈
⋂

n≥1

⋃
k≥nAk = lim sup(An).

(c) Let

An =

{0}, if n is odd

{1}, if n is even

Then lim inf(An) = ∅ ⊆ {0, 1} = lim sup(An).

(d) See the example in c).
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(e) By b), we just need to show that lim sup(An) ⊆ lim inf(An).

Let x ∈ lim sup(An) and n ∈ N be arbitrary. Since x ∈
⋂

n≥1

⋃
k≥nAk, we know that

x ∈
⋃

k≥nAk, and thus there is kx ≥ n such that x ∈ Akx . We then have that ∀k ≥
kx Akx ⊆ Ak, and thus x ∈

⋂
k≥kx

Ak. This implies that x ∈
⋃

n≥1

⋂
k≥nAk = lim inf(An),

which concludes the proof.

(f) Note that

x ∈ lim inf(An) ⇐⇒ ∃n ∈ N∀k ≥ n x ∈ Ak

⇐⇒ ∃n ∈ N∀k ≥ n ¬(x ∈ AC
k )

⇐⇒ ∃n ∈ N ̸ ∃k ≥ n x ∈ AC
k

⇐⇒ ¬∀n ∈ N∃k ≥ n x ∈ AC
k

⇐⇒ ¬x ∈ lim sup(AC
n )

⇐⇒ x ∈ (lim sup(AC
n )

C

(g) Since ∀n ∈ N An ∈ F , we have that ∀n ∈ N
⋃

k≥nAk ∈ F . Using an argument analogous

to the one in 4.a), we can show that sigma-algebras are closed by countable intersections.

This implies that lim sup(An) =
⋂

n≥1

⋃
k≥nAk ∈ F .

For the lim inf, this follows directly from sigma-algebras being closed by taking complements

and the result we just proved.

6. Let X ⊆ R. We say that a function f : X → R is bounded if its image f(X) ⊆ R is a bounded

set. We then write supf = sup f(X) and inff = inf f(X). Show that

(a) If f, g : X → R are bounded, f + g : X → R is bounded

(b) Show that (f + g)(X) ⊂ f(X)+ g(X) and provide a counterexample in which the inclusion

is strict. 2

(c) Show that supf+g ≤ supf +supg and inff+g ≥ inff + infg

(d) Provide an example for which the inequalities in the previous item are strict.

(e) Show that f · g : X → R is bounded

(f) Show that (f · g)(X) ⊂ f(X) · g(X) 3

2Given A,B ⊆ R non-empty and bounded, we define A+B = {z ∈ R|z = x+ y, x ∈ A, y ∈ B}
3Given A,B ⊆ R non-empty and bounded, we define A ·B = {z ∈ R|z = x · y, x ∈ A, y ∈ B}.
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(g) Show that, if f and g are both positive, then supf ·g ≤ supf · supg and inff ·g ≥ inff · infg
(h) Provide an example for which the inequalities in the previous item are strict.

(i) Provide a counterexample for item g) if the functions are not positive.

(j) Show that if f is positive, supf2 = (supf )
2

Solution:

(a) Since f and g are bounded, there exist af , bf , ag, bg ∈ R such that

∀x ∈ X af ≤ f(x) ≤ bf

∀x ∈ X ag ≤ g(x) ≤ bg

Note then that

∀x ∈ X (f + g)(x) = f(x) + g(x)

≤ bf + bg

and

∀x ∈ X (f + g)(x) = f(x) + g(x)

≥ af + ag

and thus (f + g)(X) is bounded, and (f + g) is bounded.

(b) Let y ∈ (f + g)(X). We know that ∃x ∈ X y = (f + g)(x). Let y1 = f(x) ∈ f(X), y2 =

g(x) ∈ g(X). We then have that y = y1 + y2, and y ∈ f(X) + g(X).

For the counterexample, let X = [−1, 1], f(x) = x, g(x) = −x. Notice that,

∀x ∈ X(f + g)(x) = f(x) + g(x) = x+ (−x) = 0

and thus (f + g)(X) = {0}. Now, note that f(1) = g(−1) = 1, and thus 2 ∈ f(X) + g(X).

Thus the inclusion is strict.

(c) Note that

∀x ∈ X (f + g)(x) = f(x) + g(x) ≤ sup
f

+sup
g

⇒ sup
f+g

≤ sup
f

+sup
g
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Similarly,

∀x ∈ X (f + g)(x) = f(x) + g(x) ≥ inf
f

+ inf
g

⇒ inf
f+g

≤ inf
f

+ inf
g

(d) Again let X = [−1, 1], f(x) = x, g(x) = −x. Notice that

sup
f+g

= 0 < 1 + 1 = sup
f

+sup
g

inf
f+g

= 0 > −1− 1 = inf
f

+ inf
g

(e) Since f and g are bounded, there exist af , bf , ag, bg ∈ R such that

∀x ∈ X af ≤ f(x) ≤ bf

∀x ∈ X ag ≤ g(x) ≤ bg

If f(x) ≥ 0, then |f(x)| ≤ |bf |, and if f(x) ≤ 0, |f(x)| ≤ |af |. Thus |f(x)| ≤ |af |+ |bf |, and
|f | is bounded. Similarly, |g| is bounded. Thus

(f · g)(x) = f(x) · g(x) ≤ |f(x)| · |g(x)| ≤ sup
|f |

sup
|g|

The lower bound can be obtained analogously.

(f) Note that

y ∈ (f · g)(X) ⇒ ∃x ∈ X y = (f · g)(x)
⇒ ∃x ∈ X y = f(x) · g(x)
⇒ y = y1 · y2, y1 = f(x) ∈ f(X), y2 = g(x) ∈ g(X)

⇒ y ∈ f(X) · g(X)

(g) Let x ∈ X be arbitrary. First note that, since f ≥ 0, 0 is a lower bound to f, and by

definition

0 ≤ inf
f

≤ f(x) ≤ sup
f

∀x ∈ X
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And similarly for g:

0 ≤ inf
g

≤ g(x) ≤ sup
g

∀x ∈ X

Remember now that, for a, b, c, d ∈ R

0 < a < b ∧ 0 < c < d ⇒ 0 < ac < bd

Combining the statements above, we have that:

(f · g)(x) = f(x) · g(x) ≤ sup
f

sup
g

(f · g)(x) = f(x) · g(x) ≥ inf
f

inf
g

(h) Let X = [1/2, 2], f(x) = x, g(x) = 1/x. Notice that

sup
f ·g

= 1 < 2 · 2 = sup
f

· sup
g

inf
f ·g

= 1 > 1/4 = 1/2 · 1/2 = inf
f

· inf
g

(i) Let X = [0, 1], f(x) = g(x) = −x. Note that

sup
f

= sup
g

= 0

But (f · g)(x) = x2, and thus

sup
f ·g

= 1

Similarly,

inf
f

= inf
g

= −1

But (f · g)(x) = x2, and thus
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inf
f ·g

= 0

(j) We already know that supf2 ≤ (supf )
2. So we just need to prove the other inequality.

Since f is bounded, f2 is bounded, and since f and f2 are both positive, sup f and sup f2

are both nonnegative real numbers.

If sup f = 0, then f(x) = 0 for all x, which implies (sup f)2 = sup f2 = 0. So suppose

sup f > 0. Then consider y ∈ R such that

0 ≤ y < (sup f)2

This implies that 0 ≤ √
y < sup f . By the definition of sup, there exists x ∈ X such that

f(x) >
√
y, which implies f2(x) > y. Then

sup f2 ≥ f2(x) > y

Since this holds for every y < (sup f)2, sup f2 ≥ (sup f)2.
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