Econ 204 - Problem Set 1^{1}

Due Friday July 28, 2023 11:59PM

1. Use induction to prove the following:
(a) For every $r \in \mathbb{N}$ and $x \in[-1, \infty),(1+x)^{r} \geq 1+r x$.
(b) $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $n \in \mathbb{N}$.
2. Prove the following statements:
(a) Let X an infinite set. Prove that there exists $A \subseteq X$ such that A is countable.
(b) Show that if X is an infinite set, then there is an injection $r: \mathbb{N} \rightarrow X$. (Recall from lecture 2 this implies $|\mathbb{N}| \leq|X|$, thus the cardinality of the natural numbers N is less than or equal to the cardinality of any infinite set.)
3. Let A, B be sets. Show that
(a) $A \subseteq B \Longleftrightarrow A \cap B^{C}=\varnothing$
(b) $A=B \Longleftrightarrow\left(A \cap B^{C}\right) \cup\left(A^{C} \cap B\right)=\varnothing$
(c) A function $f: A \rightarrow B$ is injective iff $\forall X \subseteq A f(A \backslash X)=f(A) \backslash f(X)$
4. In this exercise we will practice working with sets whose elements are sets as well. For this, we will need the following definition:
Sigma-Algebra: Let Ω be a set and $\mathcal{F} \subseteq 2^{\Omega}$ be a collection of subsets of Ω. We say that \mathcal{F} is a sigma-algebra if the following properties hold:

- $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $A^{C} \in \mathcal{F}$.
- If $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is a countable collection of sets such that $\forall n \in \mathbb{N} A_{n} \in \mathcal{F}$, then $\cup_{n \in \mathbb{N}} A_{n} \in \mathcal{F}$.
(a) Prove that if \mathcal{F} is a sigma-algebra and $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.
(b) Prove that if \mathcal{F} is a sigma-algebra, then $\varnothing \in \mathcal{F}$
(c) Prove that $\{\varnothing, \Omega\}$ is a sigma-algebra. Argue that this is the smallest sigma-algebra over the set Ω.
(d) Prove that 2^{Ω} is a sigma-algebra. Argue that this is the largest sigma-algebra over the set Ω.
(e) Prove that if $\mathcal{F}_{1}, \mathcal{F}_{2}$ are sigma-algebras, then $\mathcal{F}_{1} \cap \mathcal{F}_{2}$ is a sigma-algebra.
(f) Prove that if $\left\{\mathcal{F}_{a}\right\}_{a \in \mathcal{A}}$ is a collection of sigma-algebras, then $\cap_{a \in \mathcal{A}} \mathcal{F}_{a}$ is a sigma-algebra. (Note that we have made no restriction on the set \mathcal{A}.)

[^0](g) Prove or provide a counterexample to the following statement: If $\mathcal{F}_{1}, \mathcal{F}_{2}$ are sigma-algebras, then $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is a sigma-algebra.
(h) Let $\Omega=\{1,2,3\}$. List all the possible sigma-algebras over Ω. (There are surprisingly few).
5. In this exercise we will practice working with unions and intersections of sets. Let Ω be a set $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a countable collection of subsets of Ω. Define:
\[

$$
\begin{aligned}
\lim \sup \left(A_{n}\right) & =\bigcap_{m \geq 1} \bigcup_{k \geq m} A_{k} \\
\liminf \left(A_{n}\right) & =\bigcup_{m \geq 1} \bigcap_{k \geq m} A_{k}
\end{aligned}
$$
\]

(a) Show that:

$$
\begin{aligned}
\lim \sup \left(A_{n}\right) & =\left\{x \in \Omega \mid \forall m \in \mathbb{N} \exists k \geq m \in \mathbb{N} x \in A_{k}\right\} \\
\liminf \left(A_{n}\right) & =\left\{x \in \Omega \mid \exists m \in \mathbb{N} \forall k \geq m \in \mathbb{N} x \in A_{k}\right\}
\end{aligned}
$$

Argue that $\lim \sup \left(A_{n}\right)$ is the set of points that appear infinitely often in the sequence of sets $\left\{A_{n}\right\}_{n \in \mathbb{N}}$, and $\liminf \left(A_{n}\right)$ is the set of points that are "eventually" in the sequence of sets $\left\{A_{n}\right\}_{n \in \mathbb{N}}$. (You don't have to argue this formally, I just want you to practice developing an intuitive understanding for the definition of sets using symbols).
(b) Show that $\liminf \left(A_{n}\right) \subseteq \limsup \left(A_{n}\right)$
(c) Find an example of $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ such that $\lim \sup \left(A_{n}\right) \nsubseteq \liminf \left(A_{n}\right)$
(d) Find an example of $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ such that $\forall k \in \mathbb{N} A_{k} \subset \limsup \left(A_{n}\right)$ and $\liminf \left(A_{n}\right)=\varnothing$
(e) Suppose that $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ is such that $\forall n \in \mathbb{N} A_{n} \subseteq A_{n+1}$. Prove that $\liminf \left(A_{n}\right)=$ $\lim \sup \left(A_{n}\right)$
(f) Show that $\liminf \left(A_{n}\right)=\left(\limsup \left(A_{n}^{C}\right)\right)^{C}$
(g) Let \mathcal{F} be a sigma-algebra and $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be such that $\forall n \in \mathbb{N} A_{n} \in \mathcal{F}$. Show that $\lim \inf \left(A_{n}\right), \lim \sup \left(A_{n}\right) \in \mathcal{F}$. (See Problem 4 for the definition of a sigma-algebra.)
6. Let $X \subseteq \mathbb{R}$. We say that a function $f: X \rightarrow \mathbb{R}$ is bounded if its image $f(X) \subseteq \mathbb{R}$ is a bounded set. We then write $\sup _{f}=\sup f(X)$ and $\inf _{f}=\inf f(X)$. Show that
(a) If $f, g: X \rightarrow \mathbb{R}$ are bounded, $f+g: X \rightarrow \mathbb{R}$ is bounded
(b) Show that $(f+g)(X) \subset f(X)+g(X)$ and provide a counterexample in which the inclusion is strict. ${ }^{2}$
(c) Show that $\sup _{f+g} \leq \sup _{f}+\sup _{g}$ and $\inf _{f+g} \geq \inf _{f}+\inf _{g}$
(d) Provide an example for which the inequalities in the previous item are strict.
(e) Show that $f \cdot g: X \rightarrow \mathbb{R}$ is bounded
(f) Show that $(f \cdot g)(X) \subset f(X) \cdot g(X)^{3}$
(g) Show that, if f and g are both positive, then $\sup _{f \cdot g} \leq \sup _{f} \cdot \sup _{g}$ and $\inf f_{f \cdot g} \geq \inf _{f} \cdot \inf _{g}$
(h) Provide an example for which the inequalities in the previous item are strict.
(i) Provide a counterexample for item g) if the functions are not positive.
(j) Show that if f is positive, $\sup _{f^{2}}=\left(\sup _{f}\right)^{2}$

[^1]
[^0]: ${ }^{1}$ In case of any problems with the solution to the exercises please email brunosmaniotto@berkeley.edu

[^1]: ${ }^{2}$ Given $A, B \subseteq \mathbb{R}$ non-empty and bounded, we define $A+B=\{z \in \mathbb{R} \mid z=x+y, x \in A, y \in B\}$
 ${ }^{3}$ Given $A, B \subseteq \mathbb{R}$ non-empty and bounded, we define $A \cdot B=\{z \in \mathbb{R} \mid z=x \cdot y, x \in A, y \in B\}$.

