Econ 204 — Problem Set 2!

Solutions

1. Give an example of a complete metric space which is homeomorphic to an incomplete metric
space.

Solution:

Define the mapping f: R — (—1,1) as

f is a continuous bijection (note f(0) = 0), where the inverse f~': (—1,1) — R is

-1 _ Y
O 2)

which is also continuous at all —1 < y < 1 (again note f~1(0) = 0). Thus f is a homeomor-
phism. With the usual metric, R is complete but (—1, 1) is incomplete.

2. Given A, B C R", we define the sum of these two sets by:

A+B={a+blac Abec B}

Prove or find a counterexample to the following statements:

(a) If either A or B is an open set, then A + B is an open set.
(b) If both A and B are closed sets, A+ B is a closed set.

Solution:

(a) This is true. Without loss of generality, assume that A is open.
Let c=a+bfora e A,b e B. Since A is open and a € A, we know that there exists
e > 0 such that B(a,e) C A. Let now = € B(c,¢) be arbitrary, and take y = x —b. Note
that
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(b)

lla —y[| = [la — (z = b)||
=lla+b—z||
= |le — ||

<e

And thus y € B(a,e) C A. Since z = x — b+ b = y + b. This implies that z € A + C,
and thus A + C' is open.
This is not true. Let n =1 and A ={n|n € N},B ={-n+1/n|n € IN}. Note

that both sets are closed. However, we have that {1/n},e;w € A+ B, 0 ¢ A+ B, but
Ve > 03dn € N |1/n— 0] = |1/n| < ¢, and thus A + B is not closed.

3. Show that

(a)
(b)
()

(d)

If ACRisopen and ay,...,a, € A, then A\ {ai,...,a,} is open.
If Ais open and ANB # &, then ANB # @

If A is a collection of open subsets of R", pairwise disjoint, that is, Ay N Ay = @ if
A # XN, then A is at most countable

The set of limit points of any set A C R" is closed.

Solution:

(a)

(b)

First we know that {a} is a closed set for any point, and the finite union of closed sets
is closed, thus {ai,...,a,} is always closed. Thus {ai,...,a,}* is open, and since the
finite intersection of open sets is open, AN {ay,...,a,}¢ = A\ {ay,...,a,} is open.
Since AN B # @, there exists a € A and a € B

Since a € A and A is an open set, we have that 3¢, > 0 such that B(a,g,) C A.

Since @ € B, Ve > 0 we have that B(a,e) N B # @. Particularly, there exists b €
B(a,e,) N B. But since B(a,e,) C A, this implies that b € A, and thus b € AN B.

We will first prove that Q™ is dense in R"™. Let A C R" be open and non-empty.

Since A is non-empty, there exists a = (ai,...,a,) € A. Since A is open, there exists
e > 0 such that B(a,¢) C A.

Let b= ﬁ, and note that a +b1 = (a1 +b,...,a, +b) € B(a,¢), since
€ €
Ha+bl—aH=bH1H=ﬁ n=g (3)



Then for each i, there exists ¢; € Q such that ¢; € (a;,a; + b) since Q is dense in R. Let
q= (ql, - 7qn). Then ¢ € Q™ and

la—qll* = l(a1 a1, a0 — )|

=1
n

< Hov
=1

= nb?<e?

So |la — q|| < e. Thus q € B(a,e) C A, which shows that Q™ is dense in R™.

Now we can go back to the original question. Suppose, by contradiction, that A is
uncountable. For each A € A, we can take ¢, € AN Q"

Since all elements in A are disjoint, this implies that g, # q if A # A’. This implies
that {gs}aea is an uncountable subset of Q", which is impossible, since it is a finite
product of countable sets, and thus countable.

(d) Suppose this is not the case. Let B be the set of limit points of A. Then there exists
a sequence {by}new € B such that b, — b ¢ B. Moreover, taking a subsequence if
necessary, take b, such that ||b, — b|| < 1/4n.

Now let, for each n € N, a,, € A such that a,, € B(b,,1/4n), which exist since b, is a
limit point of A for each n. Note that

10— anl|| <||b—bnl| + || —anl| < 1/4n+1/4n < 1/2n < 1/n

By the Archimedean Property, this implies that a,, — b, and thus b is a limit point of
A, a contradiction.

4. Let A C R be an open set and f : A — R. Show that the two following statements are
equivalent:

(a) fis continuous

(b) for all ¢ € R the sets E[f < c] = {x € A|f(z) < ¢} and E[f > ] = {x € A|f(z) > ¢}
are open

Solution:

(a = D)



Note that E[f < ¢] = f~1((—00,¢)) and E[f > ¢] = f~*((c,00)). Since f is continuous and
(—o0,¢) and (¢, 00) are open, this proves the implication

(b= a)

We know that f is continuous iff the inverse image of any open set is continuous. Let B C R
be an open set.

For any y € B, there exists ¢, such that B(y,ey) € B. Thus, UyepB(y,e,) C B. But if
2z € B,z € B(z,¢), and thus B C UycpB(y,gy), which implies that B = UycpB(y, gy).

We also know that
f_l(UyEBB(ya 5y)) = Uyer_l(B(ya 5y))

Since we are dealing with subsets of the real line, B(y,e,) = (y — &4,y + £,). But notice that

(y —ey,y +ey) =

—00,Y +&y) N (Y — &y, 00)
:>f_1((y_5y73/+5y>) a

(
f 1(<_0073/+5y>) mf_l((y — £y, 00))
Elf <y+ey NE[f >y—¢y]

Since the finite intersection of open sets is open, this proves the result.

. Let (X, d) be a metric space and A C X. Show that

A={re X |d(z,A) =0}

where the distance between a point y and a set B is given by d(y, B) = infpcp{d(y,b)}.

Conclude that a set A is closed iff there exists a continuous function f : X — R such that

A= fH({o}).

Solution:

Part 1: (A C {z € X | d(z, A) = 0})

Let y € A be arbitrary. If y € A, we have that 0 < d(y, A) < d(y,y) = 0, and thus d(y, A) = 0.
Suppose now that y € A\ A. We will first prove that there exists a sequence {z, },en such
that Yn € N z,, € A and z,, — ¥.

Suppose this is not the case. That means there exists ¢ > 0 such that B(y,e)[14A = @.
Particularly, B(y, )¢ is a closed set that contains A, and thus A C B(y, )¢, which contradicts
the fact that y € A, which finishes the proof for our auxiliary statement.



Take now {z, }nen such that Vn € N z,, € A and z,, — y. By the definition of convergence
of sequences, we know that

Ve > 03ng € N d(y, zp,) < €

Particularly, d(y, A) < d(y,zn,) < . This implies that d(y, A) = 0.
Part 2: ({x € X |d(z,A)=0})C A

Suppose now that y is such that d(y, A) = 0. By the definition of infimum, this implies that.

Vn € N3z, € A d(zp,y) < 1/n

Let B be any closed set such that A C B. Since B is closed and x,, € A C B, this implies
that y € B. Since B was taken arbitrary, this implies that y belongs to any closed set that
contains A, and thus y € A, which finishes our proof.

We first need to show that d(., A) is a continuous function. Notice that, for any z,y € X,z €
A, we have that

d(z,z) < d(z,y) +d(y,z) = d(z, A) < d(z,y) + d(y, )
= d(z,A) —d(z,y) < d(y,=z)
= d(zx,A) —d(z,y) < d(y,A)
= d(x, A) —d(y, A) < d(z,y)

Similarly, we can prove that d(y, A) —d(x, A) < d(z,y), and thus we have shown that d(.A) is
Lipschitz, and thus continuous. Furthermore, we have shown that A = (d(., 4))~1(0), which
concludes this problem.

. For some metric space (X, d), take any two sets A, B C X such that intA = intB = (), and A
is closed. Prove that int(AU B) = ().

Solution:

Towards a contradiction, assume x € int(AUB). By definition, this implies that there is some
open ball B(x) C AU B. Consider the set F = B.(z)\A = Be(x) N A°. Since A is closed,



A€ is open. Since F is the finite intersection of two open sets, then it is open. We have two
cases:

e F = (). This implies that B.(z) C A, which implies that = € intA, a contradiction.

e F#(. Then, for any y € FE, y € B, so E C B. Since E is open, this implies that B has
non-empty interior, a contradiction.

Since both cases lead to a contradiction, we conclude that int(A U B) = (.



