Econ 204 – Problem Set 2^1 Solutions

1. Give an example of a complete metric space which is homeomorphic to an incomplete metric space.

Solution:

Define the mapping $f : \mathbb{R} \to (-1, 1)$ as

$$f(x) = \frac{x}{1+|x|} \tag{1}$$

f is a continuous bijection (note f(0) = 0), where the inverse $f^{-1}: (-1, 1) \to \mathbb{R}$ is

$$f^{-1}(y) = \frac{y}{1 - |y|} \tag{2}$$

which is also continuous at all -1 < y < 1 (again note $f^{-1}(0) = 0$). Thus f is a homeomorphism. With the usual metric, \mathbb{R} is complete but (-1, 1) is incomplete.

2. Given $A, B \subseteq \mathbb{R}^n$, we define the sum of these two sets by:

$$A + B = \{a + b \mid a \in A, b \in B\}$$

Prove or find a counterexample to the following statements:

- (a) If either A or B is an open set, then A + B is an open set.
- (b) If both A and B are closed sets, A + B is a closed set.

Solution:

(a) This is true. Without loss of generality, assume that A is open.
Let c = a + b for a ∈ A, b ∈ B. Since A is open and a ∈ A, we know that there exists ε > 0 such that B(a, ε) ⊆ A. Let now x ∈ B(c, ε) be arbitrary, and take y = x - b. Note that

¹In case of any problems with the solution to the exercises please email <u>brunosmaniotto@berkeley.edu</u>

$$||a - y|| = ||a - (x - b)||$$

= ||a + b - x||
= ||c - x||
< \varepsilon

And thus $y \in B(a, \varepsilon) \subseteq A$. Since x = x - b + b = y + b. This implies that $x \in A + C$, and thus A + C is open.

- (b) This is not true. Let n = 1 and $A = \{n \mid n \in \mathbb{N}\}, B = \{-n + 1/n \mid n \in \mathbb{N}\}$. Note that both sets are closed. However, we have that $\{1/n\}_{n \in \mathbb{N}} \subseteq A + B, 0 \notin A + B$, but $\forall \varepsilon > 0 \exists n \in \mathbb{N} |1/n 0| = |1/n| < \varepsilon$, and thus A + B is not closed.
- 3. Show that
 - (a) If $A \subseteq \mathbb{R}$ is open and $a_1, \ldots, a_n \in A$, then $A \setminus \{a_1, \ldots, a_n\}$ is open.
 - (b) If A is open and $A \cap \overline{B} \neq \emptyset$, then $A \cap B \neq \emptyset$
 - (c) If \mathcal{A} is a collection of open subsets of \mathbb{R}^n , pairwise disjoint, that is, $A_{\lambda} \cap A_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$, then \mathcal{A} is at most countable
 - (d) The set of limit points of any set $A \subseteq \mathbb{R}^n$ is closed.

Solution:

- (a) First we know that $\{a\}$ is a closed set for any point, and the finite union of closed sets is closed, thus $\{a_1, \ldots, a_n\}$ is always closed. Thus $\{a_1, \ldots, a_n\}^C$ is open, and since the finite intersection of open sets is open, $A \cap \{a_1, \ldots, a_n\}^C = A \setminus \{a_1, \ldots, a_n\}$ is open.
- (b) Since A ∩ B ≠ Ø, there exists a ∈ A and a ∈ B
 Since a ∈ A and A is an open set, we have that ∃ε_a > 0 such that B(a, ε_a) ⊆ A.
 Since a ∈ B, ∀ε > 0 we have that B(a, ε) ∩ B ≠ Ø. Particularly, there exists b ∈ B(a, ε_a) ∩ B. But since B(a, ε_a) ⊆ A, this implies that b ∈ A, and thus b ∈ A ∩ B.
- (c) We will first prove that \mathbb{Q}^n is dense in \mathbb{R}^n . Let $A \subseteq \mathbb{R}^n$ be open and non-empty. Since A is non-empty, there exists $a = (a_1, \ldots, a_n) \in A$. Since A is open, there exists $\varepsilon > 0$ such that $B(a, \varepsilon) \subseteq A$.

Let $b = \frac{\varepsilon}{2\sqrt{n}}$, and note that $a + b\mathbf{1} = (a_1 + b, \dots, a_n + b) \in B(a, \varepsilon)$, since

$$\|a+b\mathbf{1}-a\| = b\|\mathbf{1}\| = \frac{\varepsilon}{2\sqrt{n}}\sqrt{n} = \frac{\varepsilon}{2}$$
(3)

Then for each *i*, there exists $q_i \in \mathbb{Q}$ such that $q_i \in (a_i, a_i + b)$ since \mathbb{Q} is dense in \mathbb{R} . Let $q = (q_1, \ldots, q_n)$. Then $q \in \mathbb{Q}^n$ and

$$\|a - q\|^{2} = \|(a_{1} - q_{1}, \dots, a_{n} - q_{n})\|^{2}$$
$$= \sum_{i=1}^{n} (a_{i} - q_{i})^{2}$$
$$\leq \sum_{i=1}^{n} b^{2}$$
$$= nb^{2} < \varepsilon^{2}$$

So $||a-q|| < \varepsilon$. Thus $q \in B(a, \varepsilon) \subseteq A$, which shows that \mathbb{Q}^n is dense in \mathbb{R}^n .

Now we can go back to the original question. Suppose, by contradiction, that \mathcal{A} is uncountable. For each $A \in \mathcal{A}$, we can take $q_a \in A \cap \mathbb{Q}^n$.

Since all elements in \mathcal{A} are disjoint, this implies that $q_a \neq q_{a'}$ if $A \neq A'$. This implies that $\{q_a\}_{a \in \mathcal{A}}$ is an uncountable subset of \mathbb{Q}^n , which is impossible, since it is a finite product of countable sets, and thus countable.

(d) Suppose this is not the case. Let B be the set of limit points of A. Then there exists a sequence $\{b_n\}_{n\in\mathbb{N}}\subseteq B$ such that $b_n \to b \notin B$. Moreover, taking a subsequence if necessary, take b_n such that $||b_n - b|| < 1/4n$.

Now let, for each $n \in \mathbb{N}$, $a_n \in A$ such that $a_n \in B(b_n, 1/4n)$, which exist since b_n is a limit point of A for each n. Note that

$$||b - a_n|| \le ||b - b_n|| + ||b_n - a_n|| \le 1/4n + 1/4n \le 1/2n < 1/n$$

By the Archimedean Property, this implies that $a_n \to b$, and thus b is a limit point of A, a contradiction.

- 4. Let $A \subseteq \mathbb{R}$ be an open set and $f : A \to \mathbb{R}$. Show that the two following statements are equivalent:
 - (a) f is continuous
 - (b) for all $c \in \mathbb{R}$ the sets $E[f < c] = \{x \in A | f(x) < c\}$ and $E[f > c] = \{x \in A | f(x) > c\}$ are open

Solution:

$(a \Rightarrow b)$

Note that $E[f < c] = f^{-1}((-\infty, c))$ and $E[f > c] = f^{-1}((c, \infty))$. Since f is continuous and $(-\infty, c)$ and (c, ∞) are open, this proves the implication $(b \Rightarrow a)$

We know that f is continuous iff the inverse image of any open set is continuous. Let $B \subseteq \mathbb{R}$ be an open set.

For any $y \in B$, there exists ε_y such that $B(y, \varepsilon_y) \subseteq B$. Thus, $\bigcup_{y \in B} B(y, \varepsilon_y) \subseteq B$. But if $z \in B, z \in B(z, \varepsilon_z)$, and thus $B \subseteq \bigcup_{y \in B} B(y, \varepsilon_y)$, which implies that $B = \bigcup_{y \in B} B(y, \varepsilon_y)$.

We also know that

 $f^{-1}(\cup_{y\in B}B(y,\varepsilon_y))=\cup_{y\in B}f^{-1}(B(y,\varepsilon_y))$

Since we are dealing with subsets of the real line, $B(y, \varepsilon_y) = (y - \varepsilon_y, y + \varepsilon_y)$. But notice that

$$(y - \varepsilon_y, y + \varepsilon_y) = (-\infty, y + \varepsilon_y) \cap (y - \varepsilon_y, \infty)$$

$$\Rightarrow f^{-1}((y - \varepsilon_y, y + \varepsilon_y)) = f^{-1}((-\infty, y + \varepsilon_y)) \cap f^{-1}((y - \varepsilon_y, \infty))$$

$$= E[f < y + \varepsilon_y] \cap E[f > y - \varepsilon_y]$$

Since the finite intersection of open sets is open, this proves the result.

5. Let (X, d) be a metric space and $A \subseteq X$. Show that

$$\overline{A} = \{ x \in X \mid d(x, A) = 0 \}$$

where the distance between a point y and a set B is given by $d(y, B) = \inf_{b \in B} \{ d(y, b) \}.$

Conclude that a set A is closed iff there exists a continuous function $f: X \to \mathbb{R}$ such that $A = f^{-1}(\{0\})$.

Solution:

Part 1: $(\overline{A} \subseteq \{x \in X \mid d(x, A) = 0\})$

Let $y \in \overline{A}$ be arbitrary. If $y \in A$, we have that $0 \leq d(y, A) \leq d(y, y) = 0$, and thus d(y, A) = 0. Suppose now that $y \in \overline{A} \setminus A$. We will first prove that there exists a sequence $\{x_n\}_{n \in \mathbb{N}}$ such that $\forall n \in \mathbb{N} \ x_n \in A$ and $x_n \to y$.

Suppose this is not the case. That means there exists $\varepsilon > 0$ such that $B(y,\varepsilon) \cap A = \emptyset$. Particularly, $B(y,\varepsilon)^C$ is a closed set that contains A, and thus $\overline{A} \subseteq B(y,\varepsilon)^C$, which contradicts the fact that $y \in \overline{A}$, which finishes the proof for our auxiliary statement. Take now $\{x_n\}_{n\in\mathbb{N}}$ such that $\forall n\in\mathbb{N}$ $x_n\in A$ and $x_n\to y$. By the definition of convergence of sequences, we know that

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \ d(y, x_{n_0}) < \varepsilon$$

Particularly, $d(y, A) < d(y, x_{n_0}) < \varepsilon$. This implies that d(y, A) = 0. Part 2: $(\{x \in X \mid d(x, A) = 0\}) \subseteq \overline{A}$

Suppose now that y is such that d(y, A) = 0. By the definition of infimum, this implies that.

$$\forall n \in \mathbb{N} \exists x_n \in A \ d(x_n, y) < 1/n$$

Let B be any closed set such that $A \subseteq B$. Since B is closed and $x_n \in A \subseteq B$, this implies that $y \in B$. Since B was taken arbitrary, this implies that y belongs to any closed set that contains A, and thus $y \in \overline{A}$, which finishes our proof.

We first need to show that d(., A) is a continuous function. Notice that, for any $x, y \in X, z \in A$, we have that

$$\begin{aligned} d(x,z) &\leq d(x,y) + d(y,z) \Rightarrow d(x,A) \leq d(x,y) + d(y,z) \\ &\Rightarrow d(x,A) - d(x,y) \leq d(y,z) \\ &\Rightarrow d(x,A) - d(x,y) \leq d(y,A) \\ &\Rightarrow d(x,A) - d(y,A) \leq d(x,y) \end{aligned}$$

Similarly, we can prove that $d(y, A) - d(x, A) \leq d(x, y)$, and thus we have shown that d(.A) is Lipschitz, and thus continuous. Furthermore, we have shown that $\overline{A} = (d(., A))^{-1}(0)$, which concludes this problem.

6. For some metric space (X, d), take any two sets $A, B \subset X$ such that $\operatorname{int} A = \operatorname{int} B = \emptyset$, and A is closed. Prove that $\operatorname{int}(A \cup B) = \emptyset$.

Solution:

Towards a contradiction, assume $x \in int(A \cup B)$. By definition, this implies that there is some open ball $B_{\epsilon}(x) \subset A \cup B$. Consider the set $E = B_{\epsilon}(x) \setminus A = B_{\epsilon}(x) \cap A^{c}$. Since A is closed, A^c is open. Since E is the finite intersection of two open sets, then it is open. We have two cases:

- $E = \emptyset$. This implies that $B_{\epsilon}(x) \subset A$, which implies that $x \in intA$, a contradiction.
- $E \neq \emptyset$. Then, for any $y \in E$, $y \in B$, so $E \subset B$. Since E is open, this implies that B has non-empty interior, a contradiction.

Since both cases lead to a contradiction, we conclude that $int(A \cup B) = \emptyset$.