
Econ 204 – Problem Set 21

Solutions

1. Give an example of a complete metric space which is homeomorphic to an incomplete metric

space.

Solution:

Define the mapping f : R→ (−1, 1) as

f(x) =
x

1 + |x| (1)

f is a continuous bijection (note f(0) = 0), where the inverse f−1 : (−1, 1) → R is

f−1(y) =
y

1− |y| (2)

which is also continuous at all −1 < y < 1 (again note f−1(0) = 0). Thus f is a homeomor-

phism. With the usual metric, R is complete but (−1, 1) is incomplete.

2. Given A,B ⊆ Rn, we define the sum of these two sets by:

A+B = {a+ b | a ∈ A, b ∈ B}

Prove or find a counterexample to the following statements:

(a) If either A or B is an open set, then A+B is an open set.

(b) If both A and B are closed sets, A+B is a closed set.

Solution:

(a) This is true. Without loss of generality, assume that A is open.

Let c = a + b for a ∈ A, b ∈ B. Since A is open and a ∈ A, we know that there exists

ε > 0 such that B(a, ε) ⊆ A. Let now x ∈ B(c, ε) be arbitrary, and take y = x− b. Note

that
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||a− y|| = ||a− (x− b)||
= ||a+ b− x||
= ||c− x||
≤ ε

And thus y ∈ B(a, ε) ⊆ A. Since x = x − b + b = y + b. This implies that x ∈ A + C,

and thus A+ C is open.

(b) This is not true. Let n = 1 and A = {n | n ∈ N}, B = {−n + 1/n | n ∈ N}. Note

that both sets are closed. However, we have that {1/n}n∈N ⊆ A + B, 0 ̸∈ A + B, but

∀ε > 0∃n ∈ N |1/n− 0| = |1/n| < ε, and thus A+B is not closed.

3. Show that

(a) If A ⊆ R is open and a1, . . . , an ∈ A, then A \ {a1, . . . , an} is open.

(b) If A is open and A ∩B ̸= ∅, then A ∩B ̸= ∅

(c) If A is a collection of open subsets of Rn, pairwise disjoint, that is, Aλ ∩ Aλ′ = ∅ if

λ ̸= λ′, then A is at most countable

(d) The set of limit points of any set A ⊆ Rn is closed.

Solution:

(a) First we know that {a} is a closed set for any point, and the finite union of closed sets

is closed, thus {a1, . . . , an} is always closed. Thus {a1, . . . , an}C is open, and since the

finite intersection of open sets is open, A ∩ {a1, . . . , an}C = A \ {a1, . . . , an} is open.

(b) Since A ∩B ̸= ∅, there exists a ∈ A and a ∈ B

Since a ∈ A and A is an open set, we have that ∃εa > 0 such that B(a, εa) ⊆ A.

Since a ∈ B, ∀ε > 0 we have that B(a, ε) ∩ B ̸= ∅. Particularly, there exists b ∈
B(a, εa) ∩B. But since B(a, εa) ⊆ A, this implies that b ∈ A, and thus b ∈ A ∩B.

(c) We will first prove that Qn is dense in Rn. Let A ⊆ Rn be open and non-empty.

Since A is non-empty, there exists a = (a1, . . . , an) ∈ A. Since A is open, there exists

ε > 0 such that B(a, ε) ⊆ A.

Let b = ε
2
√
n
, and note that a+ b1 = (a1 + b, . . . , an + b) ∈ B(a, ε), since

∥a+ b1− a∥ = b∥1∥ =
ε

2
√
n

√
n =

ε

2
(3)
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Then for each i, there exists qi ∈ Q such that qi ∈ (ai, ai + b) since Q is dense in R. Let
q = (q1, . . . , qn). Then q ∈ Qn and

∥a− q∥2 = ∥(a1 − q1, . . . , an − qn)∥2

=
n∑

i=1

(ai − qi)
2

≤
n∑

i=1

b2

= nb2 < ε2

So ∥a− q∥ < ε. Thus q ∈ B(a, ε) ⊆ A, which shows that Qn is dense in Rn.

Now we can go back to the original question. Suppose, by contradiction, that A is

uncountable. For each A ∈ A, we can take qa ∈ A ∩Qn.

Since all elements in A are disjoint, this implies that qa ̸= qa′ if A ̸= A′. This implies

that {qa}a∈A is an uncountable subset of Qn, which is impossible, since it is a finite

product of countable sets, and thus countable.

(d) Suppose this is not the case. Let B be the set of limit points of A. Then there exists

a sequence {bn}n∈N ⊆ B such that bn → b ̸∈ B. Moreover, taking a subsequence if

necessary, take bn such that ||bn − b|| < 1/4n.

Now let, for each n ∈ N, an ∈ A such that an ∈ B(bn, 1/4n), which exist since bn is a

limit point of A for each n. Note that

||b− an|| ≤ ||b− bn||+ ||bn − an|| ≤ 1/4n+ 1/4n ≤ 1/2n < 1/n

By the Archimedean Property, this implies that an → b, and thus b is a limit point of

A, a contradiction.

4. Let A ⊆ R be an open set and f : A → R. Show that the two following statements are

equivalent:

(a) f is continuous

(b) for all c ∈ R the sets E[f < c] = {x ∈ A|f(x) < c} and E[f > c] = {x ∈ A|f(x) > c}
are open

Solution:

(a ⇒ b)
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Note that E[f < c] = f−1((−∞, c)) and E[f > c] = f−1((c,∞)). Since f is continuous and

(−∞, c) and (c,∞) are open, this proves the implication

(b ⇒ a)

We know that f is continuous iff the inverse image of any open set is continuous. Let B ⊆ R
be an open set.

For any y ∈ B, there exists εy such that B(y, εy) ⊆ B. Thus, ∪y∈BB(y, εy) ⊆ B. But if

z ∈ B, z ∈ B(z, εz), and thus B ⊆ ∪y∈BB(y, εy), which implies that B = ∪y∈BB(y, εy).

We also know that

f−1(∪y∈BB(y, εy)) = ∪y∈Bf
−1(B(y, εy))

Since we are dealing with subsets of the real line, B(y, εy) = (y− εy, y+ εy). But notice that

(y − εy, y + εy) = (−∞, y + εy) ∩ (y − εy,∞)

⇒ f−1((y − εy, y + εy)) = f−1((−∞, y + εy)) ∩ f−1((y − εy,∞))

= E[f < y + εy] ∩ E[f > y − εy]

Since the finite intersection of open sets is open, this proves the result.

5. Let (X, d) be a metric space and A ⊆ X. Show that

A = {x ∈ X | d(x,A) = 0}

where the distance between a point y and a set B is given by d(y,B) = infb∈B{d(y, b)}.

Conclude that a set A is closed iff there exists a continuous function f : X → R such that

A = f−1({0}).

Solution:

Part 1: (A ⊆ {x ∈ X | d(x,A) = 0})

Let y ∈ A be arbitrary. If y ∈ A, we have that 0 ≤ d(y,A) ≤ d(y, y) = 0, and thus d(y,A) = 0.

Suppose now that y ∈ A \ A. We will first prove that there exists a sequence {xn}n∈N such

that ∀n ∈ N xn ∈ A and xn → y.

Suppose this is not the case. That means there exists ε > 0 such that B(y, ε)
⋂
A = ∅.

Particularly, B(y, ε)C is a closed set that contains A, and thus A ⊆ B(y, ε)C , which contradicts

the fact that y ∈ A, which finishes the proof for our auxiliary statement.
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Take now {xn}n∈N such that ∀n ∈ N xn ∈ A and xn → y. By the definition of convergence

of sequences, we know that

∀ϵ > 0∃n0 ∈ N d(y, xn0) < ε

Particularly, d(y,A) < d(y, xn0) < ε. This implies that d(y,A) = 0.

Part 2: ({x ∈ X | d(x,A) = 0}) ⊆ A

Suppose now that y is such that d(y,A) = 0. By the definition of infimum, this implies that.

∀n ∈ N∃xn ∈ A d(xn, y) < 1/n

Let B be any closed set such that A ⊆ B. Since B is closed and xn ∈ A ⊆ B, this implies

that y ∈ B. Since B was taken arbitrary, this implies that y belongs to any closed set that

contains A, and thus y ∈ A, which finishes our proof.

We first need to show that d(., A) is a continuous function. Notice that, for any x, y ∈ X, z ∈
A, we have that

d(x, z) ≤ d(x, y) + d(y, z) ⇒ d(x,A) ≤ d(x, y) + d(y, z)

⇒ d(x,A)− d(x, y) ≤ d(y, z)

⇒ d(x,A)− d(x, y) ≤ d(y,A)

⇒ d(x,A)− d(y,A) ≤ d(x, y)

Similarly, we can prove that d(y,A)−d(x,A) ≤ d(x, y), and thus we have shown that d(.A) is

Lipschitz, and thus continuous. Furthermore, we have shown that A = (d(., A))−1(0), which

concludes this problem.

6. For some metric space (X, d), take any two sets A,B ⊂ X such that intA = intB = ∅, and A

is closed. Prove that int(A ∪B) = ∅.

Solution:

Towards a contradiction, assume x ∈ int(A∪B). By definition, this implies that there is some

open ball Bϵ(x) ⊂ A ∪ B. Consider the set E = Bϵ(x)\A = Bϵ(x) ∩ Ac. Since A is closed,

5



Ac is open. Since E is the finite intersection of two open sets, then it is open. We have two

cases:

� E = ∅. This implies that Bϵ(x) ⊂ A, which implies that x ∈ intA, a contradiction.

� E ̸= ∅. Then, for any y ∈ E, y ∈ B, so E ⊂ B. Since E is open, this implies that B has

non-empty interior, a contradiction.

Since both cases lead to a contradiction, we conclude that int(A ∪B) = ∅.
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