Econ 204 - Problem Set 2^{1}

Solutions

1. Give an example of a complete metric space which is homeomorphic to an incomplete metric space.

Solution:

Define the mapping $f: \mathbb{R} \rightarrow(-1,1)$ as

$$
\begin{equation*}
f(x)=\frac{x}{1+|x|} \tag{1}
\end{equation*}
$$

f is a continuous bijection (note $f(0)=0$), where the inverse $f^{-1}:(-1,1) \rightarrow \mathbb{R}$ is

$$
\begin{equation*}
f^{-1}(y)=\frac{y}{1-|y|} \tag{2}
\end{equation*}
$$

which is also continuous at all $-1<y<1$ (again note $f^{-1}(0)=0$). Thus f is a homeomorphism. With the usual metric, \mathbb{R} is complete but $(-1,1)$ is incomplete.
2. Given $A, B \subseteq \mathbb{R}^{n}$, we define the sum of these two sets by:

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

Prove or find a counterexample to the following statements:
(a) If either A or B is an open set, then $A+B$ is an open set.
(b) If both A and B are closed sets, $A+B$ is a closed set.

Solution:

(a) This is true. Without loss of generality, assume that A is open.

Let $c=a+b$ for $a \in A, b \in B$. Since A is open and $a \in A$, we know that there exists $\varepsilon>0$ such that $B(a, \varepsilon) \subseteq A$. Let now $x \in B(c, \varepsilon)$ be arbitrary, and take $y=x-b$. Note that

[^0]\[

$$
\begin{aligned}
\|a-y\| & =\|a-(x-b)\| \\
& =\|a+b-x\| \\
& =\|c-x\| \\
& \leq \varepsilon
\end{aligned}
$$
\]

And thus $y \in B(a, \varepsilon) \subseteq A$. Since $x=x-b+b=y+b$. This implies that $x \in A+C$, and thus $A+C$ is open.
(b) This is not true. Let $n=1$ and $A=\{n \mid n \in \mathbb{N}\}, B=\{-n+1 / n \mid n \in \mathbb{N}\}$. Note that both sets are closed. However, we have that $\{1 / n\}_{n \in \mathbb{N}} \subseteq A+B, 0 \notin A+B$, but $\forall \varepsilon>0 \exists n \in \mathbb{N}|1 / n-0|=|1 / n|<\varepsilon$, and thus $A+B$ is not closed.

3. Show that

(a) If $A \subseteq \mathbb{R}$ is open and $a_{1}, \ldots, a_{n} \in A$, then $A \backslash\left\{a_{1}, \ldots, a_{n}\right\}$ is open.
(b) If A is open and $A \cap \bar{B} \neq \varnothing$, then $A \cap B \neq \varnothing$
(c) If \mathcal{A} is a collection of open subsets of \mathbb{R}^{n}, pairwise disjoint, that is, $A_{\lambda} \cap A_{\lambda^{\prime}}=\varnothing$ if $\lambda \neq \lambda^{\prime}$, then \mathcal{A} is at most countable
(d) The set of limit points of any set $A \subseteq \mathbb{R}^{n}$ is closed.

Solution:

(a) First we know that $\{a\}$ is a closed set for any point, and the finite union of closed sets is closed, thus $\left\{a_{1}, \ldots, a_{n}\right\}$ is always closed. Thus $\left\{a_{1}, \ldots, a_{n}\right\}^{C}$ is open, and since the finite intersection of open sets is open, $A \cap\left\{a_{1}, \ldots, a_{n}\right\}^{C}=A \backslash\left\{a_{1}, \ldots, a_{n}\right\}$ is open.
(b) Since $A \cap \bar{B} \neq \varnothing$, there exists $a \in A$ and $a \in \bar{B}$

Since $a \in A$ and A is an open set, we have that $\exists \varepsilon_{a}>0$ such that $B\left(a, \varepsilon_{a}\right) \subseteq A$.
Since $a \in \bar{B}, \forall \varepsilon>0$ we have that $B(a, \varepsilon) \cap B \neq \varnothing$. Particularly, there exists $b \in$ $B\left(a, \varepsilon_{a}\right) \cap B$. But since $B\left(a, \varepsilon_{a}\right) \subseteq A$, this implies that $b \in A$, and thus $b \in A \cap B$.
(c) We will first prove that \mathbb{Q}^{n} is dense in \mathbb{R}^{n}. Let $A \subseteq \mathbb{R}^{n}$ be open and non-empty.

Since A is non-empty, there exists $a=\left(a_{1}, \ldots, a_{n}\right) \in A$. Since A is open, there exists $\varepsilon>0$ such that $B(a, \varepsilon) \subseteq A$.
Let $b=\frac{\varepsilon}{2 \sqrt{n}}$, and note that $a+b \mathbf{1}=\left(a_{1}+b, \ldots, a_{n}+b\right) \in B(a, \varepsilon)$, since

$$
\begin{equation*}
\|a+b \mathbf{1}-a\|=b\|\mathbf{1}\|=\frac{\varepsilon}{2 \sqrt{n}} \sqrt{n}=\frac{\varepsilon}{2} \tag{3}
\end{equation*}
$$

Then for each i, there exists $q_{i} \in \mathbb{Q}$ such that $q_{i} \in\left(a_{i}, a_{i}+b\right)$ since \mathbb{Q} is dense in \mathbb{R}. Let $q=\left(q_{1}, \ldots, q_{n}\right)$. Then $q \in \mathbb{Q}^{n}$ and

$$
\begin{aligned}
\|a-q\|^{2} & =\left\|\left(a_{1}-q_{1}, \ldots, a_{n}-q_{n}\right)\right\|^{2} \\
& =\sum_{i=1}^{n}\left(a_{i}-q_{i}\right)^{2} \\
& \leq \sum_{i=1}^{n} b^{2} \\
& =n b^{2}<\varepsilon^{2}
\end{aligned}
$$

So $\|a-q\|<\varepsilon$. Thus $q \in B(a, \varepsilon) \subseteq A$, which shows that \mathbb{Q}^{n} is dense in \mathbb{R}^{n}.
Now we can go back to the original question. Suppose, by contradiction, that \mathcal{A} is uncountable. For each $A \in \mathcal{A}$, we can take $q_{a} \in A \cap \mathbb{Q}^{n}$.
Since all elements in \mathcal{A} are disjoint, this implies that $q_{a} \neq q_{a^{\prime}}$ if $A \neq A^{\prime}$. This implies that $\left\{q_{a}\right\}_{a \in \mathcal{A}}$ is an uncountable subset of \mathbb{Q}^{n}, which is impossible, since it is a finite product of countable sets, and thus countable.
(d) Suppose this is not the case. Let B be the set of limit points of A. Then there exists a sequence $\left\{b_{n}\right\}_{n \in \mathbb{N}} \subseteq B$ such that $b_{n} \rightarrow b \notin B$. Moreover, taking a subsequence if necessary, take b_{n} such that $\left\|b_{n}-b\right\|<1 / 4 n$.
Now let, for each $n \in \mathbb{N}, a_{n} \in A$ such that $a_{n} \in B\left(b_{n}, 1 / 4 n\right)$, which exist since b_{n} is a limit point of A for each n . Note that

$$
\left\|b-a_{n}\right\| \leq\left\|b-b_{n}\right\|+\left\|b_{n}-a_{n}\right\| \leq 1 / 4 n+1 / 4 n \leq 1 / 2 n<1 / n
$$

By the Archimedean Property, this implies that $a_{n} \rightarrow b$, and thus b is a limit point of A, a contradiction.
4. Let $A \subseteq \mathbb{R}$ be an open set and $f: A \rightarrow \mathbb{R}$. Show that the two following statements are equivalent:
(a) f is continuous
(b) for all $c \in \mathbb{R}$ the sets $E[f<c]=\{x \in A \mid f(x)<c\}$ and $E[f>c]=\{x \in A \mid f(x)>c\}$ are open

Solution:

($\mathrm{a} \Rightarrow \mathrm{b}$)

Note that $E[f<c]=f^{-1}((-\infty, c))$ and $E[f>c]=f^{-1}((c, \infty))$. Since f is continuous and $(-\infty, c)$ and (c, ∞) are open, this proves the implication
($\mathrm{b} \Rightarrow \mathrm{a}$)
We know that f is continuous iff the inverse image of any open set is continuous. Let $B \subseteq \mathbb{R}$ be an open set.
For any $y \in B$, there exists ε_{y} such that $B\left(y, \varepsilon_{y}\right) \subseteq B$. Thus, $\cup_{y \in B} B\left(y, \varepsilon_{y}\right) \subseteq B$. But if $z \in B, z \in B\left(z, \varepsilon_{z}\right)$, and thus $B \subseteq \cup_{y \in B} B\left(y, \varepsilon_{y}\right)$, which implies that $B=\cup_{y \in B} B\left(y, \varepsilon_{y}\right)$.
We also know that
$f^{-1}\left(\cup_{y \in B} B\left(y, \varepsilon_{y}\right)\right)=\cup_{y \in B} f^{-1}\left(B\left(y, \varepsilon_{y}\right)\right)$
Since we are dealing with subsets of the real line, $B\left(y, \varepsilon_{y}\right)=\left(y-\varepsilon_{y}, y+\varepsilon_{y}\right)$. But notice that

$$
\begin{aligned}
\left(y-\varepsilon_{y}, y+\varepsilon_{y}\right) & =\left(-\infty, y+\varepsilon_{y}\right) \cap\left(y-\varepsilon_{y}, \infty\right) \\
\Rightarrow f^{-1}\left(\left(y-\varepsilon_{y}, y+\varepsilon_{y}\right)\right) & =f^{-1}\left(\left(-\infty, y+\varepsilon_{y}\right)\right) \cap f^{-1}\left(\left(y-\varepsilon_{y}, \infty\right)\right) \\
& =E\left[f<y+\varepsilon_{y}\right] \cap E\left[f>y-\varepsilon_{y}\right]
\end{aligned}
$$

Since the finite intersection of open sets is open, this proves the result.
5. Let (X, d) be a metric space and $A \subseteq X$. Show that

$$
\bar{A}=\{x \in X \mid d(x, A)=0\}
$$

where the distance between a point y and a set B is given by $d(y, B)=\inf _{b \in B}\{d(y, b)\}$.
Conclude that a set A is closed iff there exists a continuous function $f: X \rightarrow \mathbb{R}$ such that $A=f^{-1}(\{0\})$.

Solution:

Part 1: $(\bar{A} \subseteq\{x \in X \mid d(x, A)=0\})$
Let $y \in \bar{A}$ be arbitrary. If $y \in A$, we have that $0 \leq d(y, A) \leq d(y, y)=0$, and thus $d(y, A)=0$. Suppose now that $y \in \bar{A} \backslash A$. We will first prove that there exists a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $\forall n \in \mathbb{N} x_{n} \in A$ and $x_{n} \rightarrow y$.
Suppose this is not the case. That means there exists $\varepsilon>0$ such that $B(y, \varepsilon) \bigcap A=\varnothing$. Particularly, $B(y, \varepsilon)^{C}$ is a closed set that contains A, and thus $\bar{A} \subseteq B(y, \varepsilon)^{C}$, which contradicts the fact that $y \in \bar{A}$, which finishes the proof for our auxiliary statement.

Take now $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $\forall n \in \mathbb{N} x_{n} \in A$ and $x_{n} \rightarrow y$. By the definition of convergence of sequences, we know that

$$
\forall \epsilon>0 \exists n_{0} \in \mathbb{N} d\left(y, x_{n_{0}}\right)<\varepsilon
$$

Particularly, $d(y, A)<d\left(y, x_{n_{0}}\right)<\varepsilon$. This implies that $d(y, A)=0$.
Part 2: $(\{x \in X \mid d(x, A)=0\}) \subseteq \bar{A}$

Suppose now that y is such that $d(y, A)=0$. By the definition of infimum, this implies that.

$$
\forall n \in \mathbb{N} \exists x_{n} \in A d\left(x_{n}, y\right)<1 / n
$$

Let B be any closed set such that $A \subseteq B$. Since B is closed and $x_{n} \in A \subseteq B$, this implies that $y \in B$. Since B was taken arbitrary, this implies that y belongs to any closed set that contains A, and thus $y \in \bar{A}$, which finishes our proof.
We first need to show that $d(., A)$ is a continuous function. Notice that, for any $x, y \in X, z \in$ A, we have that

$$
\begin{aligned}
d(x, z) \leq d(x, y)+d(y, z) & \Rightarrow d(x, A) \leq d(x, y)+d(y, z) \\
& \Rightarrow d(x, A)-d(x, y) \leq d(y, z) \\
& \Rightarrow d(x, A)-d(x, y) \leq d(y, A) \\
& \Rightarrow d(x, A)-d(y, A) \leq d(x, y)
\end{aligned}
$$

Similarly, we can prove that $d(y, A)-d(x, A) \leq d(x, y)$, and thus we have shown that $d(. A)$ is Lipschitz, and thus continuous. Furthermore, we have shown that $\bar{A}=(d(., A))^{-1}(0)$, which concludes this problem.
6. For some metric space (X, d), take any two sets $A, B \subset X$ such that $\operatorname{int} A=\operatorname{int} B=\emptyset$, and A is closed. Prove that $\operatorname{int}(A \cup B)=\emptyset$.

Solution:

Towards a contradiction, assume $x \in \operatorname{int}(A \cup B)$. By definition, this implies that there is some open ball $B_{\epsilon}(x) \subset A \cup B$. Consider the set $E=B_{\epsilon}(x) \backslash A=B_{\epsilon}(x) \cap A^{c}$. Since A is closed,
A^{c} is open. Since E is the finite intersection of two open sets, then it is open. We have two cases:

- $E=\emptyset$. This implies that $B_{\epsilon}(x) \subset A$, which implies that $x \in \operatorname{int} A$, a contradiction.
- $E \neq \emptyset$. Then, for any $y \in E, y \in B$, so $E \subset B$. Since E is open, this implies that B has non-empty interior, a contradiction.

Since both cases lead to a contradiction, we conclude that $\operatorname{int}(A \cup B)=\emptyset$.

[^0]: ${ }^{1}$ In case of any problems with the solution to the exercises please email brunosmaniotto@berkeley.edu

