Econ 204 – Problem Set 2^1

Due Tuesday August 1 11:59PM, 2023

- 1. Give an example of a complete metric space which is homeomorphic to an incomplete metric space.
- 2. Given $A, B \subseteq \mathbb{R}^n$, we define the sum of these two sets by:

$$A + B = \{a + b \mid a \in A, b \in B\}$$

Prove or find a counterexample to the following statements:

- (a) If either A or B is an open set, then A + B is an open set.
- (b) If both A and B are closed sets, A + B is a closed set.

3. Show that

- (a) If $A \subseteq \mathbb{R}$ is open and $a_1, \ldots, a_n \in A$, then $A \setminus \{a_1, \ldots, a_n\}$ is open.
- (b) If A is open and $A \cap \overline{B} \neq \emptyset$, then $A \cap B \neq \emptyset$
- (c) If \mathcal{A} is a collection of open subsets of \mathbb{R}^n , pairwise disjoint, that is, $A_{\lambda} \cap A_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$, then \mathcal{A} is at most countable
- (d) The set of limit points of any set $A \subseteq \mathbb{R}^n$ is closed.
- 4. Let $A \subseteq \mathbb{R}$ be an open set and $f : A \to \mathbb{R}$. Show that the two following statements are equivalent:
 - (a) f is continuous
 - (b) for all $c \in \mathbb{R}$ the sets $E[f < c] = \{x \in A | f(x) < c\}$ and $E[f > c] = \{x \in A | f(x) > c\}$ are open
- 5. Let (X, d) be a metric space and $A \subseteq X$. Show that

$$\overline{A} = \{ x \in X \mid d(x, A) = 0 \}$$

where the distance between a point y and a set B is given by $d(y, B) = \inf_{b \in B} \{ d(y, b) \}.$

Conclude that a set A is closed iff there exists a continuous function $f: X \to \mathbb{R}$ such that $A = f^{-1}(\{0\})$.

6. For some metric space (X, d), take any two sets $A, B \subset X$ such that $\operatorname{int} A = \operatorname{int} B = \emptyset$, and A is closed. Prove that $\operatorname{int}(A \cup B) = \emptyset$.

¹In case of any problems with the solution to the exercises please email <u>brunosmaniotto@berkeley.edu</u>