Econ 204 - Problem Set 3^{1}

Solutions

1. Show that every open covering of \mathbb{R}^{n} has a countable subcovering. Hint: The countable union of finite sets is countable

Solution:

Let \mathcal{A} be an open covering of \mathbb{R}^{n}. Define, for each $k \in \mathbb{N}$, the following n-dimensional hypercube

$$
C^{k}=[-k, k]^{n}
$$

Notice that since $C^{k} \subseteq R^{n}$, we have that \mathcal{A} is an open covering of C^{k}. Thus there exist $A_{1}^{k}, \ldots, A_{m^{k}}^{k}$ a subcover of \mathcal{A} such that

$$
C^{k} \subseteq A_{1}^{k} \cup \cdots \cup A_{m^{k}}^{k}
$$

Let $\mathcal{A}^{k}=\left\{A_{1}^{k}, \ldots, A_{m^{k}}^{k}\right\}$. Note that \mathcal{A}^{k} is a finite set.
We can then take $\mathcal{A}^{\infty}=\cup_{k=1}^{\infty} \mathcal{A}^{k}$. Notice that \mathcal{A}^{∞} is the countable union of finite sets, and thus it is countable. It is also, by construction, a subcover of \mathcal{A}.
Let $x \in \mathbb{R}^{n}$ be arbitrary. Since $\|x\|_{\infty}<\infty$, there exists $K \in \mathbb{N}$ such that $\|x\|_{\infty}<K$. This implies that $x \in C^{K}$. This proves that $\mathbb{R}^{n}=\cup_{k=1}^{\infty} C^{k}$. Particularly, \mathcal{A}^{∞} is a covering of \mathbb{R}^{n}. Since we have shown that it is countable, this finishes the proof.
2. Let (X, d) be a metric space and $f: X \rightarrow \mathbb{R}$ be bounded. Given $M>0$, define $f_{M}: X \rightarrow \mathbb{R}$ by :

$$
f_{M}(x)=\inf _{y \in X}\{f(y)+M d(x, y)\}
$$

Show that:
(a) $\forall x \in X \quad f_{M}(x) \leq f(x)$
(b) Show that f_{M} is M-Lipschitz
(c) Show that if f is Lipschitz and the lipschitz constant of f, M_{f}, is less or equal than M, then $f_{M}=f$
(d) Show that, given $x \in X$ and $M<M^{\prime}$, we have that $f_{M}(x) \leq f_{M^{\prime}}(x)$.

[^0](e) Show that when $M \rightarrow \infty$, then $f_{M}(x) \rightarrow f(x)$ in every point $x \in X$ such that f is continuous.
(f) Show that if f is continuous and X is compact,
$$
\lim _{M \rightarrow \infty} \sup _{x \in X}\left\{d\left(f_{M}(x), f(x)\right)\right\}=0
$$

Solution:

(a) Note that

$$
\begin{aligned}
f_{M}(x) & =\inf _{y \in X}\{f(y)+M d(x, y)\} \\
& \leq f(x)+M d(x, x) \\
& =f(x)
\end{aligned}
$$

(b) Note that, for any given $x, z \in X$

$$
\begin{aligned}
f(z)+M d(x, z) & \leq f(z)+M d(y, z)+M d(x, y) \quad \text { (triangle inequality) } \\
\Rightarrow \inf _{z}\{f(z)+M d(x, z)\} & \leq \inf _{z}\{f(z)+M d(y, z)\}+M d(x, y) \quad \text { (taking inf over z) } \\
\Rightarrow f_{M}(x) & \leq f_{M}(y)+M d(x, y) \\
\Rightarrow f_{M}(x)-f_{M}(y) & \leq M d(x, y)
\end{aligned}
$$

Similarly, $f_{M}(y)-f_{M}(x) \leq M d(x, y)$, and thus

$$
\left|f_{M}(x)-f_{M}(y)\right| \leq M d(x, y)
$$

Which proves the result.
(c) We already know that $\forall x \in X f_{M}(x) \leq f(x)$. Note now that for any given $x, z \in X$,

$$
\begin{aligned}
f(x)-f(z) & \leq M_{f} d(x, z) \\
& \leq M d(x, z) \\
\Rightarrow \forall z \in X f(x) & \leq f(z)+M d(x, z) \\
\Rightarrow f(x) & \leq \inf _{y \in X}\{f(y)+M d(x, y)\} \\
\Rightarrow f(x) & \leq f_{M}(x)
\end{aligned}
$$

and thus $f(x)=f_{M}(x) \forall x \in X$, which concludes our proof.
(d) Fix $x \in X$. Note that

$$
\begin{aligned}
\forall z \in X f(z)+M d(x, z) & \leq f(z)+M^{\prime} d(x, z) \\
\Rightarrow \inf _{y \in X}\{f(y)+M d(x, y)\} & \leq \inf _{y \in X}\left\{f(y)+M^{\prime} d(x, y)\right\} \\
\Rightarrow f_{M}(x) & \leq f_{M^{\prime}}(x)
\end{aligned}
$$

(e) Let $x \in X$ be a point in which f is continuous. Since f is bounded, we know that there exists $C>0$ such that $|f(x)| \leq C$. Since f is continuous at x , for any given $\varepsilon>0$ there exists $\delta>0$ such that

$$
\begin{aligned}
d(x, y)<\delta & \Rightarrow|f(x)-f(y)|<\varepsilon \\
& \Rightarrow f(x)-\varepsilon<f(y) \\
& \Rightarrow f(x)-\varepsilon<f(y)+M d(x, y)
\end{aligned}
$$

If $y \notin B(x, \delta)$, note that $f(y)+M d(x, y) \geq f(y)+M \delta \geq M \delta-C$. For $M>2 C / \delta$, this implies that $f(y)+M d(x, y)>f(x)>f(x)-\varepsilon$
This implies that if $M>2 C / \delta$, then $f_{M}(x) \geq f(x)-\varepsilon$. Since $\varepsilon>0$ was taken arbitrary, this implies that $f_{M}(x) \geq f(x)$. Combining this with a), this implies that

$$
\forall M>2 C / \delta f(x) \geq f_{M}(x) \geq f(x)-\epsilon
$$

Since $\varepsilon>0$ was taken arbitrary, we get that $\lim _{M \rightarrow \infty} f_{M}(x) \rightarrow f(x)$.
(f) If f is continuous and X is compact, f is uniformly continuous. In this case we can repeat the argument above, but noticing that the bounds using continuity now hold for all x simultaneously.
3. Let $U \subseteq \mathbb{R}^{d}$ be an open set and $f:[0,1] \rightarrow U$ be continuous. For each $n \in \mathbb{N}$, define the n -polygonal approximation of f to be the function $\gamma_{n}:[0,1] \rightarrow \mathbb{R}^{d}$ given by:

$$
\gamma_{n}(t)=f\left(\frac{i-1}{n}\right)+n\left(t-\frac{i-1}{n}\right)\left(f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right)
$$

where $i \in\{1, \ldots, n\}$ is such that $t \in\left[\frac{i-1}{n}, \frac{i}{n}\right]$.
(a) Show that γ_{n} is continuous for all $n \in \mathbb{N}$.

Solution:

Fix $n \in \mathbb{N}$ and $\varepsilon>0$. Let $a \in[0,1]$ and $j \in \mathbb{N}$ be such that $a \in\left[\frac{j-1}{n}, \frac{j}{n}\right]$. Note that

$$
\begin{aligned}
\gamma_{n}(a)-f\left(\frac{j-1}{n}\right) & =f\left(\frac{j-1}{n}\right)+n\left(a-\frac{j-1}{n}\right)\left(f\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)\right)-f\left(\frac{j-1}{n}\right) \\
& =n\left(a-\frac{j-1}{n}\right)\left(f\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)\right)
\end{aligned}
$$

A similar inequality holds for the distance between the images of a and j / n. This will be useful to find out the δ in the definition of continuity. I encourage you to think about what we have just done graphically. Let now $M=\max _{x \in[0,1]}|f(x)|$ and define

$$
\delta=\min \left(\frac{\varepsilon}{2 M n}, \frac{1}{n}\right)
$$

and let $a, b \in[0,1]$ be such that $|a-b|<\delta$. Without loss of generality, assume that $a<b$. We then have two cases:
Case 1: $\exists j \in\{1, \ldots, n\}$ such that $a, b \in\left[\frac{j-1}{n}, \frac{j}{n}\right]$.
We then have that :

$$
\begin{aligned}
\left|\gamma_{n}(b)-\gamma_{n}(a)\right| & =\left|f\left(\frac{j-1}{n}\right)+n\left(b-\frac{j-1}{n}\right)\left(f\left(\frac{j}{n}\right)\right)-f\left(\frac{j-1}{n}\right)-n\left(a-\frac{j-1}{n}\right)\left(f\left(\frac{j}{n}\right)\right)\right| \\
& =\left|n(b-a) f\left(\frac{j}{n}\right)\right| \\
& <n \frac{\varepsilon}{2 M n}\left|f\left(\frac{j}{n}\right)\right| \\
& <\varepsilon
\end{aligned}
$$

Case 2: There exists $j \in\{1, \ldots, n\}$ such that $\max \left(\left|b-\frac{j}{n}\right|,\left|a-\frac{j}{n}\right|\right)<\delta$. By the inequality we proved above, we have that

$$
\begin{aligned}
\left|\gamma_{n}(b)-\gamma_{n}(a)\right| & =\left|f(b)-f\left(\frac{j}{n}\right)+f\left(\frac{j}{n}\right)-f(a)\right| \\
& \leq\left|n\left(a-\frac{j}{n}\right)\left(f\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)\right)\right|+\left\lvert\, n\left(b-\frac{j}{n}\right)\left(f\left(\frac{j+1}{n}\right)-f\left(\frac{j-1}{n}\right.\right.\right. \\
& <n \delta\left|f\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)\right|+n \delta\left|f\left(\frac{j+1}{n}\right)-f\left(\frac{j-1}{n}\right)\right| \\
& <n \frac{\varepsilon}{2 M n}\left|f\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)\right|+n \frac{\varepsilon}{2 M n}\left|f\left(\frac{j+1}{n}\right)-f\left(\frac{j-1}{n}\right)\right| \\
& \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon
\end{aligned}
$$

where we have used the fact that, for any $j \in\{1, \ldots, n\}$,

$$
\begin{aligned}
\left|f\left(\frac{j}{n}\right)-f\left(\frac{j-1}{n}\right)\right| & \leq\left|f\left(\frac{j}{n}\right)\right|+\left|f\left(\frac{j-1}{n}\right)\right| \\
& \leq 2 M
\end{aligned}
$$

(b) Show that there exists $n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0} \gamma_{n}(t) \in U$ for all $t \in[0,1]$.

Solution:

First note that, for any $t \in[0,1]$ and $n \in \mathbb{N}$, we have that

$$
\begin{aligned}
\left|f(t)-\gamma_{n}(t)\right| & =\left|f(t)-f\left(\frac{i-1}{n}\right)+n\left(t-\frac{i-1}{n}\right)\left(f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right)\right| \\
& \leq\left|f(t)-f\left(\frac{i-1}{n}\right)\right|+n\left(t-\frac{i-1}{n}\right)\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right| \\
& \leq\left|f(t)-f\left(\frac{i-1}{n}\right)\right|+n\left(\frac{i}{n}-\frac{i-1}{n}\right)\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right| \\
& =\left|f(t)-f\left(\frac{i-1}{n}\right)\right|+\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right|
\end{aligned}
$$

Since U is open, this means that $\forall t \in[0,1] \exists \varepsilon_{t}>0$ such that $B\left(f(t), \varepsilon_{t}\right) \subseteq U$. Since \mathbf{f} is continuous and $[0,1]$ is compact, we have that $f([0,1])$ is a compact set. Notice that the collection $B\left(f(t), \varepsilon_{t} / 3\right)$ is an open covering of $f([0,1])$. By definition (or a characterization) of compactness, this means that there exists t_{1}, \ldots, t_{N} such that

$$
\begin{aligned}
f([0,1]) & \subseteq B\left(f\left(t_{1}\right), \varepsilon_{t_{1}} / 3\right) \cup \cdots \cup B\left(f\left(t_{N}\right), \varepsilon_{t_{N}} / 3\right) \\
& \subseteq U
\end{aligned}
$$

Let now $\varepsilon=\min \left(\varepsilon_{t_{1}} / 3, \ldots, \varepsilon_{t_{N}} / 3\right) / 2$. Since f is a continuous function and $[0,1]$ is a compact set, f is uniformly continuous, thus there exists $\delta>0$ such that

$$
|a-b|<\delta \Rightarrow|f(a)-f(b)|<\varepsilon
$$

Let n_{0} be such that $1 / n_{0}<\delta$, and let $t \in[0,1], n>n_{0}$ be arbitrary. Let k be such that $f(t) \in B\left(f\left(t_{k}\right), \varepsilon_{t_{k}} / 3\right)$. We then have that

$$
\begin{aligned}
\left|\gamma_{n}(t)-f\left(t_{k}\right)\right| & \leq\left|\gamma_{n}(t)-f(t)\right|+\left|f(t)-f\left(t_{k}\right)\right| \\
& \leq\left|f(t)-f\left(\frac{i-1}{n}\right)\right|+\left|f\left(\frac{i}{n}\right)-f\left(\frac{i-1}{n}\right)\right|+\left|f(t)-f\left(t_{k}\right)\right| \\
& <\varepsilon+\varepsilon+\varepsilon_{t_{k}} / 3 \\
& <3 * \varepsilon_{t_{k}} / 3 \\
& =\varepsilon_{t_{k}}
\end{aligned}
$$

Thus $\gamma(t) \in B\left(f\left(t_{k}\right), \varepsilon_{t_{k}}\right) \subseteq U$, which finishes the proof.
4. Let (X, d) be a metric space. Given $x \in X$, we define the connected component of x in X as the set

$$
C(x)=\bigcup_{\substack{U \subseteq X \text { s.t } x \in U \\ U \text { is connected }}} U
$$

Prove that:
(a) For every $x \in X, C(x)$ is a non-empty connected set.

Solution:

Note that $\{x\}$ is a connected set, thus the union is taken over a non-empty collection, thus $x \in C(x)$ and $C(x)$ is non-empty.
Suppose now, by contradiction, that $C(x)$ is not connected. We then have that there exists A, B open, disjoint, non-empty sets such that $C(x) \cap A \neq \varnothing, C(x) \cap$ $B \neq \varnothing$ and $C(x) \subseteq A \cup B$.
Since $x \in C(x)$, we have that $x \in A$ or $x \in B$, but not both, since they are disjoint. Without loss of generality, let $x \in A$.
Let $y \in C(x) \cap B$, which exists because $C(x) \cap B \neq \varnothing$. Since $y \in C(x)$, we have that there exists U_{y} connected such that $x \in U_{y}, y \in U_{y}, U_{y} \subseteq X$ and U_{y} is connected.

Let now

$$
\begin{aligned}
& E_{1}=\left\{z \in U_{y} \mid z \in A\right\} \\
& E_{2}=\left\{z \in U_{y} \mid z \in B\right\}
\end{aligned}
$$

We know that $x \in E_{1}$ and $y \in E_{2}$. We also have that $U_{y} \subseteq C(x) \subseteq A \cup B$, so that $E_{1} \cup E_{2}=U_{y}$. This implies that U_{y} is not a connected set, which is a contradiction. Thus $C(x)$ is a connected set.
(b) For every two elements $x, y \in X$, they either share a connected component $C(x)=$ $C(y)$ or their connected components are disjoint $C(x) \cap C(y)=\varnothing$.

Solution:

If $C(x) \cap C(y)=\varnothing$, there is nothing to be done. If this is not the case, then there exists $z \in C(x) \cap C(y)$.
We will prove now that $C(x) \cup C(y)$ is connected. Assume, by contradiction, that this is not the case. Then there exists A, B open, non-empty disjoint sets such that $(C(x) \cup C(y)) \cap A \neq \varnothing,(C(x) \cup C(y)) \cap B \neq \varnothing$ and $C(x) \cup C(y) \subseteq A \cup B$. Since $z \in C(x) \cup C(y)$, we have that $z \in A \cup B$, without loss of generality assume that $z \in A$. Since $(C(x) \cup C(y)) \cap B \neq \varnothing$, there exists $w \in(C(x) \cup C(y)) \cap B$, without loss of generality assume that $w \in C(x) \cap B$. Note also that $z \in C(x) \cap A$. This contradicts the fact that $C(x)$ is connected, so it must be the case that $C(x) \cup C(y)$ is connected.
By definition, this means that $C(y) \subseteq C(x) \cup C(y) \subseteq C(x)$ and $C(x) \subseteq C(x) \cup$ $C(y) \subseteq C(y)$, and thus $C(x)=C(y)$.
(c) Conclude that there exists a subset $\mathcal{A} \subseteq X$ such that $X=\dot{U}_{x \in \mathcal{A}} C(x)$, where \dot{U} represents the disjoint union.

Solution:

Define the following equivalence relation on X: $x \sim y \Longleftrightarrow C(x)=C(y)$, and consider the partition X / \sim. Let \mathcal{A} be a set formed by taking one element of each set of X / \sim. By construction, $X=\dot{\cup}_{x \in \mathcal{A}} C(x)$, and the union is disjoint by b).
5. Let X be a compact set and $\Gamma: X \rightarrow 2^{X}$ be a non-empty, compact-valued upperhemicontinuous correspondence. Show that if $C \subseteq X$ is compact, then $\Gamma(C)$ is compact.

Solution:

Let $\mathcal{A}=\left\{A_{\lambda}: \lambda \in \Lambda\right\}$ be an open cover of $\Gamma(C)$. Let $x \in C$. Notice that \mathcal{A} is also an open cover of $\Gamma(x)$, since $\Gamma(x) \subseteq \Gamma(C)$, and $\Gamma(x)$ is compact since Γ is compactvalued. So there exists $A_{\lambda_{x^{1}}}, \ldots, A_{\lambda_{x^{n}}}$ such that $\Gamma(x) \subseteq A_{\lambda_{x^{1}}} \cup \cdots \cup A_{\lambda_{x^{n}}}$. Set $A^{x}=$ $A_{\lambda_{x^{1}}} \cup \cdots \cup A_{\lambda_{x^{n}}}$. Since $A_{\lambda_{x^{i}}}$ is open for each i, A^{x} is an open set. Then since Γ is uhc, there is an open set $U_{x} \ni x$ such that for all $z \in U_{x}, \Gamma(z) \subseteq A^{x}$.

By construction, $\left\{U_{x}: x \in C\right\}$ is an open cover of C. Since C is compact, there exist $x_{1}, \ldots, x_{m} \in C$ such that $C \subseteq U_{x_{1}} \cup \cdots \cup U_{x_{m}}$. Thus $\Gamma(C) \subseteq \cup_{i=1}^{m} A^{x_{i}}$, which proves that it is compact.

6 . Let (X, d) be a compact metric space.
(a) Show that there exists A an at most countable subset of X such that $\bar{A}=X$.
(b) We say that $x \in X$ is an isolated point if there exists $\delta>0$ such that $B(x, \delta)=$ $\{x\}$. Show that the set of isolated points of X is empty, finite or countable.

Solution:

(a) Note that for any $n \in \mathbb{N}$, we have that $\{B(x, 1 / n)\}_{x \in X}$ is an open covering of X . Since X is compact, this means that there exists $\left\{x_{1}^{n}, \ldots, x_{N_{n}}^{n}\right\}$ such that

$$
X \subseteq \bigcup_{k=1, \ldots, N_{n}} B\left(x_{k}^{n}, 1 / n\right)
$$

Let $A=\bigcup_{n \in \mathbb{N}}\left\{x_{1}^{n}, \ldots, x_{N_{n}}^{n}\right\}$. Since A is a countable union of finite sets, A is at most countable. We will now prove that $\bar{A}=X$.
Let $y \in X$ be arbitrary. Since $\forall n \in \mathbb{N} y \in X \subseteq \bigcup_{k=1, \ldots, N_{n}} B\left(x_{k}^{n}, 1 / n\right)$, we have that $y \in B\left(x_{k}^{n}, 1 / n\right)$ for some $i \in\left\{1, \ldots, N_{n}\right\}$, denote such x_{i}^{n} by y_{n}.
Notice that $\forall n \in \mathbb{N} y_{n} \in A$. Furthermore, $d\left(x, y_{n}\right)<1 / n$, and thus $y_{n} \rightarrow x$. We thus have showed that every element of X is the limit of a sequence in A , and thus $\bar{A}=X$.
(b) Let K be the set of isolated points of X . For each $x \in X$, there exists $\delta_{x}>0$ such that $B\left(x, \delta_{x}\right)=\{x\}$. Let A be a countable set such as in a). Since $\bar{A}=X$, this means that there $B\left(x, \delta_{x}\right) \cap A \neq \varnothing$, and thus $x \in A$. We have just proved that $K \subseteq A$, and thus K is at most countable, which finishes our proof.

[^0]: ${ }^{1}$ In case of any problems with the solution to the exercises please email brunosmaniotto@berkeley.edu

