
Econ 204 � Problem Set 3
1

Solutions

1. Show that every open covering of Rn has a countable subcovering. Hint: The countable

union of �nite sets is countable

Solution:

Let A be an open covering of Rn. De�ne, for each k ∈ N, the following n-dimensional

hypercube

Ck = [−k, k]n

Notice that since Ck ⊆ Rn, we have that A is an open covering of Ck. Thus there

exist Ak
1, . . . , A

k
mk a subcover of A such that

Ck ⊆ Ak
1 ∪ · · · ∪ Ak

mk

Let Ak = {Ak
1, . . . , A

k
mk}. Note that Ak is a �nite set.

We can then take A∞ = ∪∞
k=1Ak. Notice that A∞ is the countable union of �nite sets,

and thus it is countable. It is also, by construction, a subcover of A.

Let x ∈ Rn be arbitrary. Since ||x||∞ < ∞, there exists K ∈ N such that ||x||∞ < K.

This implies that x ∈ CK . This proves that Rn = ∪∞
k=1C

k. Particularly, A∞ is a

covering of Rn. Since we have shown that it is countable, this �nishes the proof.

2. Let (X, d) be a metric space and f : X → R be bounded. Given M > 0, de�ne

fM : X → R by :

fM(x) = inf
y∈X

{f(y) +Md(x, y)}

Show that:

(a) ∀x ∈ X fM(x) ≤ f(x)

(b) Show that fM is M-Lipschitz

(c) Show that if f is Lipschitz and the lipschitz constant of f , Mf , is less or equal

than M, then fM = f

(d) Show that, given x ∈ X and M < M ′, we have that fM(x) ≤ fM ′(x).

1In case of any problems with the solution to the exercises please email brunosmaniotto@berkeley.edu
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(e) Show that when M → ∞, then fM(x) → f(x) in every point x ∈ X such that f

is continuous.

(f) Show that if f is continuous and X is compact,

lim
M→∞

sup
x∈X

{d(fM(x), f(x))} = 0

Solution:

(a) Note that

fM(x) = inf
y∈X

{f(y) +Md(x, y)}

≤ f(x) +Md(x, x)

= f(x)

(b) Note that, for any given x, z ∈ X

f(z) +Md(x, z) ≤ f(z) +Md(y, z) +Md(x, y) (triangle inequality)

⇒ inf
z
{f(z) +Md(x, z)} ≤ inf

z
{f(z) +Md(y, z)}+Md(x, y) (taking inf over z )

⇒ fM(x) ≤ fM(y) +Md(x, y)

⇒ fM(x)− fM(y) ≤ Md(x, y)

Similarly, fM(y)− fM(x) ≤ Md(x, y), and thus

|fM(x)− fM(y)| ≤ Md(x, y)

Which proves the result.

(c) We already know that ∀x ∈ X fM(x) ≤ f(x). Note now that for any given

x, z ∈ X,
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f(x)− f(z) ≤ Mfd(x, z)

≤ Md(x, z)

⇒ ∀z ∈ X f(x) ≤ f(z) +Md(x, z)

⇒ f(x) ≤ inf
y∈X

{f(y) +Md(x, y)}

⇒ f(x) ≤ fM(x)

and thus f(x) = fM(x)∀x ∈ X, which concludes our proof.

(d) Fix x ∈ X. Note that

∀z ∈ X f(z) +Md(x, z) ≤ f(z) +M ′d(x, z)

⇒ inf
y∈X

{f(y) +Md(x, y)} ≤ inf
y∈X

{f(y) +M ′d(x, y)}

⇒ fM(x) ≤ fM ′(x)

(e) Let x ∈ X be a point in which f is continuous. Since f is bounded, we know that

there exists C > 0 such that |f(x)| ≤ C. Since f is continuous at x, for any given

ε > 0 there exists δ > 0 such that

d(x, y) < δ ⇒ |f(x)− f(y)| < ε

⇒ f(x)− ε < f(y)

⇒ f(x)− ε < f(y) +Md(x, y)

If y ̸∈ B(x, δ), note that f(y)+Md(x, y) ≥ f(y)+Mδ ≥ Mδ−C. ForM > 2C/δ,

this implies that f(y) +Md(x, y) > f(x) > f(x)− ε

This implies that if M > 2C/δ, then fM(x) ≥ f(x) − ε. Since ε > 0 was taken

arbitrary, this implies that fM(x) ≥ f(x). Combining this with a), this implies

that

∀M > 2C/δ f(x) ≥ fM(x) ≥ f(x)− ϵ

Since ε > 0 was taken arbitrary, we get that limM→∞fM(x) → f(x).

(f) If f is continuous and X is compact, f is uniformly continuous. In this case we can

repeat the argument above, but noticing that the bounds using continuity now

hold for all x simultaneously.

3. Let U ⊆ Rd be an open set and f : [0, 1] → U be continuous. For each n ∈ N, de�ne
the n-polygonal approximation of f to be the function γn : [0, 1] → Rd given by:
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γn(t) = f

(
i− 1

n

)
+ n

(
t− i− 1

n

)(
f

(
i

n

)
− f

(
i− 1

n

))

where i ∈ {1, . . . , n} is such that t ∈
[
i−1
n
, i
n

]
.

(a) Show that γn is continuous for all n ∈ N.

Solution:

Fix n ∈ N and ε > 0. Let a ∈ [0, 1] and j ∈ N be such that a ∈
[
j−1
n
, j
n

]
. Note

that

γn(a)− f

(
j − 1

n

)
= f

(
j − 1

n

)
+ n

(
a− j − 1

n

)(
f

(
j

n

)
− f

(
j − 1

n

))
− f

(
j − 1

n

)

= n

(
a− j − 1

n

)(
f

(
j

n

)
− f

(
j − 1

n

))

A similar inequality holds for the distance between the images of a and j/n. This

will be useful to �nd out the δ in the de�nition of continuity. I encourage you to

think about what we have just done graphically. Let now M = maxx∈[0,1] |f(x)|
and de�ne

δ = min

(
ε

2Mn
,
1

n

)
and let a, b ∈ [0, 1] be such that |a − b| < δ. Without loss of generality, assume

that a < b. We then have two cases:

Case 1: ∃j ∈ {1, . . . , n} such that a, b ∈
[
j−1
n
, j
n

]
.

We then have that :

|γn(b)− γn(a)| =

∣∣∣∣∣∣f
(
j − 1

n

)
+ n

(
b− j − 1

n

)(
f

(
j

n

))
− f

(
j − 1

n

)
− n

(
a− j − 1

n

)(
f

(
j

n

))∣∣∣∣∣∣
=

∣∣∣∣∣n (b− a) f

(
j

n

)∣∣∣∣∣
< n

ε

2Mn

∣∣∣∣∣f
(
j

n

)∣∣∣∣∣
< ε
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Case 2: There exists j ∈ {1, . . . , n} such that max (|b− j
n
|, |a− j

n
|) < δ. By the

inequality we proved above, we have that

∣∣γn(b)− γn(a)
∣∣ = ∣∣∣∣∣f(b)− f

(
j

n

)
+ f

(
j

n

)
− f(a)

∣∣∣∣∣
≤

∣∣∣∣∣∣n
(
a− j

n

)(
f

(
j

n

)
− f

(
j − 1

n

))∣∣∣∣∣∣+
∣∣∣∣∣∣n
(
b− j

n

)(
f

(
j + 1

n

)
− f

(
j − 1

n

))∣∣∣∣∣∣
< nδ

∣∣∣∣∣f
(
j

n

)
− f

(
j − 1

n

)∣∣∣∣∣+ nδ

∣∣∣∣∣f
(
j + 1

n

)
− f

(
j − 1

n

)∣∣∣∣∣
< n

ε

2Mn

∣∣∣∣∣f
(
j

n

)
− f

(
j − 1

n

)∣∣∣∣∣+ n
ε

2Mn

∣∣∣∣∣f
(
j + 1

n

)
− f

(
j − 1

n

)∣∣∣∣∣
≤ ε

2
+

ε

2

= ε

where we have used the fact that, for any j ∈ {1, . . . , n},

∣∣∣∣∣f
(
j

n

)
− f

(
j − 1

n

)∣∣∣∣∣ ≤
∣∣∣∣∣f
(
j

n

)∣∣∣∣∣+
∣∣∣∣∣f
(
j − 1

n

)∣∣∣∣∣
≤ 2M

(b) Show that there exists n0 ∈ N such that ∀n ≥ n0γn(t) ∈ U for all t ∈ [0, 1].

Solution:

First note that, for any t ∈ [0, 1] and n ∈ N, we have that

|f(t)− γn(t)| =

∣∣∣∣∣∣f(t)− f

(
i− 1

n

)
+ n

(
t− i− 1

n

)(
f

(
i

n

)
− f

(
i− 1

n

))∣∣∣∣∣∣
≤

∣∣∣∣∣f(t)− f

(
i− 1

n

)∣∣∣∣∣+ n

(
t− i− 1

n

) ∣∣∣∣∣f
(
i

n

)
− f

(
i− 1

n

)∣∣∣∣∣
≤

∣∣∣∣∣f(t)− f

(
i− 1

n

)∣∣∣∣∣+ n

(
i

n
− i− 1

n

) ∣∣∣∣∣f
(
i

n

)
− f

(
i− 1

n

)∣∣∣∣∣
=

∣∣∣∣∣f(t)− f

(
i− 1

n

)∣∣∣∣∣+
∣∣∣∣∣f
(
i

n

)
− f

(
i− 1

n

)∣∣∣∣∣
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Since U is open, this means that ∀t ∈ [0, 1] ∃εt > 0 such that B(f(t), εt) ⊆ U .

Since f is continuous and [0, 1] is compact, we have that f([0, 1]) is a compact

set. Notice that the collection B(f(t), εt/3) is an open covering of f([0, 1]). By

de�nition (or a characterization) of compactness, this means that there exists

t1, . . . , tN such that

f([0, 1]) ⊆ B(f(t1), εt1/3) ∪ · · · ∪B(f(tN), εtN/3)

⊆ U

Let now ε = min (εt1/3, . . . , εtN/3)/2. Since f is a continuous function and [0, 1]

is a compact set, f is uniformly continuous, thus there exists δ > 0 such that

|a− b| < δ ⇒ |f(a)− f(b)| < ε

Let n0 be such that 1/n0 < δ, and let t ∈ [0, 1], n > n0 be arbitrary. Let k be

such that f(t) ∈ B(f(tk), εtk/3). We then have that

|γn(t)− f(tk)| ≤ |γn(t)− f(t)|+ |f(t)− f(tk)|

≤

∣∣∣∣∣f(t)− f

(
i− 1

n

)∣∣∣∣∣+
∣∣∣∣∣f
(
i

n

)
− f

(
i− 1

n

)∣∣∣∣∣+ |f(t)− f(tk)|

< ε+ ε+ εtk/3

< 3 ∗ εtk/3
= εtk

Thus γ(t) ∈ B(f(tk), εtk) ⊆ U , which �nishes the proof.

4. Let (X, d) be a metric space. Given x ∈ X, we de�ne the connected component of x

in X as the set

C(x) =
⋃

U⊆X s.t x∈U
U is connected

U

Prove that:

(a) For every x ∈ X, C(x) is a non-empty connected set.

Solution:
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Note that {x} is a connected set, thus the union is taken over a non-empty

collection, thus x ∈ C(x) and C(x) is non-empty.

Suppose now, by contradiction, that C(x) is not connected. We then have that

there exists A,B open, disjoint, non-empty sets such that C(x)∩A ̸= ∅, C(x)∩
B ̸= ∅ and C(x) ⊆ A ∪B.

Since x ∈ C(x), we have that x ∈ A or x ∈ B, but not both, since they are

disjoint. Without loss of generality, let x ∈ A.

Let y ∈ C(x) ∩ B, which exists because C(x) ∩ B ̸= ∅. Since y ∈ C(x), we

have that there exists Uy connected such that x ∈ Uy, y ∈ Uy, Uy ⊆ X and Uy is

connected.

Let now

E1 = {z ∈ Uy | z ∈ A}
E2 = {z ∈ Uy | z ∈ B}

We know that x ∈ E1 and y ∈ E2. We also have that Uy ⊆ C(x) ⊆ A ∪ B,

so that E1 ∪ E2 = Uy. This implies that Uy is not a connected set, which is a

contradiction. Thus C(x) is a connected set.

(b) For every two elements x, y ∈ X, they either share a connected component C(x) =

C(y) or their connected components are disjoint C(x) ∩ C(y) = ∅.

Solution:

If C(x) ∩ C(y) = ∅, there is nothing to be done. If this is not the case, then

there exists z ∈ C(x) ∩ C(y).

We will prove now that C(x)∪C(y) is connected. Assume, by contradiction, that

this is not the case. Then there exists A,B open, non-empty disjoint sets such

that (C(x) ∪ C(y)) ∩A ̸= ∅, (C(x) ∪ C(y)) ∩B ̸= ∅ and C(x) ∪ C(y) ⊆ A ∪B.

Since z ∈ C(x)∪C(y), we have that z ∈ A∪B, without loss of generality assume

that z ∈ A. Since (C(x) ∪ C(y)) ∩ B ̸= ∅, there exists w ∈ (C(x) ∪ C(y)) ∩ B,

without loss of generality assume that w ∈ C(x)∩B. Note also that z ∈ C(x)∩A.
This contradicts the fact that C(x) is connected, so it must be the case that

C(x) ∪ C(y) is connected.

By de�nition, this means that C(y) ⊆ C(x) ∪ C(y) ⊆ C(x) and C(x) ⊆ C(x) ∪
C(y) ⊆ C(y), and thus C(x) = C(y).

(c) Conclude that there exists a subset A ⊆ X such that X = ∪̇x∈AC(x), where ∪̇
represents the disjoint union.

Solution:
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De�ne the following equivalence relation on X: x ∼ y ⇐⇒ C(x) = C(y), and

consider the partition X/ ∼. Let A be a set formed by taking one element of

each set of X/ ∼. By construction, X = ∪̇x∈AC(x), and the union is disjoint by

b).

5. Let X be a compact set and Γ : X → 2X be a non-empty, compact-valued upper-

hemicontinuous correspondence. Show that if C ⊆ X is compact, then Γ(C) is com-

pact.

Solution:

Let A = {Aλ : λ ∈ Λ} be an open cover of Γ(C). Let x ∈ C. Notice that A is also

an open cover of Γ(x), since Γ(x) ⊆ Γ(C), and Γ(x) is compact since Γ is compact-

valued. So there exists Aλx1
, . . . , Aλxn

such that Γ(x) ⊆ Aλx1
∪ · · · ∪ Aλxn

. Set Ax =

Aλx1
∪ · · ·∪Aλxn

. Since Aλxi
is open for each i, Ax is an open set. Then since Γ is uhc,

there is an open set Ux ∋ x such that for all z ∈ Ux,Γ(z) ⊆ Ax.

By construction, {Ux : x ∈ C} is an open cover of C. Since C is compact, there exist

x1, . . . , xm ∈ C such that C ⊆ Ux1 ∪ · · · ∪ Uxm . Thus Γ(C) ⊆ ∪m
i=1A

xi , which proves

that it is compact.

6. Let (X, d) be a compact metric space.

(a) Show that there exists A an at most countable subset of X such that A = X.

(b) We say that x ∈ X is an isolated point if there exists δ > 0 such that B(x, δ) =

{x}. Show that the set of isolated points of X is empty, �nite or countable.

Solution:

(a) Note that for any n ∈ N, we have that {B(x, 1/n)}x∈X is an open covering of X.

Since X is compact, this means that there exists {xn
1 , . . . , x

n
Nn

} such that

X ⊆
⋃

k=1,...,Nn

B(xn
k , 1/n)

Let A =
⋃

n∈N{xn
1 , . . . , x

n
Nn

}. Since A is a countable union of �nite sets, A is at

most countable. We will now prove that A = X.

Let y ∈ X be arbitrary. Since ∀n ∈ N y ∈ X ⊆
⋃

k=1,...,Nn
B(xn

k , 1/n), we have

that y ∈ B(xn
k , 1/n) for some i ∈ {1, . . . , Nn}, denote such xn

i by yn.

Notice that ∀n ∈ N yn ∈ A. Furthermore, d(x, yn) < 1/n, and thus yn → x. We

thus have showed that every element of X is the limit of a sequence in A, and

thus A = X.
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(b) Let K be the set of isolated points of X. For each x ∈ X, there exists δx > 0 such

that B(x, δx) = {x}. Let A be a countable set such as in a). Since A = X, this

means that there B(x, δx) ∩ A ̸= ∅, and thus x ∈ A. We have just proved that

K ⊆ A, and thus K is at most countable, which �nishes our proof.
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