Econ 204 – Problem Set 3^1 Solutions

1. Show that every open covering of \mathbb{R}^n has a countable subcovering. *Hint: The countable union of finite sets is countable*

Solution:

Let \mathcal{A} be an open covering of \mathbb{R}^n . Define, for each $k \in \mathbb{N}$, the following n-dimensional hypercube

$$C^k = [-k,k]^n$$

Notice that since $C^k \subseteq R^n$, we have that \mathcal{A} is an open covering of C^k . Thus there exist $A_1^k, \ldots, A_{m^k}^k$ a subcover of \mathcal{A} such that

$$C^k \subseteq A_1^k \cup \dots \cup A_{m^k}^k$$

Let $\mathcal{A}^k = \{A_1^k, \dots, A_{m^k}^k\}$. Note that \mathcal{A}^k is a finite set.

We can then take $\mathcal{A}^{\infty} = \bigcup_{k=1}^{\infty} \mathcal{A}^k$. Notice that \mathcal{A}^{∞} is the countable union of finite sets, and thus it is countable. It is also, by construction, a subcover of \mathcal{A} .

Let $x \in \mathbb{R}^n$ be arbitrary. Since $||x||_{\infty} < \infty$, there exists $K \in \mathbb{N}$ such that $||x||_{\infty} < K$. This implies that $x \in C^K$. This proves that $\mathbb{R}^n = \bigcup_{k=1}^{\infty} C^k$. Particularly, \mathcal{A}^{∞} is a covering of \mathbb{R}^n . Since we have shown that it is countable, this finishes the proof.

2. Let (X, d) be a metric space and $f : X \to \mathbb{R}$ be bounded. Given M > 0, define $f_M : X \to \mathbb{R}$ by :

$$f_M(x) = \inf_{y \in X} \{f(y) + Md(x, y)\}$$

Show that:

- (a) $\forall x \in X \ f_M(x) \le f(x)$
- (b) Show that f_M is M-Lipschitz
- (c) Show that if f is Lipschitz and the lipschitz constant of f , M_f , is less or equal than M, then $f_M = f$
- (d) Show that, given $x \in X$ and M < M', we have that $f_M(x) \leq f_{M'}(x)$.

¹In case of any problems with the solution to the exercises please email <u>brunosmaniotto@berkeley.edu</u>

- (e) Show that when $M \to \infty$, then $f_M(x) \to f(x)$ in every point $x \in X$ such that f is continuous.
- (f) Show that if f is continuous and X is compact,

$$\lim_{M \to \infty} \sup_{x \in X} \{ d(f_M(x), f(x)) \} = 0$$

Solution:

(a) Note that

$$f_M(x) = \inf_{y \in X} \{ f(y) + Md(x, y) \}$$
$$\leq f(x) + Md(x, x)$$
$$= f(x)$$

(b) Note that, for any given $x, z \in X$

$$\begin{aligned} f(z) + Md(x,z) &\leq f(z) + Md(y,z) + Md(x,y) \quad \text{(triangle inequality)} \\ \Rightarrow \inf_{z} \{ f(z) + Md(x,z) \} &\leq \inf_{z} \{ f(z) + Md(y,z) \} + Md(x,y) \quad \text{(taking inf over z)} \\ \Rightarrow f_{M}(x) &\leq f_{M}(y) + Md(x,y) \\ \Rightarrow f_{M}(x) - f_{M}(y) &\leq Md(x,y) \end{aligned}$$

Similarly, $f_M(y) - f_M(x) \le Md(x, y)$, and thus

$$|f_M(x) - f_M(y)| \le Md(x, y)$$

Which proves the result.

(c) We already know that $\forall x \in X f_M(x) \leq f(x)$. Note now that for any given $x, z \in X$,

$$f(x) - f(z) \le M_f d(x, z)$$

$$\le M d(x, z)$$

$$\Rightarrow \forall z \in X \ f(x) \le f(z) + M d(x, z)$$

$$\Rightarrow \ f(x) \le \inf_{y \in X} \{f(y) + M d(x, y)\}$$

$$\Rightarrow \ f(x) \le f_M(x)$$

and thus $f(x) = f_M(x) \forall x \in X$, which concludes our proof. (d) Fix $x \in X$. Note that

$$\forall z \in X \ f(z) + Md(x, z) \le f(z) + M'd(x, z)$$

$$\Rightarrow \inf_{y \in X} \{ f(y) + Md(x, y) \} \le \inf_{y \in X} \{ f(y) + M'd(x, y) \}$$

$$\Rightarrow f_M(x) \le f_{M'}(x)$$

(e) Let x ∈ X be a point in which f is continuous. Since f is bounded, we know that there exists C > 0 such that |f(x)| ≤ C. Since f is continuous at x, for any given ε > 0 there exists δ > 0 such that

$$d(x,y) < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

$$\Rightarrow f(x) - \varepsilon < f(y)$$

$$\Rightarrow f(x) - \varepsilon < f(y) + Md(x,y)$$

If $y \notin B(x,\delta)$, note that $f(y) + Md(x,y) \ge f(y) + M\delta \ge M\delta - C$. For $M > 2C/\delta$, this implies that $f(y) + Md(x,y) > f(x) > f(x) - \varepsilon$

This implies that if $M > 2C/\delta$, then $f_M(x) \ge f(x) - \varepsilon$. Since $\varepsilon > 0$ was taken arbitrary, this implies that $f_M(x) \ge f(x)$. Combining this with a), this implies that

$$\forall M > 2C/\delta f(x) \ge f_M(x) \ge f(x) - \epsilon$$

Since $\varepsilon > 0$ was taken arbitrary, we get that $\lim_{M \to \infty} f_M(x) \to f(x)$.

- (f) If f is continuous and X is compact, f is uniformly continuous. In this case we can repeat the argument above, but noticing that the bounds using continuity now hold for all x simultaneously.
- 3. Let $U \subseteq \mathbb{R}^d$ be an open set and $f : [0,1] \to U$ be continuous. For each $n \in \mathbb{N}$, define the n-polygonal approximation of f to be the function $\gamma_n : [0,1] \to \mathbb{R}^d$ given by:

$$\gamma_n(t) = f\left(\frac{i-1}{n}\right) + n\left(t - \frac{i-1}{n}\right)\left(f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right)\right)$$

where $i \in \{1, ..., n\}$ is such that $t \in \left[\frac{i-1}{n}, \frac{i}{n}\right]$.

(a) Show that γ_n is continuous for all $n \in \mathbb{N}$.

Solution:

Fix $n \in \mathbb{N}$ and $\varepsilon > 0$. Let $a \in [0, 1]$ and $j \in \mathbb{N}$ be such that $a \in \left[\frac{j-1}{n}, \frac{j}{n}\right]$. Note that

$$\gamma_n(a) - f\left(\frac{j-1}{n}\right) = f\left(\frac{j-1}{n}\right) + n\left(a - \frac{j-1}{n}\right) \left(f\left(\frac{j}{n}\right) - f\left(\frac{j-1}{n}\right)\right) - f\left(\frac{j-1}{n}\right)$$
$$= n\left(a - \frac{j-1}{n}\right) \left(f\left(\frac{j}{n}\right) - f\left(\frac{j-1}{n}\right)\right)$$

A similar inequality holds for the distance between the images of a and j/n. This will be useful to find out the δ in the definition of continuity. I encourage you to think about what we have just done graphically. Let now $M = \max_{x \in [0,1]} |f(x)|$ and define

$$\delta = \min\left(\frac{\varepsilon}{2Mn}, \frac{1}{n}\right)$$

and let $a, b \in [0, 1]$ be such that $|a - b| < \delta$. Without loss of generality, assume that a < b. We then have two cases:

Case 1: $\exists j \in \{1, \ldots, n\}$ such that $a, b \in \left[\frac{j-1}{n}, \frac{j}{n}\right]$. We then have that :

$$\begin{aligned} |\gamma_n(b) - \gamma_n(a)| &= \left| f\left(\frac{j-1}{n}\right) + n\left(b - \frac{j-1}{n}\right) \left(f\left(\frac{j}{n}\right)\right) - f\left(\frac{j-1}{n}\right) - n\left(a - \frac{j-1}{n}\right) \left(f\left(\frac{j}{n}\right)\right) \right. \\ &= \left| n\left(b-a\right) f\left(\frac{j}{n}\right) \right| \\ &< n \frac{\varepsilon}{2Mn} \left| f\left(\frac{j}{n}\right) \right| \\ &< \varepsilon \end{aligned}$$

Case 2: There exists $j \in \{1, ..., n\}$ such that $\max(|b - \frac{j}{n}|, |a - \frac{j}{n}|) < \delta$. By the inequality we proved above, we have that

$$\begin{aligned} \left|\gamma_{n}(b) - \gamma_{n}(a)\right| &= \left|f(b) - f\left(\frac{j}{n}\right) + f\left(\frac{j}{n}\right) - f(a)\right| \\ &\leq \left|n\left(a - \frac{j}{n}\right)\left(f\left(\frac{j}{n}\right) - f\left(\frac{j-1}{n}\right)\right)\right| + \left|n\left(b - \frac{j}{n}\right)\left(f\left(\frac{j+1}{n}\right) - f\left(\frac{j-1}{n}\right)\right)\right| \\ &< n\delta \left|f\left(\frac{j}{n}\right) - f\left(\frac{j-1}{n}\right)\right| + n\delta \left|f\left(\frac{j+1}{n}\right) - f\left(\frac{j-1}{n}\right)\right| \\ &< n\frac{\varepsilon}{2Mn} \left|f\left(\frac{j}{n}\right) - f\left(\frac{j-1}{n}\right)\right| + n\frac{\varepsilon}{2Mn} \left|f\left(\frac{j+1}{n}\right) - f\left(\frac{j-1}{n}\right)\right| \\ &\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\ &= \varepsilon \end{aligned}$$

where we have used the fact that, for any $j \in \{1, \ldots, n\}$,

$$\left| f\left(\frac{j}{n}\right) - f\left(\frac{j-1}{n}\right) \right| \le \left| f\left(\frac{j}{n}\right) \right| + \left| f\left(\frac{j-1}{n}\right) \right|$$
$$\le 2M$$

(b) Show that there exists $n_0 \in \mathbb{N}$ such that $\forall n \ge n_0 \gamma_n(t) \in U$ for all $t \in [0, 1]$.

Solution:

First note that, for any $t \in [0, 1]$ and $n \in \mathbb{N}$, we have that

$$|f(t) - \gamma_n(t)| = \left| f(t) - f\left(\frac{i-1}{n}\right) + n\left(t - \frac{i-1}{n}\right) \left(f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right)\right) \right|$$
$$\leq \left| f(t) - f\left(\frac{i-1}{n}\right) \right| + n\left(t - \frac{i-1}{n}\right) \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|$$
$$\leq \left| f(t) - f\left(\frac{i-1}{n}\right) \right| + n\left(\frac{i}{n} - \frac{i-1}{n}\right) \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|$$
$$= \left| f(t) - f\left(\frac{i-1}{n}\right) \right| + \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right|$$

Since U is open, this means that $\forall t \in [0,1] \exists \varepsilon_t > 0$ such that $B(f(t), \varepsilon_t) \subseteq U$. Since f is continuous and [0,1] is compact, we have that f([0,1]) is a compact set. Notice that the collection $B(f(t), \varepsilon_t/3)$ is an open covering of f([0,1]). By definition (or a characterization) of compactness, this means that there exists t_1, \ldots, t_N such that

$$f([0,1]) \subseteq B(f(t_1), \varepsilon_{t_1}/3) \cup \dots \cup B(f(t_N), \varepsilon_{t_N}/3)$$
$$\subseteq U$$

Let now $\varepsilon = \min(\varepsilon_{t_1}/3, \ldots, \varepsilon_{t_N}/3)/2$. Since f is a continuous function and [0, 1] is a compact set, f is uniformly continuous, thus there exists $\delta > 0$ such that

$$|a-b| < \delta \Rightarrow |f(a) - f(b)| < \varepsilon$$

Let n_0 be such that $1/n_0 < \delta$, and let $t \in [0,1], n > n_0$ be arbitrary. Let k be such that $f(t) \in B(f(t_k), \varepsilon_{t_k}/3)$. We then have that

$$\begin{aligned} |\gamma_n(t) - f(t_k)| &\leq |\gamma_n(t) - f(t)| + |f(t) - f(t_k)| \\ &\leq \left| f(t) - f\left(\frac{i-1}{n}\right) \right| + \left| f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right) \right| + |f(t) - f(t_k)| \\ &< \varepsilon + \varepsilon + \varepsilon_{t_k}/3 \\ &< 3 * \varepsilon_{t_k}/3 \\ &= \varepsilon_{t_k} \end{aligned}$$

Thus $\gamma(t) \in B(f(t_k), \varepsilon_{t_k}) \subseteq U$, which finishes the proof.

4. Let (X, d) be a metric space. Given $x \in X$, we define the connected component of x in X as the set

$$C(x) = \bigcup_{\substack{U \subseteq X \text{ s.t } x \in U \\ U \text{ is connected}}} U$$

Prove that:

(a) For every $x \in X$, C(x) is a non-empty connected set.

Solution:

Note that $\{x\}$ is a connected set, thus the union is taken over a non-empty collection, thus $x \in C(x)$ and C(x) is non-empty.

Suppose now, by contradiction, that C(x) is not connected. We then have that there exists A, B open, disjoint, non-empty sets such that $C(x) \cap A \neq \emptyset$, $C(x) \cap B \neq \emptyset$ and $C(x) \subseteq A \cup B$.

Since $x \in C(x)$, we have that $x \in A$ or $x \in B$, but not both, since they are disjoint. Without loss of generality, let $x \in A$.

Let $y \in C(x) \cap B$, which exists because $C(x) \cap B \neq \emptyset$. Since $y \in C(x)$, we have that there exists U_y connected such that $x \in U_y, y \in U_y, U_y \subseteq X$ and U_y is connected.

Let now

$$E_1 = \{ z \in U_y \mid z \in A \}$$
$$E_2 = \{ z \in U_y \mid z \in B \}$$

We know that $x \in E_1$ and $y \in E_2$. We also have that $U_y \subseteq C(x) \subseteq A \cup B$, so that $E_1 \cup E_2 = U_y$. This implies that U_y is not a connected set, which is a contradiction. Thus C(x) is a connected set.

(b) For every two elements $x, y \in X$, they either share a connected component C(x) = C(y) or their connected components are disjoint $C(x) \cap C(y) = \emptyset$.

Solution:

If $C(x) \cap C(y) = \emptyset$, there is nothing to be done. If this is not the case, then there exists $z \in C(x) \cap C(y)$.

We will prove now that $C(x) \cup C(y)$ is connected. Assume, by contradiction, that this is not the case. Then there exists A, B open, non-empty disjoint sets such that $(C(x) \cup C(y)) \cap A \neq \emptyset$, $(C(x) \cup C(y)) \cap B \neq \emptyset$ and $C(x) \cup C(y) \subseteq A \cup B$. Since $z \in C(x) \cup C(y)$, we have that $z \in A \cup B$, without loss of generality assume that $z \in A$. Since $(C(x) \cup C(y)) \cap B \neq \emptyset$, there exists $w \in (C(x) \cup C(y)) \cap B$, without loss of generality assume that $w \in C(x) \cap B$. Note also that $z \in C(x) \cap A$. This contradicts the fact that C(x) is connected, so it must be the case that $C(x) \cup C(y)$ is connected.

By definition, this means that $C(y) \subseteq C(x) \cup C(y) \subseteq C(x)$ and $C(x) \subseteq C(x) \cup C(y) \subseteq C(y)$, and thus C(x) = C(y).

(c) Conclude that there exists a subset $\mathcal{A} \subseteq X$ such that $X = \dot{\cup}_{x \in \mathcal{A}} C(x)$, where $\dot{\cup}$ represents the disjoint union.

Solution:

Define the following equivalence relation on X: $x \sim y \iff C(x) = C(y)$, and consider the partition X/\sim . Let \mathcal{A} be a set formed by taking one element of each set of X/\sim . By construction, $X = \bigcup_{x \in \mathcal{A}} C(x)$, and the union is disjoint by b).

5. Let X be a compact set and $\Gamma : X \to 2^X$ be a non-empty, compact-valued upperhemicontinuous correspondence. Show that if $C \subseteq X$ is compact, then $\Gamma(C)$ is compact.

Solution:

Let $\mathcal{A} = \{A_{\lambda} : \lambda \in \Lambda\}$ be an open cover of $\Gamma(C)$. Let $x \in C$. Notice that \mathcal{A} is also an open cover of $\Gamma(x)$, since $\Gamma(x) \subseteq \Gamma(C)$, and $\Gamma(x)$ is compact since Γ is compactvalued. So there exists $A_{\lambda_{x^1}}, \ldots, A_{\lambda_{x^n}}$ such that $\Gamma(x) \subseteq A_{\lambda_{x^1}} \cup \cdots \cup A_{\lambda_{x^n}}$. Set $A^x = A_{\lambda_{x^1}} \cup \cdots \cup A_{\lambda_{x^n}}$. Since $A_{\lambda_{x^i}}$ is open for each i, A^x is an open set. Then since Γ is uhc, there is an open set $U_x \ni x$ such that for all $z \in U_x, \Gamma(z) \subseteq A^x$.

By construction, $\{U_x : x \in C\}$ is an open cover of C. Since C is compact, there exist $x_1, \ldots, x_m \in C$ such that $C \subseteq U_{x_1} \cup \cdots \cup U_{x_m}$. Thus $\Gamma(C) \subseteq \bigcup_{i=1}^m A^{x_i}$, which proves that it is compact.

- 6. Let (X, d) be a compact metric space.
 - (a) Show that there exists A an at most countable subset of X such that $\overline{A} = X$.
 - (b) We say that $x \in X$ is an isolated point if there exists $\delta > 0$ such that $B(x, \delta) = \{x\}$. Show that the set of isolated points of X is empty, finite or countable.

Solution:

(a) Note that for any $n \in \mathbb{N}$, we have that $\{B(x, 1/n)\}_{x \in X}$ is an open covering of X. Since X is compact, this means that there exists $\{x_1^n, \ldots, x_{N_n}^n\}$ such that

$$X \subseteq \bigcup_{k=1,\dots,N_n} B(x_k^n, 1/n)$$

Let $A = \bigcup_{n \in \mathbb{N}} \{x_1^n, \dots, x_{N_n}^n\}$. Since A is a countable union of finite sets, A is at most countable. We will now prove that $\overline{A} = X$.

Let $y \in X$ be arbitrary. Since $\forall n \in \mathbb{N} \ y \in X \subseteq \bigcup_{k=1,\dots,N_n} B(x_k^n, 1/n)$, we have that $y \in B(x_k^n, 1/n)$ for some $i \in \{1, \dots, N_n\}$, denote such x_i^n by y_n .

Notice that $\forall n \in \mathbb{N} \ y_n \in A$. Furthermore, $d(x, y_n) < 1/n$, and thus $y_n \to x$. We thus have showed that every element of X is the limit of a sequence in A, and thus $\overline{A} = X$.

(b) Let K be the set of isolated points of X. For each $x \in X$, there exists $\delta_x > 0$ such that $B(x, \delta_x) = \{x\}$. Let A be a countable set such as in a). Since $\overline{A} = X$, this means that there $B(x, \delta_x) \cap A \neq \emptyset$, and thus $x \in A$. We have just proved that $K \subseteq A$, and thus K is at most countable, which finishes our proof.