Econ 204 — Problem Set 3!

Solutions

1. Show that every open covering of R™ has a countable subcovering. Hint: The countable
union of finite sets is countable

Solution:

Let A be an open covering of R™. Define, for each k € IN, the following n-dimensional
hypercube

C* = [k, k"

Notice that since C*¥ C R", we have that A is an open covering of C*. Thus there
exist A¥ ... ,Afnk a subcover of A such that

ckCcAbu-- uAk,

Let A¥ = {A}, ..., AF 1. Note that A" is a finite set.

We can then take A> = U A*. Notice that A is the countable union of finite sets,
and thus it is countable. It is also, by construction, a subcover of A.

Let x € R™ be arbitrary. Since ||z||» < 0o, there exists K € IN such that ||z||. < K.
This implies that z € CX. This proves that R™ = U2 ,C*. Particularly, A® is a
covering of R™. Since we have shown that it is countable, this finishes the proof.

2. Let (X,d) be a metric space and f : X — R be bounded. Given M > 0, define
fu: X —Rby:

fu(x) = inf {f(y) + Md(z,y)}

yeX
Show that:

(a) Vo € X fu(r) < f(z)
(b) Show that fj, is M-Lipschitz

(c) Show that if f is Lipschitz and the lipschitz constant of £, My, is less or equal
than M, then fy; = f

(d) Show that, given © € X and M < M’, we have that fy(z) < far(2).
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(e) Show that when M — oo, then fy(x) — f(x) in every point z € X such that f
1s continuous.

(f) Show that if f is continuous and X is compact,

lim sup{d(fa(z), f())} =0

Solution:

(a) Note that

Ju(x) = inf {f(y) + Md(z,y)}

< f(x) + Md(z, z)
= f(x)

(b) Note that, for any given z,z € X

f(2)+ Md(z,2) < f(z) + Md(y, z) + Md(z,y) (triangle inequality)
= iIZlf{f( 2)+ Md(z,2)} <i in t{f(z) + Md(y,=2)} + Md(z,y) (taking inf over z )
:>fM( ) < fuly) + Md(z,y)
= fu(x) = fu(y) < Md(z,y)

Similarly, fa(y) — fu(z) < Md(x,y), and thus

[fu () = fur(y)| < Md(z,y)

Which proves the result.

(c) We already know that Vo € X fy(z) < f(z). Note now that for any given
x,z € X,



f(@) = f2) < Myd(z, 2)
< Md(x, z)
=Vze X f(z) < f(2) + Md(z, 2)
= () < g Uf) + Md(r,9))

= [f(z) < fulz)

and thus f(z) = fy(x)Ve € X, which concludes our proof.
(d) Fix x € X. Note that

Vze X f(z)+ Md(z,2) < f(z) + M'd(x, 2)
= inf{f(y) + Md(z,y)} < inf {f(y) + M'd(z,y)}

= fu(z) < far (o)

(e) Let z € X be a point in which f is continuous. Since f is bounded, we know that
there exists C' > 0 such that | f(z)| < C. Since f is continuous at x, for any given
e > 0 there exists ¢ > 0 such that

d(z,y) <d=|f(x) = fly)| <e
= f(x) —e < f(y)
= f(z) —e < f(y) + Md(x,y)

Ify & B(x,§), note that f(y)+Md(x,y) > f(y)+M§ > Mé—C. For M > 2C/0,
this implies that f(y) + Md(x,y) > f(z) > f(x) —¢

This implies that if M > 2C/, then fy(z) > f(x) —e. Since € > 0 was taken
arbitrary, this implies that fy/(x) > f(z). Combining this with a), this implies
that

VM > 20/5 f(2) = fulz) = fr) — e

Since € > 0 was taken arbitrary, we get that limyo far(x) = f().

(f) If f is continuous and X is compact, f is uniformly continuous. In this case we can
repeat the argument above, but noticing that the bounds using continuity now
hold for all x simultaneously.

3. Let U C R? be an open set and f : [0,1] — U be continuous. For each n € IN, define
the n-polygonal approximation of f to be the function v, : [0,1] — R given by:



) (2 1) ! (t i 1) ( (Z) (2 1))
n n n n
where ¢ € {1,...,n} is such that t € [_121’ %]

(a) Show that =, is continuous for all n € IN.

Solution:

Fix n € N and € > 0. Let a € [0,1] and j € IN be such that a € [%uﬂ Note
that

w1 (5) = (5 +a (e 157) (f@‘f(%))‘f(j;l)
(=) (0 ()

A similar inequality holds for the distance between the images of a and j/n. This

will be useful to find out the ¢ in the definition of continuity. I encourage you to
think about what we have just done graphically. Let now M = maxgcp1] |f ()|
and define

5 . € 1
= min [ ——, —
2Mn’'n

and let a,b € [0, 1] be such that |a — b| < J. Without loss of generality, assume
that a < b. We then have two cases:

Case 1: 3j € {1,...,n} such that a,b € []%1, ﬂ
We then have that :

ult) = ()l = | (12 ) o (0= 1) (f (%)) () e <f (%))




Case 2: There exists j € {1,...,n} such that max (|b — £|,[a — Z|) < §. By the
inequality we proved above, we have that

[72(0) = Yu(a)|

(b) Show that there exists ny € IN such that ¥n > ngy,(t) € U for all t € [0, 1].

Solution:

IN

First note that, for any ¢ € [0, 1] and n € IN, we have that

£ () = 7a()] =

IN

IN

@) —f
@) —f
f@) = f
f@) = f

]'_




Since U is open, this means that V¢ € [0, 1] 3e; > 0 such that B(f(t),e:) C U.
Since f is continuous and [0, 1] is compact, we have that f([0,1]) is a compact
set. Notice that the collection B(f(t),e;/3) is an open covering of f([0,1]). By
definition (or a characterization) of compactness, this means that there exists
t1,...,ty such that

F(0,1) € B(f(t1),€6,/3) U+ - U B(f(tn), €0y /3)
cU

Let now € = min (g4, /3, ..., /3)/2. Since f is a continuous function and [0, 1]
is a compact set, f is uniformly continuous, thus there exists 6 > 0 such that

la=bl <0 =|f(a) = f(b)] <&

Let ng be such that 1/ny < d, and let ¢ € [0,1],n > ng be arbitrary. Let k be
such that f(t) € B(f(tx),et,/3). We then have that

() = S ()| < [yn(t) = FOI+ [f(8) = f ()]

-1 ()

<e+e+e,/3
<3%ey /3

<

+ /() = ()]

—= gtk
Thus v(t) € B(f(tk),et,) C U, which finishes the proof.

4. Let (X, d) be a metric space. Given x € X, we define the connected component of x
in X as the set

cx)= |J U

UCX s.t zeU
U is connected

Prove that:

(a) For every z € X, C(z) is a non-empty connected set.

Solution:



Note that {x} is a connected set, thus the union is taken over a non-empty
collection, thus = € C'(x) and C(z) is non-empty.

Suppose now, by contradiction, that C'(z) is not connected. We then have that
there exists A, B open, disjoint, non-empty sets such that C'(x) N A # &, C(z)N
B # @ and C(z) C AU B.

Since x € C(z), we have that z € A or x € B, but not both, since they are
disjoint. Without loss of generality, let = € A.

Let y € C(x) N B, which exists because C(z) N B # @. Since y € C(x), we
have that there exists U, connected such that x € U,,y € U,,U, € X and U, is
connected.

Let now

Ey={z€U,|z€ A}
E,={2€U,|z€ B}

We know that x € E; and y € E;. We also have that U, C C(z) C AU B,
so that £y U Fy = U,. This implies that U, is not a connected set, which is a
contradiction. Thus C'(z) is a connected set.

For every two elements z,y € X, they either share a connected component C(z) =
C(y) or their connected components are disjoint C'(z) N C(y) = 2.

Solution:

If C(z) N C(y) = @, there is nothing to be done. If this is not the case, then
there exists z € C'(z) N C(y).

We will prove now that C'(z) UC(y) is connected. Assume, by contradiction, that
this is not the case. Then there exists A, B open, non-empty disjoint sets such
that (C(z)UC(y))NA# @, (Cx)UC(y)) N B # @ and C(x) UC(y) € AU B.
Since z € C(x) UC(y), we have that z € AU B, without loss of generality assume
that z € A. Since (C(z) U C(y)) N B # @, there exists w € (C(z) U C(y)) N B,
without loss of generality assume that w € C'(z)NB. Note also that z € C(z)NA.
This contradicts the fact that C'(z) is connected, so it must be the case that
C(z) U C(y) is connected.

By definition, this means that C'(y) C C(z) U C(y) C C(z) and C(z) C C(z) U
C(y) € C(y), and thus C(z) = C(y).

Conclude that there exists a subset A C X such that X = U,c4C(z), where U
represents the disjoint union.

Solution:



Define the following equivalence relation on X: x ~ y <= C(z) = C(y), and
consider the partition X/ ~. Let A be a set formed by taking one element of
each set of X/ ~. By construction, X = U,ec4C(z), and the union is disjoint by
b).

5. Let X be a compact set and I' : X — 2% be a non-empty, compact-valued upper-
hemicontinuous correspondence. Show that if C' C X is compact, then I'(C') is com-
pact.

Solution:

Let A = {A,: X € A} be an open cover of I'(C). Let z € C. Notice that A is also
an open cover of I'(x), since I'(x) C I'(C), and T'(z) is compact since I' is compact-
valued. So there exists A, ,,..., Ay, such that I'(x) C Ay, U UA,,. Set A® =
Ay, U---UA,,.. Since A, | is open for each i, A” is an open set. Then since I is uhc,
there is an open set U, > x such that for all z € U, T'(z) C A

By construction, {U, : z € C'} is an open cover of C. Since C' is compact, there exist
T1,..., Ty € C such that C C U,, U---UU,, . Thus I'(C) C U™, A%, which proves
that it is compact.

6. Let (X, d) be a compact metric space.

(a) Show that there exists A an at most countable subset of X such that A = X.

(b) We say that = € X is an isolated point if there exists § > 0 such that B(z,0) =
{z}. Show that the set of isolated points of X is empty, finite or countable.

Solution:

(a) Note that for any n € IN, we have that {B(x,1/n)}.cx is an open covering of X.
Since X is compact, this means that there exists {«7,..., 2%, } such that

xc |J Blp.1/n)

k=1,...,Nn

Let A= U, en{2T, ..., 2% }. Since A is a countable union of finite sets, A is at
most countable. We will now prove that A = X.

that y € B(z},1/n) for some i € {1,..., N, }, denote such " by Yn-

Notice that ¥n € N y,, € A. Furthermore, d(x,y,) < 1/n, and thus y,, — z. We
thus have showed that every element of X is the limit of a sequence in A, and
thus A = X.



(b) Let K be the set of isolated points of X. For each x € X, there exists 0, > 0 such
that B(x,d,) = {z}. Let A be a countable set such as in a). Since A = X, this
means that there B(z,d,) N A # &, and thus € A. We have just proved that
K C A, and thus K is at most countable, which finishes our proof.



