Econ 204 – Problem Set 4 Suggested Solutions

GSI - Anna Vakarova

August 8, 2023

Matrix Representation of Linear Transformations

Problem 1

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be given by T(x, y) = (4x - 2y, x + y). Let V be the standard basis and $W = \{(5, 3), (1, 1)\}$ be another basis of \mathbb{R}^2 .

- 1. Find $Mtx_V(T)$.
- 2. Find $Mtx_W(T)$.
- 3. Compute T(4,3) using the matrix representation of W.

Solution

1.

$$Mtx_V(T) = \begin{pmatrix} 4 & -2\\ 1 & 1 \end{pmatrix}$$

2. First,

$$Mtx_{V,W}(id) = \begin{pmatrix} 5 & 1\\ 3 & 1 \end{pmatrix}$$

and $Mtx_{W,V}(id) = Mtx_{V,W}(id)^{-1}$, then

$$Mtx_{W,V}(id) = \begin{pmatrix} 5 & 1 \\ 3 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -3 & 5 \end{pmatrix}$$

Finally

$$Mtx_W(T) = Mtx_{W,V}(id) \cdot Mtx_V(T) \cdot Mtx_{V,W}(id) = \begin{pmatrix} 3 & 0\\ -1 & 2 \end{pmatrix}$$

3. We know that $Mtx_W(T) \cdot crd_W(4,3) = crd_W(T(4,3))$. Solving $(4,3) = \alpha(5,3) + \beta(1,1)$ yields $\alpha = 1/2$ and $\beta = 3/2$. Then

$$\begin{pmatrix} 3 & 0 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \setminus 2 \\ 3 \setminus 2 \end{pmatrix} = \begin{pmatrix} 3 \setminus 2 \\ 5 \setminus 2 \end{pmatrix}$$

And $\frac{3}{2} \cdot (5,3) + \frac{5}{2}(1,1) = (10,7) = T(4,3).$

Invertibility

Problem 2

Let V be a finite dimensional vector space with dimension n > 1. Let L(V, V) be the set of all linear transformation from V to V, which is a vector space (you don't have to prove this). Consider $C \subset L(V, V)$, the set of all non-invertible linear transformations from V to V. Is C a subspace of L(V, V)? Prove or provide a counterexample.

Solution

No. Let $v = (v_1, ..., v_n) \in V$, with v_n non-zero for all n. Define T as $Tv = (v_1, v_2, ..., v_{n-1}, 0)$ and S as $Sv = (0, 0, ..., 0, v_n)$. Note that T and S are not invertible, since $(0, 0, ..., 0, v_n) \in \ker T$, and $(v_1, v_2, ..., v_{n-1}, 0) \in \ker S$. However, note that (T+S)v = v, that is, T+S is the identity mapping, which is invertible. Then, C is not closed under addition and, therefore, is not a vector subspace of L(V, V).

Problem 3

The norm on the space of square matrices $R^{n \times n}$ is defined as follows: for every $A \in R^{n \times n}$

$$||A|| = \sup\{ ||Ax||_{R^n} : x \in R^n \text{ and } ||x||_{R^n} = 1 \}$$

We can also define a metric d on the space of $n \times n$ matrices using this norm:

$$d(A,B) = ||A - B||$$

Take as given that det : $\mathbb{R}^{n \times n} \to \mathbb{R}$ is continuous. Use the continuity of the determinant to prove that the set of all invertible matrices is an open, dense subset of all square matrices. Note: if you are not familiar with the norm/metric on the space of square matrices, in this problem you only need to use the following properties

- for any constant $c \in R$, ||cA|| = |c|||A||
- the norm of the identity matrix I is 1, ||I|| = 1

Also, to show that the set $S \subset X$ is dense in X, for any $x \in X$, construct a sequence $\{s_n\}_{n \in N}, s_n \in S$ for all n, such that $s_n \to x$ in the respective metric.

Solution

Remember that a matrix is invertible iff its determinant is nonzero. So the set of all invertible matrices is exactly det⁻¹ ($\mathbb{R} \setminus \{0\}$). Observe that $\mathbb{R} \setminus \{0\}$ is open. By continuity of the determinant, the pre-image of an open set is open, so the set of invertible matrices is open. Also note that this says the set of $n \times n$ singular matrices is a closed subset of $\mathbb{R}^{n \times n}$.

Next, fix some singular matrix A. Let $g : \mathbb{R} \to \mathbb{R}$ be given by

$$g(t) = \det(A - tI)$$

Then note that g(t) = 0 if and only if t is a real eigenvalue of A. Since A is singular, 0 is an eigenvalue of A, so g(0) = 0. Since A has at most only finitely many eigenvalues (real or complex), there can be at most finitely many points $t_1, \ldots, t_k \in \mathbb{R}$ such that $g(t_i) = 0$. Thus there exists some $\varepsilon > 0$ such that $g(t) \neq 0$ for all $t \in (0, \varepsilon)$. Take the sequence $t_n = \frac{1}{n}$ and choose N such that n > N implies $t_n < \varepsilon$, so $g(t_n) \neq 0$. This says that the matrix $A - t_n I$ is invertible. Further,

$$d(A, A - t_n I) = ||A - (A - t_n I)||$$
$$= ||t_n I||$$
$$= |t_n| \to 0$$

Hence $A - t_n I$ is a sequence of invertible matrices that converges to A. Thus A is a limit point of the set of all invertible matrices.

Invariant Subspaces

Problem 4

1. Let $T \in L(\mathbb{R}^2, \mathbb{R}^2)$ be given by

$$T(x_1, x_2) = (-x_2, x_1)$$

Find the eigenvalues and eigenvectors of T. Explain the intuition.

2. Now suppose the field is \mathbb{C} instead of \mathbb{R} , so consider $T \in L(\mathbb{C}^2, \mathbb{C}^2)$ given by

$$T(z_1, z_2) = (-z_2, z_1)$$

where here $z_1, z_2 \in \mathbb{C}$. Find the eigenvalues and eigenvectors of T. Note that an eigenvalue $\lambda \in \mathbb{C}$ and an eigenvector $z \in \mathbb{C}^2$

Solution

By definition, $\lambda \in F$ is an eigenvalue of T if there exists a vector $x \neq 0$ such that

$$T(x) = \lambda x$$

1. For $F = \mathbb{R}, \lambda \in \mathbb{R}$ is an eigenvalue for T if

$$T(x_1, x_2) = (-x_2, x_1) = \lambda(x_1, x_2)$$

for some $(x_1, x_2) \neq (0, 0)$. Thus

$$-x_2 = \lambda x_1$$
 and $x_1 = \lambda x_2$

Note that if (x_1, x_2) satisfies these equations, then $x_1 = 0 \iff x_2 = 0$. Since $(x_1, x_2) \neq (0, 0)$, we must have $x_1 \neq 0$ and $x_2 \neq 0$. This implies

$$-x_2 = \lambda x_1 = \lambda^2 x_2$$

Since $x_2 \neq 0$, this implies $\lambda^2 = -1$. There is no $\lambda \in \mathbb{R}$ such that $\lambda^2 = -1$, so T has no eigenvalues or eigenvectors.

Notice that the linear transformation T is counterclockwise rotation of vectors around the origin in \mathbb{R}^2 by 90°. This linear transformation has no eigenvectors or eigenvalues because no vector is mapped to a scaled version of itself by this transformation (where the scalar is a real number).

2. For $F = \mathbb{C}, \lambda \in \mathbb{C}$ is an eigenvalue for T if

$$T(z_1, z_2) = (-z_2, z_1) = \lambda(z_1, z_2)$$

for some $(z_1, z_2) \neq (0, 0)$. Thus

$$-z_2 = \lambda z_1$$
 and $z_1 = \lambda z_2$

As in (a), note that $z_1 = 0 \iff z_2 = 0$, so since $(z_1, z_2) \neq (0, 0)$ we must have $z_1 \neq 0$ and $z_2 \neq 0$. Then as above this requires

$$-z_2 = \lambda z_1 = \lambda^2 z_2$$

Since $z_2 \neq 0$ this implies $\lambda^2 = -1$. Thus $\lambda = i$ and $\lambda = -i$ are eigenvalues of T. To find the eigenvectors, first consider $\lambda = i$. Then

$$-z_2 = iz_1$$
 and $z_1 = iz_2$

So the corresponding eigenvectors are of the form (c, -ci) for all $c \in \mathbb{C} \setminus \{0\}$. Then consider $\lambda = -i$. In this case,

$$-z_2 = -iz_1$$
 and $z_1 = -iz_2$

So the corresponding eigenvectors are (c, ci) for all $c \in \mathbb{C} \setminus \{0\}$.

Problem 5

Let A be an $n \times n$ matrix.

- 1. Show that if λ is an eigenvalue of A, then λ^k is an eigenvalue of A^k for $k \in \mathbb{N}$.
- 2. Show that if λ is an eigenvalue of the matrix A and A is invertible, then $1/\lambda$ is an eigenvalue of A^{-1} .
- 3. Find an expression for det(A) in terms of the eigenvalues of A.
- 4. The eigenspace of an eigenvalue λ_i of A is the kernel of $A \lambda_i I$ (all $x \in \mathbb{R}^n$ such that $(A - \lambda_i I)x = 0$). Show that the eigenspace of any eigenvalue λ_i of A is a vector subspace of \mathbb{R}^{n} .

Solution

1. We use induction to show not only that λ^k is an eigenvalue of A^k , but also that any eigenvector v corresponding to the eigenvalue λ for A also corresponds to λ^k for A^k . The base step (k = 1)is trivial. For the induction step, assume $Av = \lambda v$ and $A^k v = \lambda^k v$. Now consider $A^{k+1}v$:

$$A^{k+1}v = A^k(Av) = A^k(\lambda v) = \lambda(A^k v) = \lambda(\lambda^k v) = \lambda^{k+1}v$$

.

2. Let $Tv = \lambda v$. Premultiply both sides by T^{-1} :

$$T^{-1}Tv = T^{-1}\lambda v \implies v = \lambda T^{-1}v \implies T^{-1}v = (1/\lambda)v$$

3. The characteristic polynomial of A is given by $c(\lambda) = \det(A - \lambda I)$. The eigenvalues are the roots of this function; this is,

$$c(\lambda) = \det(A - \lambda I) = (-1)^n \prod_i (\lambda - \lambda_i)$$

Hence setting $\lambda = 0$ we get

$$\det(A) = \prod_i \lambda_i$$

so the determinant of a matrix is the product of its eigenvalues.

4. It follows immediately from the more general result that was given in class, that for any linear transformation T, the kernel of T is a vector subspace. We use the fact that

$$T(x) = (A - \lambda_i I)x$$

is a linear transformation.

On the other hand, to verify directly that $W \subseteq X$ is a vector subspace of the vector space X, we need to show that for all $w_1, w_2 \in W$ and all $\alpha_1, \alpha_2 \in F$, $\alpha_1 w_1 + \alpha_2 w_2 \in W$. So here to show that ker T is a vector subspace, let $x_1, x_2 \in \text{ker } T$. Then for any α_1, α_2 ,

$$T(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 T(x_1) + \alpha_2 T(x_2) = \alpha_1 0 + \alpha_2 0 = 0$$

So $\alpha_1 x_1 + \alpha_2 x_2 \in \ker T$.

Linear Maps between Normed Spaces

Problem 6

Let X be a normed vector space. Let $T: X \to R$ be a linear map. Prove that T is bounded if and only if $T^{-1}(\{0\})$ is closed.

Solution

For any continuous function between any two topological spaces, the inverse image of any closed set is closed. If T is bounded then it is continuous. Since $\{0\}$ is a closed subset of \mathbb{R} , its inverse image under T is therefore closed.

Another version of the proof (contrapositive): suppose that $T^{-1}(\{0\})$ is not closed. Then there exist $x_n \in X$ and $y \in X$ such that $T(x_n) = 0, x_n \to y$, and $T(y) \neq 0$. Since T is linear, $y \neq 0$. Since $T(x_n) = 0, x_n - y \neq 0$.

For each n,

$$||T||_{B(X,R)} \ge \frac{|T(x_n - y)|}{||x_n - y||_X} = \frac{|T(y)|}{||x_n - y||_X}$$

The numerator is nonzero and independent of n. As $n \to \infty$, the denominator tends to zero. Therefore the ratio tends to infinity and T is not bounded.

For the converse, suppose T is not bounded (contrapositive again). Then for each n there exists $x_n \in X$ such that $||x_n|| = 1$ and $T(x_n) > n$. Then fix $x \in X$ such that $T(x) \neq 0$, and without loss of generality take T(x) = 1. Let

$$y_n = x - \frac{1}{T(x_n)} x_n \quad \forall n$$

Note that $T(x_n) > n > 0$ for each n, so y_n is well-defined for each n. Then by construction, $T(y_n) = 0$ for each n, so $y_n \in T^{-1}(\{0\})$ for each n, and $y_n \to x$. But $T(x) \neq 0$, so $x \notin T^{-1}(\{0\})$. Thus $T^{-1}(\{0\})$ is not closed.