
Econ 204 – Problem Set 4 Suggested Solutions

GSI - Anna Vakarova

August 8, 2023

Matrix Representation of Linear Transformations

Problem 1

Let T : R2 → R2 be given by T (x, y) = (4x − 2y, x + y). Let V be the standard basis and
W = {(5, 3), (1, 1)} be another basis of R2.

1. Find MtxV (T ).

2. Find MtxW (T ).

3. Compute T (4, 3) using the matrix representation of W .

Solution

1.

MtxV (T ) =

(
4 −2
1 1

)
2. First,

MtxV,W (id) =

(
5 1
3 1

)
and MtxW,V (id) = MtxV,W (id)−1, then

MtxW,V (id) =

(
5 1
3 1

)−1

=
1

2

(
1 −1
−3 5

)
Finally

MtxW (T ) = MtxW,V (id) ·MtxV (T ) ·MtxV,W (id) =

(
3 0
−1 2

)
3. We know that MtxW (T ) ·crdW (4, 3) = crdW (T (4, 3)). Solving (4, 3) = α(5, 3)+β(1, 1) yields

α = 1/2 and β = 3/2. Then (
3 0
−1 2

)(
1\2
3\2

)
=

(
3\2
5\2

)
And 3

2 · (5, 3) + 5
2 (1, 1) = (10, 7) = T (4, 3).
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Invertibility

Problem 2

Let V be a finite dimensional vector space with dimension n > 1. Let L(V, V ) be the set of all
linear transformation from V to V , which is a vector space (you don’t have to prove this). Consider
C ⊂ L(V, V ), the set of all non-invertible linear transformations from V to V . Is C a subspace of
L(V, V )? Prove or provide a counterexample.

Solution

No. Let v = (v1, ..., vn) ∈ V , with vn non-zero for all n. Define T as Tv = (v1, v2, ..., vn−1, 0) and
S as Sv = (0, 0, ..., 0, vn). Note that T and S are not invertible, since (0, 0, ..., 0, vn) ∈ kerT , and
(v1, v2, ..., vn−1, 0) ∈ kerS. However, note that (T +S)v = v, that is, T +S is the identity mapping,
which is invertible. Then, C is not closed under addition and, therefore, is not a vector subspace
of L(V, V ).

Problem 3

The norm on the space of square matrices Rn×n is defined as follows: for every A ∈ Rn×n

||A|| = sup{ ||Ax||Rn : x ∈ Rn and ||x||Rn = 1}

We can also define a metric d on the space of n× n matrices using this norm:

d(A,B) = ||A−B||

Take as given that det : Rn×n → R is continuous. Use the continuity of the determinant to prove
that the set of all invertible matrices is an open, dense subset of all square matrices.
Note: if you are not familiar with the norm/metric on the space of square matrices, in this problem
you only need to use the following properties

• for any constant c ∈ R, ||cA|| = |c|||A||

• the norm of the identity matrix I is 1, ||I|| = 1

Also, to show that the set S ⊂ X is dense inX, for any x ∈ X, construct a sequence {sn}n∈N , sn ∈ S
for all n, such that sn → x in the respective metric.

Solution

Remember that a matrix is invertible iff its determinant is nonzero. So the set of all invertible
matrices is exactly det−1 (R \ {0}). Observe that R\{0} is open. By continuity of the determinant,
the pre-image of an open set is open, so the set of invertible matrices is open. Also note that this
says the set of n× n singular matrices is a closed subset of Rn×n.

Next, fix some singular matrix A. Let g : R → R be given by

g(t) = det(A− tI)
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Then note that g(t) = 0 if and only if t is a real eigenvalue of A. Since A is singular, 0 is an
eigenvalue of A, so g(0) = 0. Since A has at most only finitely many eigenvalues (real or complex),
there can be at most finitely many points t1, . . . , tk ∈ R such that g(ti) = 0. Thus there exists some
ε > 0 such that g(t) ̸= 0 for all t ∈ (0, ε). Take the sequence tn = 1

n and choose N such that n > N
implies tn < ε, so g(tn) ̸= 0. This says that the matrix A− tnI is invertible. Further,

d(A,A− tnI) = ∥A− (A− tnI)∥
= ∥tnI∥
= |tn| → 0

Hence A− tnI is a sequence of invertible matrices that converges to A. Thus A is a limit point of
the set of all invertible matrices.

Invariant Subspaces

Problem 4

1. Let T ∈ L(R2,R2) be given by
T (x1, x2) = (−x2, x1)

Find the eigenvalues and eigenvectors of T . Explain the intuition.

2. Now suppose the field is C instead of R, so consider T ∈ L(C2,C2) given by

T (z1, z2) = (−z2, z1)

where here z1, z2 ∈ C. Find the eigenvalues and eigenvectors of T . Note that an eigenvalue
λ ∈ C and an eigenvector z ∈ C2

Solution

By definition, λ ∈ F is an eigenvalue of T if there exists a vector x ̸= 0 such that

T (x) = λx

1. For F = R, λ ∈ R is an eigenvalue for T if

T (x1, x2) = (−x2, x1) = λ(x1, x2)

for some (x1, x2) ̸= (0, 0). Thus

−x2 = λx1 and x1 = λx2

Note that if (x1, x2) satisfies these equations, then x1 = 0 ⇐⇒ x2 = 0. Since (x1, x2) ̸= (0, 0),
we must have x1 ̸= 0 and x2 ̸= 0. This implies

−x2 = λx1 = λ2x2

Since x2 ̸= 0, this implies λ2 = −1. There is no λ ∈ R such that λ2 = −1, so T has no
eigenvalues or eigenvectors.
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Notice that the linear transformation T is counterclockwise rotation of vectors around the
origin in R2 by 90o. This linear transformation has no eigenvectors or eigenvalues because no
vector is mapped to a scaled version of itself by this transformation (where the scalar is a real
number).

2. For F = C, λ ∈ C is an eigenvalue for T if

T (z1, z2) = (−z2, z1) = λ(z1, z2)

for some (z1, z2) ̸= (0, 0). Thus

−z2 = λz1 and z1 = λz2

As in (a), note that z1 = 0 ⇐⇒ z2 = 0, so since (z1, z2) ̸= (0, 0) we must have z1 ̸= 0 and
z2 ̸= 0. Then as above this requires

−z2 = λz1 = λ2z2

Since z2 ̸= 0 this implies λ2 = −1. Thus λ = i and λ = −i are eigenvalues of T .
To find the eigenvectors, first consider λ = i. Then

−z2 = iz1 and z1 = iz2

So the corresponding eigenvectors are of the form (c,−ci) for all c ∈ C \ {0}.
Then consider λ = −i. In this case,

−z2 = −iz1 and z1 = −iz2

So the corresponding eigenvectors are (c, ci) for all c ∈ C \ {0}.

Problem 5

Let A be an n× n matrix.

1. Show that if λ is an eigenvalue of A, then λk is an eigenvalue of Ak for k ∈ N.

2. Show that if λ is an eigenvalue of the matrix A and A is invertible, then 1/λ is an eigenvalue
of A−1.

3. Find an expression for det(A) in terms of the eigenvalues of A.

4. The eigenspace of an eigenvalue λi of A is the kernel of A − λiI (all x ∈ Rn such that
(A− λiI)x = 0). Show that the eigenspace of any eigenvalue λi of A is a vector subspace of
Rn.

Solution

1. We use induction to show not only that λk is an eigenvalue of Ak, but also that any eigenvector
v corresponding to the eigenvalue λ for A also corresponds to λk for Ak. The base step (k = 1)
is trivial. For the induction step, assume Av = λv and Akv = λkv. Now consider Ak+1v:

Ak+1v = Ak(Av) = Ak(λv) = λ(Akv) = λ(λkv) = λk+1v
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2. Let Tv = λv. Premultiply both sides by T−1:

T−1Tv = T−1λv =⇒ v = λT−1v =⇒ T−1v = (1/λ)v

3. The characteristic polynomial of A is given by c(λ) = det(A − λI). The eigenvalues are the
roots of this function; this is,

c(λ) = det(A− λI) = (−1)n
∏
i

(λ− λi)

Hence setting λ = 0 we get

det(A) =
∏
i

λi

so the determinant of a matrix is the product of its eigenvalues.

4. It follows immediately from the more general result that was given in class, that for any linear
transformation T , the kernel of T is a vector subspace. We use the fact that

T (x) = (A− λiI)x

is a linear transformation.
On the other hand, to verify directly that W ⊆ X is a vector subspace of the vector space X,
we need to show that for all w1, w2 ∈ W and all α1, α2 ∈ F , α1w1 + α2w2 ∈ W .
So here to show that ker T is a vector subspace, let x1, x2 ∈ ker T . Then for any α1, α2,

T (α1x1 + α2x2) = α1T (x1) + α2T (x2) = α10 + α20 = 0

So α1x1 + α2x2 ∈ ker T .

Linear Maps between Normed Spaces

Problem 6

Let X be a normed vector space. Let T : X → R be a linear map. Prove that T is bounded if and
only if T−1({0}) is closed.

Solution

For any continuous function between any two topological spaces, the inverse image of any closed
set is closed. If T is bounded then it is continuous. Since {0} is a closed subset of R, its inverse
image under T is therefore closed.
Another version of the proof (contrapositive): suppose that T−1({0}) is not closed. Then there
exist xn ∈ X and y ∈ X such that T (xn) = 0, xn → y, and T (y) ̸= 0. Since T is linear, y ̸= 0.
Since T (xn) = 0, xn − y ̸= 0.
For each n,

∥T∥B(X,R) ≥
|T (xn − y)|
∥xn − y∥X

=
|T (y)|

∥xn − y∥X
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The numerator is nonzero and independent of n. As n → ∞, the denominator tends to zero.
Therefore the ratio tends to infinity and T is not bounded.
For the converse, suppose T is not bounded (contrapositive again). Then for each n there exists
xn ∈ X such that ∥xn∥ = 1 and T (xn) > n. Then fix x ∈ X such that T (x) ̸= 0, and without loss
of generality take T (x) = 1. Let

yn = x− 1

T (xn)
xn ∀n

Note that T (xn) > n > 0 for each n, so yn is well-defined for each n. Then by construction,
T (yn) = 0 for each n, so yn ∈ T−1({0}) for each n, and yn → x. But T (x) ̸= 0, so x ̸∈ T−1({0}).
Thus T−1({0}) is not closed.
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