Econ 204 - Problem Set 4 Suggested Solutions

GSI - Anna Vakarova

August 8, 2023

Matrix Representation of Linear Transformations

Problem 1

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y)=(4 x-2 y, x+y)$. Let V be the standard basis and $W=\{(5,3),(1,1)\}$ be another basis of \mathbb{R}^{2}.

1. Find $M t x_{V}(T)$.
2. Find $M t x_{W}(T)$.
3. Compute $T(4,3)$ using the matrix representation of W.

Solution

1.

$$
\operatorname{Mtx}_{V}(T)=\left(\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right)
$$

2. First,

$$
\operatorname{Mtx}_{V, W}(i d)=\left(\begin{array}{ll}
5 & 1 \\
3 & 1
\end{array}\right)
$$

and $M t x_{W, V}(i d)=M t x_{V, W}(i d)^{-1}$, then

$$
\operatorname{Mtx}_{W, V}(i d)=\left(\begin{array}{ll}
5 & 1 \\
3 & 1
\end{array}\right)^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-3 & 5
\end{array}\right)
$$

Finally

$$
\operatorname{Mtx}_{W}(T)=\operatorname{Mtx}_{W, V}(i d) \cdot \operatorname{Mtx} x_{V}(T) \cdot \operatorname{Mtx_{V,W}}(i d)=\left(\begin{array}{cc}
3 & 0 \\
-1 & 2
\end{array}\right)
$$

3. We know that $\operatorname{Mtx}_{W}(T) \cdot \operatorname{cr} d_{W}(4,3)=\operatorname{crd} d_{W}(T(4,3))$. Solving $(4,3)=\alpha(5,3)+\beta(1,1)$ yields $\alpha=1 / 2$ and $\beta=3 / 2$. Then

$$
\left(\begin{array}{cc}
3 & 0 \\
-1 & 2
\end{array}\right)\binom{1 \backslash 2}{3 \backslash 2}=\binom{3 \backslash 2}{5 \backslash 2}
$$

And $\frac{3}{2} \cdot(5,3)+\frac{5}{2}(1,1)=(10,7)=T(4,3)$.

Invertibility

Problem 2

Let V be a finite dimensional vector space with dimension $n>1$. Let $L(V, V)$ be the set of all linear transformation from V to V, which is a vector space (you don't have to prove this). Consider $C \subset L(V, V)$, the set of all non-invertible linear transformations from V to V. Is C a subspace of $L(V, V)$? Prove or provide a counterexample.

Solution

No. Let $v=\left(v_{1}, \ldots, v_{n}\right) \in V$, with v_{n} non-zero for all n. Define T as $T v=\left(v_{1}, v_{2}, \ldots, v_{n-1}, 0\right)$ and S as $S v=\left(0,0, \ldots, 0, v_{n}\right)$. Note that T and S are not invertible, since $\left(0,0, \ldots, 0, v_{n}\right) \in \operatorname{ker} T$, and $\left(v_{1}, v_{2}, \ldots, v_{n-1}, 0\right) \in \operatorname{ker} S$. However, note that $(T+S) v=v$, that is, $T+S$ is the identity mapping, which is invertible. Then, C is not closed under addition and, therefore, is not a vector subspace of $L(V, V)$.

Problem 3

The norm on the space of square matrices $R^{n \times n}$ is defined as follows: for every $A \in R^{n \times n}$

$$
\|A\|=\sup \left\{\|A x\|_{R^{n}}: x \in R^{n} \text { and }\|x\|_{R^{n}}=1\right\}
$$

We can also define a metric d on the space of $n \times n$ matrices using this norm:

$$
d(A, B)=\|A-B\|
$$

Take as given that det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is continuous. Use the continuity of the determinant to prove that the set of all invertible matrices is an open, dense subset of all square matrices.
Note: if you are not familiar with the norm/metric on the space of square matrices, in this problem you only need to use the following properties

- for any constant $c \in R,\|c A\|=|c|\|A\|$
- the norm of the identity matrix I is $1,\|I\|=1$

Also, to show that the set $S \subset X$ is dense in X, for any $x \in X$, construct a sequence $\left\{s_{n}\right\}_{n \in N}, s_{n} \in S$ for all n, such that $s_{n} \rightarrow x$ in the respective metric.

Solution

Remember that a matrix is invertible iff its determinant is nonzero. So the set of all invertible matrices is exactly $\operatorname{det}^{-1}(\mathbb{R} \backslash\{0\})$. Observe that $\mathbb{R} \backslash\{0\}$ is open. By continuity of the determinant, the pre-image of an open set is open, so the set of invertible matrices is open. Also note that this says the set of $n \times n$ singular matrices is a closed subset of $\mathbb{R}^{n \times n}$.

Next, fix some singular matrix A. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
g(t)=\operatorname{det}(A-t I)
$$

Then note that $g(t)=0$ if and only if t is a real eigenvalue of A. Since A is singular, 0 is an eigenvalue of A, so $g(0)=0$. Since A has at most only finitely many eigenvalues (real or complex), there can be at most finitely many points $t_{1}, \ldots, t_{k} \in \mathbb{R}$ such that $g\left(t_{i}\right)=0$. Thus there exists some $\varepsilon>0$ such that $g(t) \neq 0$ for all $t \in(0, \varepsilon)$. Take the sequence $t_{n}=\frac{1}{n}$ and choose N such that $n>N$ implies $t_{n}<\varepsilon$, so $g\left(t_{n}\right) \neq 0$. This says that the matrix $A-t_{n} I$ is invertible. Further,

$$
\begin{aligned}
d\left(A, A-t_{n} I\right) & =\left\|A-\left(A-t_{n} I\right)\right\| \\
& =\left\|t_{n} I\right\| \\
& =\left|t_{n}\right| \rightarrow 0
\end{aligned}
$$

Hence $A-t_{n} I$ is a sequence of invertible matrices that converges to A. Thus A is a limit point of the set of all invertible matrices.

Invariant Subspaces

Problem 4

1. Let $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ be given by

$$
T\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)
$$

Find the eigenvalues and eigenvectors of T. Explain the intuition.
2. Now suppose the field is \mathbb{C} instead of \mathbb{R}, so consider $T \in L\left(\mathbb{C}^{2}, \mathbb{C}^{2}\right)$ given by

$$
T\left(z_{1}, z_{2}\right)=\left(-z_{2}, z_{1}\right)
$$

where here $z_{1}, z_{2} \in \mathbb{C}$. Find the eigenvalues and eigenvectors of T. Note that an eigenvalue $\lambda \in \mathbb{C}$ and an eigenvector $z \in \mathbb{C}^{2}$

Solution

By definition, $\lambda \in F$ is an eigenvalue of T if there exists a vector $x \neq 0$ such that

$$
T(x)=\lambda x
$$

1. For $F=\mathbb{R}, \lambda \in \mathbb{R}$ is an eigenvalue for T if

$$
T\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)=\lambda\left(x_{1}, x_{2}\right)
$$

for some $\left(x_{1}, x_{2}\right) \neq(0,0)$. Thus

$$
-x_{2}=\lambda x_{1} \text { and } x_{1}=\lambda x_{2}
$$

Note that if $\left(x_{1}, x_{2}\right)$ satisfies these equations, then $x_{1}=0 \Longleftrightarrow x_{2}=0$. Since $\left(x_{1}, x_{2}\right) \neq(0,0)$, we must have $x_{1} \neq 0$ and $x_{2} \neq 0$. This implies

$$
-x_{2}=\lambda x_{1}=\lambda^{2} x_{2}
$$

Since $x_{2} \neq 0$, this implies $\lambda^{2}=-1$. There is no $\lambda \in \mathbb{R}$ such that $\lambda^{2}=-1$, so T has no eigenvalues or eigenvectors.

Notice that the linear transformation T is counterclockwise rotation of vectors around the origin in \mathbb{R}^{2} by 90°. This linear transformation has no eigenvectors or eigenvalues because no vector is mapped to a scaled version of itself by this transformation (where the scalar is a real number).
2. For $F=\mathbb{C}, \lambda \in \mathbb{C}$ is an eigenvalue for T if

$$
T\left(z_{1}, z_{2}\right)=\left(-z_{2}, z_{1}\right)=\lambda\left(z_{1}, z_{2}\right)
$$

for some $\left(z_{1}, z_{2}\right) \neq(0,0)$. Thus

$$
-z_{2}=\lambda z_{1} \text { and } z_{1}=\lambda z_{2}
$$

As in (a), note that $z_{1}=0 \Longleftrightarrow z_{2}=0$, so since $\left(z_{1}, z_{2}\right) \neq(0,0)$ we must have $z_{1} \neq 0$ and $z_{2} \neq 0$. Then as above this requires

$$
-z_{2}=\lambda z_{1}=\lambda^{2} z_{2}
$$

Since $z_{2} \neq 0$ this implies $\lambda^{2}=-1$. Thus $\lambda=i$ and $\lambda=-i$ are eigenvalues of T.
To find the eigenvectors, first consider $\lambda=i$. Then

$$
-z_{2}=i z_{1} \text { and } z_{1}=i z_{2}
$$

So the corresponding eigenvectors are of the form $(c,-c i)$ for all $c \in \mathbb{C} \backslash\{0\}$.
Then consider $\lambda=-i$. In this case,

$$
-z_{2}=-i z_{1} \text { and } z_{1}=-i z_{2}
$$

So the corresponding eigenvectors are $(c, c i)$ for all $c \in \mathbb{C} \backslash\{0\}$.

Problem 5

Let A be an $n \times n$ matrix.

1. Show that if λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k} for $k \in \mathbb{N}$.
2. Show that if λ is an eigenvalue of the matrix A and A is invertible, then $1 / \lambda$ is an eigenvalue of A^{-1}.
3. Find an expression for $\operatorname{det}(A)$ in terms of the eigenvalues of A.
4. The eigenspace of an eigenvalue λ_{i} of A is the kernel of $A-\lambda_{i} I$ (all $x \in R^{n}$ such that $\left.\left(A-\lambda_{i} I\right) x=0\right)$. Show that the eigenspace of any eigenvalue λ_{i} of A is a vector subspace of R^{n}.

Solution

1. We use induction to show not only that λ^{k} is an eigenvalue of A^{k}, but also that any eigenvector v corresponding to the eigenvalue λ for A also corresponds to λ^{k} for A^{k}. The base step $(k=1)$ is trivial. For the induction step, assume $A v=\lambda v$ and $A^{k} v=\lambda^{k} v$. Now consider $A^{k+1} v$:

$$
A^{k+1} v=A^{k}(A v)=A^{k}(\lambda v)=\lambda\left(A^{k} v\right)=\lambda\left(\lambda^{k} v\right)=\lambda^{k+1} v
$$

2. Let $T v=\lambda v$. Premultiply both sides by T^{-1} :

$$
T^{-1} T v=T^{-1} \lambda v \Longrightarrow v=\lambda T^{-1} v \Longrightarrow T^{-1} v=(1 / \lambda) v
$$

3. The characteristic polynomial of A is given by $c(\lambda)=\operatorname{det}(A-\lambda I)$. The eigenvalues are the roots of this function; this is,

$$
c(\lambda)=\operatorname{det}(A-\lambda I)=(-1)^{n} \prod_{i}\left(\lambda-\lambda_{i}\right)
$$

Hence setting $\lambda=0$ we get

$$
\operatorname{det}(A)=\prod_{i} \lambda_{i}
$$

so the determinant of a matrix is the product of its eigenvalues.
4. It follows immediately from the more general result that was given in class, that for any linear transformation T, the kernel of T is a vector subspace. We use the fact that

$$
T(x)=\left(A-\lambda_{i} I\right) x
$$

is a linear transformation.
On the other hand, to verify directly that $W \subseteq X$ is a vector subspace of the vector space X, we need to show that for all $w_{1}, w_{2} \in W$ and all $\alpha_{1}, \alpha_{2} \in F, \alpha_{1} w_{1}+\alpha_{2} w_{2} \in W$.
So here to show that $\operatorname{ker} T$ is a vector subspace, let $x_{1}, x_{2} \in \operatorname{ker} T$. Then for any α_{1}, α_{2},

$$
T\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}\right)=\alpha_{1} T\left(x_{1}\right)+\alpha_{2} T\left(x_{2}\right)=\alpha_{1} 0+\alpha_{2} 0=0
$$

So $\alpha_{1} x_{1}+\alpha_{2} x_{2} \in \operatorname{ker} T$.

Linear Maps between Normed Spaces

Problem 6

Let X be a normed vector space. Let $T: X \rightarrow R$ be a linear map. Prove that T is bounded if and only if $T^{-1}(\{0\})$ is closed.

Solution

For any continuous function between any two topological spaces, the inverse image of any closed set is closed. If T is bounded then it is continuous. Since $\{0\}$ is a closed subset of \mathbb{R}, its inverse image under T is therefore closed.
Another version of the proof (contrapositive): suppose that $T^{-1}(\{0\})$ is not closed. Then there exist $x_{n} \in X$ and $y \in X$ such that $T\left(x_{n}\right)=0, x_{n} \rightarrow y$, and $T(y) \neq 0$. Since T is linear, $y \neq 0$. Since $T\left(x_{n}\right)=0, x_{n}-y \neq 0$.
For each n,

$$
\|T\|_{B(X, R)} \geq \frac{\left|T\left(x_{n}-y\right)\right|}{\left\|x_{n}-y\right\|_{X}}=\frac{|T(y)|}{\left\|x_{n}-y\right\|_{X}}
$$

The numerator is nonzero and independent of n. As $n \rightarrow \infty$, the denominator tends to zero. Therefore the ratio tends to infinity and T is not bounded.
For the converse, suppose T is not bounded (contrapositive again). Then for each n there exists $x_{n} \in X$ such that $\left\|x_{n}\right\|=1$ and $T\left(x_{n}\right)>n$. Then fix $x \in X$ such that $T(x) \neq 0$, and without loss of generality take $T(x)=1$. Let

$$
y_{n}=x-\frac{1}{T\left(x_{n}\right)} x_{n} \quad \forall n
$$

Note that $T\left(x_{n}\right)>n>0$ for each n, so y_{n} is well-defined for each n. Then by construction, $T\left(y_{n}\right)=0$ for each n, so $y_{n} \in T^{-1}(\{0\})$ for each n, and $y_{n} \rightarrow x$. But $T(x) \neq 0$, so $x \notin T^{-1}(\{0\})$. Thus $T^{-1}(\{0\})$ is not closed.

