Econ 204 - Problem Set 4

GSI - Anna Vakarova

August 4, 2023

Matrix Representation of Linear Transformations

Problem 1

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $T(x, y)=(4 x-2 y, x+y)$. Let V be the standard basis and $W=\{(5,3),(1,1)\}$ be another basis of \mathbb{R}^{2}.

1. Find $M t x_{V}(T)$.
2. Find $M t x_{W}(T)$.
3. Compute $T(4,3)$ using the matrix representation of W.

Invertibility

Problem 2

Let V be a finite dimensional vector space with dimension $n>1$. Let $L(V, V)$ be the set of all linear transformation from V to V, which is a vector space (you don't have to prove this). Consider $C \subset L(V, V)$, the set of all non-invertible linear transformations from V to V. Is C a subspace of $L(V, V)$? Prove or provide a counterexample.

Problem 3

The norm on the vector space of square matrices $R^{n \times n}$ is defined as follows: for every $A \in R^{n \times n}$

$$
\|A\|=\sup \left\{\|A x\|_{R^{n}}: x \in R^{n} \text { and }\|x\|_{R^{n}}=1\right\}
$$

Recall that this norm is an operator norm defined in lecture 10. We can also define a metric d on the vector space of $n \times n$ matrices using this norm:

$$
d(A, B)=\|A-B\|
$$

Take as given that det : $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ is continuous in this metric. Use the continuity of the determinant to prove that the set of all invertible matrices is an open, dense subset of all square matrices. Hint: in this problem you will only need to use the following properties of the norm

- for any constant $c \in R,\|c A\|=|c|\|A\|$
- the norm of the identity matrix I is $1,\|I\|=1$

Invariant Subspaces

Problem 4

1. Let $T \in L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ be given by

$$
T\left(x_{1}, x_{2}\right)=\left(-x_{2}, x_{1}\right)
$$

Find the eigenvalues and eigenvectors of T. Explain the intuition.
2. Now suppose the field is \mathbb{C} instead of \mathbb{R}, so consider $T \in L\left(\mathbb{C}^{2}, \mathbb{C}^{2}\right)$ given by

$$
T\left(z_{1}, z_{2}\right)=\left(-z_{2}, z_{1}\right)
$$

where here $z_{1}, z_{2} \in \mathbb{C}$. Find the eigenvalues and eigenvectors of T. Note that an eigenvalue $\lambda \in \mathbb{C}$ and an eigenvector $z \in \mathbb{C}^{2}$

Problem 5

Let A be an $n \times n$ matrix.

1. Show that if λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k} for $k \in \mathbb{N}$.
2. Show that if λ is an eigenvalue of the matrix A and A is invertible, then $1 / \lambda$ is an eigenvalue of A^{-1}.
3. Find an expression for $\operatorname{det}(A)$ in terms of the eigenvalues of A.
4. The eigenspace of an eigenvalue λ_{i} of A is the kernel of $A-\lambda_{i} I$ (all $x \in R^{n}$ such that $\left.\left(A-\lambda_{i} I\right) x=0\right)$. Show that the eigenspace of any eigenvalue λ_{i} of A is a vector subspace of R^{n}.

Linear Maps between Normed Spaces

Problem 6

Let X be a normed vector space. Let $T: X \rightarrow R$ be a linear map. Prove that T is bounded if and only if $T^{-1}(\{0\})$ is closed.

