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1 Taylor Theorem and Mean Value Theorem

Problem 1

Let f : R → R be twice differentiable. Suppose f ′(0) = f ′(1) = 2 and ∀x ∈ [0, 1], |f ′′(x)| ≤ 4.

a. Prove that |f(1)− f(0)| ≤ 4.

b. Prove that |f(1)− f(0)| ≤ 3.

(Hint: use Taylor’s Theorem)

Solution

a. By Taylor’s Theorem,

f(1) = f(0) + f ′(0) +
f ′′(a)

2

for some a ∈ (0, 1). This implies

f(1)− f(0) = 2 +
f ′′(a)

2

since f ′(0) = 2, so

|f(1)− f(0)| = |2 + f ′′(a)

2
| ≤ 2 +

|f ′′(a)|
2

≤ 4

b. First, consider Taylor’s Theorem on the interval [0, 1
2 ]. This implies

f(
1

2
) = f(0) +

f ′(0)

2
+

f ′′(b)

8

for some b ∈ (0, 1
2 ). Thus, since f ′(0) = 2,

f(
1

2
)− f(0) = 1 +

f ′′(b)

8

This implies

|f(1
2
)− f(0)| ≤ |1 + f ′′(b)

8
| ≤ 1 + |f

′′(b)

8
| ≤ 1 +

1

2

1



Similarly, considering Taylor’s Theorem on the interval [ 12 , 1],

f(
1

2
) = f(1)− f ′(1)

2
+

f ′′(c)

8

for some c ∈ ( 12 , 1). Using f ′(1) = 2, this implies

f(
1

2
)− f(1) = −1 +

f ′′(c)

8

and

|f(1
2
)− f(1)| ≤ 1 +

|f ′′(c)|
8

≤ 1 +
1

2

Then

|f(1)− f(0)| ≤ |f(1)− f(
1

2
)|+ |f(1

2
)− f(0)| ≤ 1 +

1

2
+ 1 +

1

2
= 3

Problem 2

Let f : R → R be a C2 (twice continuously differentiable) function. The function and its sec-
ond derivative are bounded, namely there exist M,N > 0 such that supx∈R |f(x)| ≤ M and

supx∈R |f ′′(x)| ≤ N . Show that supx∈R |f ′(x)| ≤ 2
√
MN .

Solution

Fix an arbitrary x ∈ R. Then, using Taylor’s theorem for every y ∈ R there exists ξ between x and
y such that

f(y) = f(x) + f ′(x)(y − x) +
1

2
f ′′(ξ)(y − x)2

≤ f(x) + f ′(x)(y − x) +
1

2
N(y − x)2.

Since f(x)− f(y) ≤ 2M , then 1
2N(y− x)2 + f ′(x)(y− x)+ 2M ≥ 0 for every y ∈ R. Therefore, the

quadratic polynomial

g(t) =
1

2
Nt2 + f ′(x)t+ 2M,

is nonnegative for all t ∈ R. Consequently, its ∆ = (f ′(x))
2 − 4MN must be nonpositive (there are

no real roots or there is just one), which implies |f ′(x)| ≤ 2
√
MN . Since x was arbitrarily chosen

this bound holds for every x ∈ R.

Problem 3

Let f : R → R be a differentiable function. Prove that f ′(R), has an intermediate value property,
that is if f ′ takes at least two values a < b then for every c ∈ [a, b] there exists x : f ′(x) = c
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Solution

Suppose a = f ′(x1) < c < b = f ′(x2). Without loss of generality suppose x1 < x2. Then it suffices to 
show that there exists z ∈ (x1, x2) such that f ′(z) = c.
For h : 0 < h < x2 − x1, define the secant l ine by

S(x, h) =
f(x+ h)− f(x)

h

Since f is differentiable at each x, note that for each x, S(x, h) → f ′(x) as h → 0 and S(x −
h, h) → f ′(x) as h → 0. Then for each ϵ > 0 there exists δ > 0 such that for all h ∈ (0, δ),

|S(x1, h)− f ′(x1)| < ϵ

and
|S(x2 − h, h)− f ′(x2)| < ϵ

Thus there exists h̄ sufficiently small such that

S(x1, h̄) < c < S(x2 − h̄, h̄)

Since f is differentiable it is continuous, which implies S(·, h̄) is continuous. By the Intermediate
Value Theorem there exists x ∈ (x1, x2 − h̄) such that S(x, h̄) = c. Then by the Mean Value
Theorem there exists z ∈ (x, x+ h̄) such that f ′(z) = c.

2 Implicit and Inverse Function Theorems

Problem 4

The inverse function theorem and implicit function theorem are equivalent theorems, meaning one
can be proved using another. In the lecture, you used inverse function theorem to prove implicit
function theorem. This problem asks you to prove inverse function theorem using implicit function
theorem.
Inverse function theorem:
Suppose X ⊂ Rn is open, f : X → Rn is Ck on X, and x0 ∈ X. If detDf(x0) ̸= 0 (i.e. x0 is a
regular point of f) then there are open neighborhoods U of x0 and V of f(x0) such that

• f : U → V is one-to-one and onto

• f−1 : V → U is Ck

• Df−1(f(x0)) = [Df(x0)]
−1

Useful definition: for a function f : U → W , g is right inverse iff f ◦ g is the identity map on W .
h is left inverse for f iff h ◦ f is the identity map on U . f has an inverse (equivalently, is one-to-one
and onto) iff g = h.
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Solution

We have f : X → Rn, where X is an open subset of Rn, and at x0 ∈ X, Df(x0) is invertible.
Set

F (x, y) = f(x)− y

and
y0 = f(x0)

Note that F : X × Rn, where X ⊂ Rn. Clearly F is Ck, F (x0, y0) = 0, and the derivative of F
with respect to x at (x0, y0) is DxF (x0, y0) = Df(x0).
Since Df(x0) is invertible, DxF (x0, y0) is also invertible, and we can apply the Implicit Function
Theorem to find neighborhoods Ux0

⊂ Rn of x0 and Wy0
⊂ Rn of y0 such that

∀y ∈ Wy0
,∃!x ∈ Ux0

: F (x, y) = 0

For each y, let g(y) be that unique x. We know that g : Wy0 → Ux0 is Ck and it is uniquely defined
by the equation

F (x, y) = F (g(y), y) = f(g(y))− y = 0

This means that g is “local right inverse” for f in the sense that f ◦ g is the identity map on Wy0
.

We also get from the Implicit Function Theorem that

Dg(y0) = −[DxF (x0, y0)]
−1[DyF (x0, y0)] = [DxF (x0, y0)]

−1 = [Df(x0)]
−1

Loosely speaking, to finish the proof, we show that g is also “local left inverse” for f .
Apply the same analysis with g in place of f since it is also Ck and its derivative at y0 is invertible,
with inverse being Df(x0). Consequently g has a unique local right inverse on neighborhoods
W ′

y0
⊆ Wy0

, U ′
x0

⊆ Ux0
. Let’s call it h : U ′

x0
→ W ′

y0
. It satisfies g ◦ h = id on U ′

x0
.

Define g′ to be restriction of g to W ′
y0
. Observe that since f ◦ g is the identity map on Wy0 and

W ′
y0

⊆ Wy0 , (f ◦ g′) is the identity map on W ′
y0
, implying that g′ is ”local right inverse” for f . Also

note that g(W ′
y0
) = U ′

x0
, so g′ : W ′

y0
→ U ′

x0
.

On U ′
x0
, we get f = f ◦ (g′ ◦ h) = (f ◦ g′) ◦ h = h. Thus g′ ◦ f = g′ ◦ h = id on U ′

x0
shows that g is

”local left inverse” for f and we have g = f−1 on a neighborhood of y0.

Problem 5

Consider the following equations:

x2 − yu = 0,

xy + uv = 0,

where (x, y, u, v) ∈ R4. Using the implicit function theorem, describe under what condition these
equations can be solved for u and v. Then solve the equations directly and check these conditions.

Solution

Define f1 : R4 → R by f1(x, y, u, v) = x2 − yu and f2 : R4 → R by f1(x, y, u, v) = xy + uv. Let
f : R4 → R2 be defined by f = (f1, f2). f is clearly a smooth function. Moreover, the matrix[

∂f1/∂u ∂f1/∂v
∂f2/∂u ∂f2/∂v

]
=

[
−y 0
v u

]
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has determinant −yu.
To determine the suitability of the implicit function theorem, we have to evaluate the determi-

nant at a point (x0, y0, u0, v0) such that f1(x0, y0, u0, v0) = 0 and f2(x0, y0, u0, v0) = 0. Note that
f1(x0, y0, u0, v0) = 0 implies x2

0 = y0u0, so the determinant is equal to −x2
0. Then, the determinant

is 0 if and only if x0 = 0. Then, if (x0, y0) is such that x0 ̸= 0, the conditions of the implicit
function theorem are satisfied. This means that there are neighborhoods A of (x0, y0) and B of
(u0, v0) and a unique continuously differentiable function g : A → B such that f(x, y, g(x, y)) = 0
for all (x, y) ∈ A. If we let u = g1 and v = g2, where g = (g1, g2), then u and v are the solutions to
the system of equations. Then, these equations can be solved uniquely for u and v in neighborhoods
around (x0, y0) and (u0, v0) if x0 ̸= 0 (note this also implies that y0 ̸= 0).

Solving the system directly gives u = x2/y and v = −y2/x. Note that these functions are well-
defined only when when x and y are different from 0.
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