
Econ 204 – Problem Set 6 Suggested Solutions

GSI - Anna Vakarova

August 14, 2023

1 Fixed points

Problem 1

Suppose Ψ : X → 2X is a non-empty and compact-valued upper-hemicontinuous correspondence.
The metric space X is compact. Show that there exists a non-empty compact set C ⊂ X such that
Ψ(C) = C.
Hint : for one direction, use the result that you proved in HW3 that the image of every compact
subset under such a correspondence is compact.

Solution

First recall that the image of every compact subset under such a correspondence is compact.
Therefore, Ψ(X) is compact and Ψ(X) ⊂ X. Hence, Ψ2(X) := Ψ(Ψ(X)) ⊂ Ψ(X) is also com-
pact. Consequently, we can construct a decreasing sequence of compact subsets {Ψn(X)} such
that Ψn+1(X) := Ψ(Ψn(X)) and Ψn(X) ⊃ Ψn+1(X) ⊃ . . .. Let C =

⋂
n∈N Ψn(X), which is non-

empty because of Cantor theorem, and is closed because it is the intersection of closed subsets.
So, C is compact as it is a closed subset of a compact set X. Since C ⊂ Ψn(X) for every n, then
Ψ(C) ⊂ Ψ(Ψn(X)) = Ψn+1(X), and hence Ψ(C) ⊂

⋂
n∈N Ψn(X) = C. Thus it is enough to show

C ⊂ Ψ(C). For this we offer two proofs; the first one is based on the sequential characterization of
uhc and the second one uses the open set definition.

First proof: Let y ∈ C. By definition y ∈ Ψn(X) for every n, so for every n there exists
zn ∈ Ψn−1(X) such that y ∈ Ψ(zn). Then {zn} ⊆ X and X is compact, so there is a conver-
gent subsequence znk

→ z ∈ X. Since y ∈ Ψ(znk
) for each nk and Ψ has closed graph (because Ψ is

uhc and closed-valued), must have y ∈ Ψ(z) as well. Now claim z ∈ C. If not, then there exists N
such that for all n ≥ N , z ̸∈ Ψn(X). In particular, z ̸∈ ΨN (X). Then there exists ε > 0 such that
Bε(z) ∩ ΨN (X) = ∅. But this is a contradiction, as znk

∈ ΨN (X) for all nk > N , and znk
→ z.

Therefore z ∈ C. Thus y ∈ Ψ(C). So C ⊂ Ψ(C).

Second proof: Assume to the contrary, ∃z ∈ C \ Ψ(C). Therefore, {z} and Ψ(C) are disjoint.
Since Ψ(C) is closed one can find an open ball B(z, εz) around z such that B(z, εz) ∩ Ψ(C) =
∅. Let B̄(z, εz/2) = {y ∈ X : d(y, z) ≤ ε/2} be the closed ball with radius εz/2 around z, then
B̄(z, εz/2) ⊂ B(z, εz). Now for every point x ∈ Ψ(C) one can find an open ball B(x, εx) such that
B(x, εx) ∩ B̄(z, εz/2) = ∅. Let G be the union of all these balls, i.e G =

⋃
x∈Ψ(C) B(x, εx), then G
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is an open set containing Ψ(C) that is disjoint from B(z, εz/2) containing z. Because of uhc the
upper-inverse Ψu(G) is open and covers C. There must be some N ∈ N such that for all n ≥ N ,
Ψn(X) ⊂ Ψu(G), because otherwise one could employ an elementary compactness argument to
reach a contradiction. This implies ΨN+1(X) = Ψ(ΨN (X)) ⊂ G, so C ⊂ G, that violates the
disjointness of z ∈ C from G. Therefore, C ⊂ Ψ(C).

Problem 2

a) Berge’s Maximum Theorem: Let X ⊂ Rn and Y ⊂ Rm. Consider the function f : X ×
Y → R and the correspondence Γ : Y ↠ X. Define v(y) = maxx∈Γ(y) f(x, y) and Ω(y) =
argmaxx∈Γ(y) f(x, y). Suppose f and Γ are continuous, and that Γ has non-empty compact
values. Show that v is continuous and Ω is uhc with non-empty compact values.
Hint : you may find useful to use the sequential definitions of uhc and lhc.

b) Assume that Γ also has convex values. Show that if f is quasi-concave in x, Ω has convex
values.1

c) Let S(I, (ui, Si,Γi)i∈I) denote a social game, where I is the (finite) set of players, and ui :∏
j∈I S

j → R is the objective function of player i ∈ I defined over s =
(
sj ; j ∈ I

)
∈

∏
j∈I S

j ,

with Sj ⊂ Rnj , nj > 0. Each player i chooses si ∈ argmaxs∈Γi(s−i) u
i(s, s−i), with s−i :=

(sj ; j ∈ I \ {i}), and Γi(s−i) ⊂ Si. Define an equilibrium for the social game S(I, (ui, Si,Γi)i∈I)
as a vector s̄ =

(
s̄i; i ∈ I

)
such that, ∀i ∈ I, ui(s̄) ≥ ui(s, s̄−i), ∀s ∈ Γi (s̄−i), where s̄−i :=(

s̄j ; j ̸= i
)
. Assume Si is convex, compact, and non-empty for each i ∈ I, and that ui is

continuous and quasi-concave in si for each i ∈ I. Use the previous parts of this question to
show that, if {Γi}i∈I are continuous and have compact, convex, and non-empty values, then an
equilibrium for S(I, (ui, Si,Γi)i∈I) exists.

Solution

a) Since Γ has non-empty compact values, continuity of f implies that, ∀y ∈ Y , Ω(y) ̸= ∅. Given
y ∈ Y , let {xn}n∈N ∈ Ω(y) be a sequence that converges to x ∈ X. Fix x′ ∈ Γ(y). Since
xn ∈ Ω(y) for each n, f(xn, y) ≥ f(x′, y) for each n. Since xn → x and f is continuous, this
implies f(x, y) ≥ f(x′, y). Since x′ ∈ Γ(y) was arbitrary, this implies that x ∈ Ω(y). Thus Ω(y)
is closed. Since Ω(y) ⊂ Γ(y) and Γ(y) is compact, Ω(y) is compact.

To show that Ω is uhc, let’s use the sequential characterization (that can be used because Ω has
compact values). Fix y ∈ Y and take a sequence {yn}n∈N that converges to y ∈ X. Given a
sequence {xn}n∈N ⊂ X such that xn ∈ Ω(yn), ∀n ∈ N, we know that xn ∈ Γ(yn), ∀n ∈ N. Then,
given that Γ is uhc, we know that exists a subsequence {xnk

}k∈N that converges to some x ∈ Γ(y).
So it suffices to show that x ∈ Ω(y). To that end, let x′ ∈ Γ(y). Since Γ is lhc, there exists a
sequence x′

n → x such that x′
n ∈ Γ(yn) for each n. Then for each k, f(xnk

, ynk
) ≥ f(x′

nk
, ynk

).
Letting k → ∞, this implies f(x, y) ≥ f(x′, y). Since x′ ∈ Γ(y) was arbitrary, this implies
x ∈ Ω(y). Thus Ω is uhc.

1A function f : X → R is quasi-concave if for all x1, x2 ∈ X and λ ∈ [0, 1], f(λx1+(1−λ)x2) ≤ max{f(x1), f(x2)}.
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Finally, to show that v is continuous, consider a sequence {yn} ⊂ Y that converges to y ∈ Y . We
know that, ∀n ∈ N, exists xn ∈ Γ(yn) such that v(yn) = f(xn, yn). That is, exists xn ∈ Ω(yn).
Since Ω is uhc, there is a subsequence {xnk

}k∈N that converges to some point x ∈ Ω(y). Likewise,
since Ω is lhc, there exists a sequence {x̃n} such that x̃n → x and x̃n ∈ Ω(yn) for each n. Since
f is continuous, v(yn) = f(x̃n, yn) → f(x, y) = v(y). Thus v is continuous.

b) Given y ∈ Y , take two points x1 and x2 in Ω(y). Since Γ(y) has convex values, ∀λ ∈ (0, 1), zλ :=
λx1 + (1 − λ)x2 ∈ Γ(y). Also, since f is quasi-concave in x, f(zλ, y) ≥ min{f(x1, y), f(x2, y)}.
Then, zλ ∈ Ω(y), ∀λ ∈ (0, 1). Then, Ω has convex values.

c) Identify the set I with {1, ..., κ} for some k ∈ N (which we can do without loss of generality
since I is finite). Define, for all i ∈ I, the correspondence Φi :

∏
j ̸=i S

j ↠ Si as Φi(s−i) :=

argmaxs∈Γi(s−i) u
i(s, s−i). Given Berge’s Maximum Theorem, we know that, ∀i ∈ I, Φi is uhc

and has compact, convex, and non-empty values. Then, the correspondence Φ :
∏κ

i=1 S
i ↠∏κ

i=1 S
i defined by Φ(s) = Φ1(s−1)× ...× Φκ(s−κ) satisfies the hypotheses of Kakutani’s fixed

point theorem. Then, there is s̄ =
(
s̄i; i ∈ I

)
such that s̄ ∈ Φ(s̄). This fixed point s̄ is an

equilibrium for the social game.

2 Separating Hyperplane Theorem

Problem 3

1. Let A and B be disjoint nonempty convex subsets of Rn and suppose p ∈ Rn is a non-zero
vector that separates A and B with p · a ≥ p · b for all a ∈ A, b ∈ B. If A includes a set of the
form {x}+ Rn

++, then p > 0.
Hint : proof by contradiction.

2. Let C be a nonempty convex subset of a vector space, and let f1, . . . , fm : C → R be concave.
Letting f = (f1, . . . , fm) : C → Rm, exactly one of the following is true:

a
∃x̄ ∈ C such that f(x̄) > 0

b
∃p > 0 such that p · f(x) ≤ 0 for all x ∈ C

Solution

1. Since p is nonzero by hypothesis, it suffices to show that p ≥ 0. Suppose by way of contradic-
tion that pi < 0 for some i. Fix y ∈ B. Note that tei+1 belongs to Rn

++ for every t > 0. Now
p · (x+ tei + 1) = p · x+ tpi + p · 1. By letting t → +∞, we see that p · x+ tpi + p · 1 → −∞,
which contradicts p · (x+ tei + 1) ≥ p · y for any t > 0. Therefore p > 0.

2. This is known as Concave Alternative Theorem.
Clearly both cannot be true. Suppose (a) fails. Set H = f(C) and set Ĥ = {y ∈ Rm : y ≤
f(x) for some x ∈ C}. Since (a) fails, we see that H and Rm

++ are disjoint. Consequently Ĥ
and Rm

++ are disjoint.
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Now observe that Ĥ is convex. To see this, take y1, y2 ∈ Ĥ. Then there exists x1, x2 such
that yi ≤ f(xi), i = 1, 2. Therefore, for any λ ∈ (0, 1),

λy1 + (1− λ)y2 ≤ λf(x1) + (1− λ)f(x2) ≤ f(λx1 + (1− λ)x2)

since each fj is concave. We arrive at λy1 + (1− λ)y2 ∈ Ĥ.

Since Ĥ is convex, by the Separating Hyperplane Theorem, there is a nonzero vector p ∈ Rm

separating Ĥ and Rm
++. We may assume p is such that

p · y ≤ p · r for all y ∈ Ĥ, r ∈ Rm
++

By (1), p > 0. Observe that for any ϵ > 0, ϵ1 ∈ Rm
++. Therefore, p · y ≤ ϵp · 1 ∀y ∈ Ĥ.

Since ϵ may be taken arbitrarily small, we conclude that p · y ≤ 0 ∀y ∈ Ĥ. In particular,
p · f(x) ≤ 0 ∀x ∈ C.

3 Differential equations

Problem 4

Solve the following differential equation: y′′ − 5y′ + 4y = e4x. Concretely, provide (i) the general
solution of the homogeneous differential equation, and (ii) the particular and general solutions of
the inhomogeneous differential equation. Solve explicitly for the constants using the following initial
conditions: y(0) = 3, y(0)′ = 19

3 .

Solution

The characteristic equation is k2−5k+4 = 0. The solutions are given by k1 = 4 and k2 = 1. Then,
the general solution of the homogeneous equations is y0(x) = C1e

4x + C2e
x.

For the particular inhomogeneous solution, we conjecture that y1(x) = xAe4x. Then

y′1(x) = (A+ 4Ax)e4x,

y′′2 (x) = (8A+ 16Ax)e4x.

This implies that (8A + 16Ax)e4x − 5(A + 4Ax)e4x + 4xAe4x = e4x. Solving for A yields A = 1
3

and, therefore, y1(x) =
x
3 e

4x.

The general inhomogeneous solution is y0(x) + y1(x) = C1e
4x + C2e

x + x
3 e

4x.

Finally, using the initial conditions, we have that C1 + C2 = 3 and 4C1 + C2 + 1
3 = 19

3 . Then,
C1 = 1 and C2 = 2.
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