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FRAMING CONTINGENCIES

BY DAVID S. AHN AND HALUK ERGIN1

The subjective likelihood of a contingency often depends on the manner in which
it is described to the decision maker. To accommodate this dependence, we introduce
a model of decision making under uncertainty that takes as primitive a family of pref-
erences indexed by partitions of the state space. Each partition corresponds to a de-
scription of the state space. We characterize the following partition-dependent expected
utility representation. The decision maker has a nonadditive set function ν over events.
Given a partition of the state space, she computes expected utility with respect to her
partition-dependent belief, which weights each cell in the partition by ν. Nonadditivity
of ν allows the probability of an event to depend on the way in which the state space
is described. We propose behavioral definitions for those events that are transparent
to the decision maker and those that are completely overlooked, and connect these
definitions to conditions on the representation.

KEYWORDS: Partition-dependent expected utility, support theory.

1. INTRODUCTION

THIS PAPER FORMALLY INCORPORATES the framing of contingencies into de-
cision making under uncertainty. Its primitives are descriptions of acts, which
map contingencies to outcomes. For example, the following health insurance
policy associates deductibles on the left with contingencies on the right:

⎛
⎝

$500 surgery
$100 prenatal care
���

���

⎞
⎠ �

Compare this to the following policy, which includes some redundancies:
⎛
⎜⎜⎜⎝

$500 laminotomy
$500 other surgeries
$100 prenatal care
���

���

⎞
⎟⎟⎟⎠ �

Both policies provide effectively identical levels of coverage. Nonetheless, a
consumer might evaluate them differently. The second policy explicitly men-
tions laminotomies, which she may overlook or fail to fully consider when

1This paper supersedes an earlier draft titled “Unawareness and Framing.” Comments from
Raphaël Giraud, Todd Sarver, a co-editor, and anonymous referees were very helpful. Klaus
Nehring deserves special thanks for discovering and carefully explaining to us the relationship
between binary bet acyclicity and the product rule, leading to the material in Section 4.4. We
thank the National Science Foundation for financial support under Grants SES-0550224, SES-
0551243, and SES-0835944.
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evaluating the first contract. This oversight is behaviorally revealed if the con-
sumer is willing to pay a higher premium for the second contract, reflecting an
increased personal belief of the likelihood of surgery after laminotomies are
mentioned.

The primary methodological innovation of the paper is its ability to discrim-
inate between different presentations of the same act. Our general model ex-
pands the standard subjective model of decision making under uncertainty. We
introduce a richer set of primitives that distinguishes the different expressions
for an act as distinct choice objects. In particular, lists of contingencies with
associated outcomes are the primitive objects of choice. Choices over lists are
captured by a family of preferences, where each preference is indexed by a
partition of the state space. We interpret the partition as a description of the
different events. Equipped with this primitive, we present axioms that char-
acterize the suggested partition-dependent expected utility representation. To
our knowledge, this is the first axiomatic attempt to incorporate framing of
contingencies as a consideration in decision making.2

We characterize the following utility function, which we call partition-
dependent expected utility. Each event E carries a weight ν(E). Each outcome x
delivers a utility u(x). When presented a list E1� � � � �En of contingencies that
partition the state space, the decision maker judges the probability of Ei to be
ν(Ei)/

∑
j ν(Ej). Suppose E = F ∪G with F�G disjoint. Since ν is not necessar-

ily additive, the judged likelihood of event E = F ∪G can depend on whether
it is coarsely expressed as E or finely expressed as the union of two subevents
F ∪G. The utility for a list⎛

⎝
x1 E1
���

���

xn En

⎞
⎠

is obtained by aggregating her utilities u(xi) over the consequences xi by the
normalized weights ν(Ei)/

∑
j ν(Ej) on their corresponding events Ei. This

particular functional form departs modestly and parsimoniously from stan-
dard expected utility by relaxing the additivity of ν. Indeed, given a fixed list
E1� � � � �En of events, it maintains the affine aggregation and probabilistic so-
phistication of standard expected utility.3

Savage (1954) and Anscombe and Aumann (1963) did not distinguish differ-
ent presentations of the same act. They implicitly assumed the psychological
principle of extensionality, that the framing of an event is inconsequential to
its judged likelihood. Despite its normative appeal, extensionality is violated in

2A recent paper by Bourgeois-Gironde and Giraud (2009) considers presentation effects in
the Bolker–Jeffrey decision model.

3In fact, shortly we directly impose the Anscombe–Aumann representation on preferences
given a fixed list of contingencies. As will be clear in the sequel, the belief will change between
lists.
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experiments where unpacking a contingency into finer subcontingencies affects
its perceived likelihood. In a classic experiment, Fischoff, Slovic, and Lichten-
stein (1978) told car mechanics that a car fails to start and asked for the likeli-
hood that different parts could cause the failure. The mechanics’ likelihood as-
sessments depended on whether a part’s subcomponents were explicitly listed.

Tversky and Koehler (1994) proposed a nonextensional model of judg-
ment, which they called support theory. Support theory begins with a func-
tion P(A�B), which reflects the likelihood of a hypothesis A given that A
or the mutually exclusive hypothesis B holds. It connects these likelihoods by
asserting P(A�B) = s(A)

s(A)+s(B)
, where s(·) is a nonadditive “support function”

over different hypotheses. Support theory enjoys considerable success among
psychologists for its ability to “accommodate many mechanisms � � � that influ-
ence subjective probability, but integrate them via the construct of the sup-
port” (Brenner, Koehler, and Rottenstreich (2002)). This paper contributes
to the development of support theory by, first, providing a decision theoretic
model and foundation for support theory, second, studying the uniqueness of
the support function under different assumptions on the behavioral data, and
third, identifying new classes of events which have special properties in terms
of their support.

One interpretation of nonextensionality is through unforeseen contingen-
cies. The general idea of a decision maker with a coarse understanding of
the state space appears in papers by Dekel, Lipman, and Rustichini (2001),
by Epstein, Marinacci, and Seo (2007), by Ghirardato (2001), and by Mukerji
(1997). Our contribution is to compare preferences across descriptions to
identify which contingencies had been unforeseen. This basic insight of us-
ing the explicit expression of unforeseen contingencies as a foundation for
their identification was anticipated in psychology and in economics. Tversky
and Koehler (1994, p. 565) connected nonextensional judgment and unfore-
seen contingencies: “The failures of extensionality � � �highlight what is perhaps
the fundamental problem of probability assessment, namely the need to con-
sider unavailable possibilities � � �People � � � cannot be expected � � � to generate
all relevant future scenarios.” Dekel, Lipman, and Rustichini (1998a, p. 524)
distinguished unforeseen contingencies from null events, because “an ‘uninfor-
mative’ statement—such as ‘event x might or might not happen’—can change
the agent’s decision.” Our model formally executes their suggested test.

Beyond unforeseen contingencies, there are other psychological sources for
nonextensional judgment. A first source is limited memory or recall. For ex-
ample, the car mechanics surveyed by Fischoff, Slovic, and Lichtenstein (1978)
had surely heard of the mechanical failures before. To explain nonextension-
ality, Tversky and Koehler (1994, p. 549) appealed to “memory and attention
� � � Unpacking a category � � � into its components � � � might remind people of
possibilities that would not have been considered otherwise.”

A second source of nonextensionality is that different descriptions alter the
salience of events. For example, Fox and Rottenstreich (2003) asked subjects
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to report the probability that Sunday would be the hottest day of the coming
week. Subjects’ reports depended significantly on whether the rest of the week
was described as a single event or separated as Monday, Tuesday, and so on,
with a mean of 1

3 in the first case and of 1
7 in the latter. In such cases, descrip-

tions affect probability judgments without suggesting unforeseen or unrecalled
cases.

The next section introduces the primitives of our theory. Section 3 defines
the suggested partition-dependent expected utility representation. Section 4
axiomatizes the representation and discusses the uniqueness of its compo-
nents. Finally, Section 5 defines two families of events—those which are com-
pletely understood and those which are completely overlooked—and examines
the structure of these families when the representation holds.

2. A NONEXTENSIONAL MODEL OF DECISION MAKING

This section introduces the primitives of the model. The closest formalism
of which we are aware is the model of decision making under ignorance by
Cohen and Jaffray (1980), which also considers different descriptions of the
state space.4 However, they imposed as a normative condition that preference
is invariant to the manner in which the states are expressed, while this depen-
dence is exactly our focus.

Let S denote a state space. A finite partition of S is a nonempty and pair-
wise disjoint collection of subsets π = {E1� � � � �En} such that S = ⋃n

i=1 En. The
events E1� � � � �En are called the cells of partition π.5 Let Π∗ denote the col-
lection of all finite partitions of S. We interpret each partition π ∈ Π∗ as a
description of the state space S: it explicitly mentions categories of possible
states, where each cell of the partition is a category, and these categories are
comprehensive. For any π ∈ Π∗, let σ(π) denote the algebra induced by π.6
Define the binary relation ≥ on Π∗ by π ′ ≥ π if σ(π ′) ⊃ σ(π), that is, if π ′ is
finer than π. If π ′ ≥ π, then π ′ is a richer description of the state space than π.
The meet π ∧π ′ and join π ∨π ′ respectively denote the finest common coars-
ening and the coarsest common refinement of π and π ′. For any event E ⊂ S,
let Π∗

E denote the set of finite partitions of E. If E ∈ π ∈ Π∗ and πE ∈ Π∗
E , we

slightly abuse notation and let π ∨πE denote π ∨ [πE ∪ {E�}].
The model considers a set of descriptions Π ⊂ Π∗. We assume that Π in-

cludes the vacuous description {S} and is closed under ∧ and ∨. Some defin-
itions in the sequel reference two collections of events. First, let C = ⋃

π∈Π π
denote the collection of cells of partitions in Π. Second, let E = ⋃

π∈Π σ(π)
denote the collection of all unions of cells of some partition in Π. Clearly, E is
the algebra generated by C . Most results focus on two cases of Π. In the first

4We thank Raphaël Giraud for bringing this work to our attention.
5For any partition π ∈Π∗, we adopt the convention where π ∪ {∅} is identified with π.
6Since π is finite, σ(π) is the family of unions of cells in π and the empty set.
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case, descriptions can be indexed so they become progressively finer, in which
case Π is a filtration. In the second case, all possible descriptions are included,
in which case Π =Π∗. We discuss the distinction shortly.

Let X denote a finite set of consequences or prizes. Invoking the Anscombe–
Aumann structure, let ΔX denote the set of lotteries on X . An act f :S → ΔX
maps states to lotteries. Slightly abusing notation, let p ∈ ΔX also denote the
corresponding constant act. Let Fπ denote the family of acts that respect the
partition π, that is, f−1(p) ∈ σ(π) for all p ∈ ΔX . In words, the act f is σ(π)-
measurable if it assigns a constant lottery to all states in a particular cell of the
partition: if s� s′ ∈ E ∈ π, then f (s) = f (s′). Informally, Fπ is the set of acts of
contracts that can be described using the descriptive power of π; an act g /∈ Fπ

requires a finer categorization than is available in π. Let F = ⋃
π∈Π Fπ denote

the universe of acts under consideration. For any act f ∈ F , let π(f ) denote the
coarsest available partition π ∈ Π such that f ∈ Fπ .7 Note that when Π 
= Π∗,
because π(f ) is the coarsest partition within Π, it could be strictly finer than
the partition induced by f , that is, the coarsest partition (among all partitions)
that makes f measurable. Similarly for any pair of acts f�g ∈ F , let π(f�g) be
the coarsest available partition π ∈ Π such that f�g ∈ Fπ .

Our primitive is a family of preferences {�π}π∈Π indexed by partitions π,
where each �π is defined over the family Fπ of π-measurable acts. Our inter-
pretation of f �π g is that f is weakly preferred to g when the state space is
described as the partition π. If f /∈ Fπ , then the description π is too coarse to
express the structure of f . If either f or g is not π-measurable, then the state-
ment f �π g is nonsensical. The strict and symmetric components �π and ∼π

carry their standard meanings.
The restriction to π-measurable acts is not innocuous, particularly when

framing effects are interpreted as reflecting unawareness. Consider a health
insurance contract that covers eighty percent of the cost of surgery. The exact
benefit of the insurance depends on which surgery is required, about which the
consumer might have only a vague understanding. Nonetheless, its terms are
described without explicitly mentioning every possible surgery. The measura-
bility assumption precludes such contracts, a limitation of our model.

Our original motivation was to study preferences over lists. The family of
preferences {�π}π∈Π provides a parsimonious primitive that loses little descrip-
tive power relative to a model that begins with preferences over lists. Suppose
we started with a list⎛

⎝
x1 E1
���

���

xn En

⎞
⎠ �

7The existence of π(f ) is guaranteed by our assumption that Π is closed under the operation
∧. To see this, let π ∈ Π be any partition according to which f is measurable. Since π is a finite
partition, there are finitely many partitions that are (weakly) coarser than π. Hence the set Π′ =
{π ∈Π|π ′ ∈Π�π ′ ≤ π�&f ∈ Fπ′ } is finite and nonempty, and π(f )= ∧

π′∈Π′ π ′.
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which is a particular expression of the act f . This list is more compactly repre-
sented as a pair (f�π), where the partition π = {E1� � � � �En} denotes the list of
explicit contingencies on the right. This description π is necessarily richer than
the coarsest expression of f , so f ∈ Fπ . Now suppose the decision maker is de-
ciding between two lists, which are represented as (f�π1) and (g�π2). Then the
events in both π1 and π2 are explicitly mentioned. So the family of described
events is the coarsest common refinement of π1 and π2, their join π = π1 ∨π2.
Then (f�π1) is preferred to (g�π2) if and only if (f�π) is preferred to (g�π).
We can therefore restrict attention to the preferences over pairs (f�π) and
(g�π), where f�g ∈ Fπ . Moving the partition from being carried by the acts to
being carried as an index of the preference relation arrives at exactly the model
studied here.

The lists are expressed through indexed preference relations for the result-
ing economy of notation. The partition π that indexes f �π g is the coarsest
refinement of the observable descriptions in the lists π1 and π2 that accom-
panied f and g. The partition π is not meant to be interpreted as anything
more. It is exogenous information that is an observable component of the de-
cision problem and should not be taken as a direct measure of the decision
maker’s subjective understanding of the state space. In fact, Section 5 suggests
a method for inferring her subjective understanding of the state space from her
preferences over lists.

An important consideration is exactly which preferences are available or
observable to the analyst. How rich are the preferences that can be sensibly
elicited from the decision maker? This question speaks directly to the structure
of the collection Π. Consider the interpretation of framing in terms of avail-
ability or recall. Once an event is explicitly mentioned to the decision maker,
this pronouncement cannot be reversed. In this case, after being presented
with prior partitions π1� � � � �πt−1, the relevant behavior after also being told πt

is with respect to the refinement of the prior presentations π1� � � � �πt−1 and the
current πt . So the appropriate assumption in this case is that Π is a filtration.

On the other hand, under different motivations for framing, it seems more
reasonable to consider the family of all descriptions. For example, if framing ef-
fects are due to salience, these effects are independent of the decision maker’s
ability to recall events. A similar argument can be made for the representa-
tiveness heuristic.8 Even for motivations where preferences under the full set
of descriptions cannot be elicited for a single subject, the analyst could believe
there is enough uniformity in the population to elicit preferences across sub-
jects, in which case a particular description could be given to one subject while

8Consider the famous “Linda problem,” where subjects are told that “Linda is 31 years old,
single, outspoken and very bright. She majored in philosophy. As a student, she was deeply
concerned with issues of discrimination and social justice, and also participated in antinuclear
demonstrations.” The subjects believe the event “Linda is a bank teller” is less probable than the
event “Linda is a bank teller and is active in the feminist movement” (Tversky and Kahneman
(1983, p. 297)).
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alternative descriptions are given to others. Similarly, it might be useful to con-
sider counterfactual assessments about what a particular decision maker would
have done if she had been presented alternative sequences of descriptions.

We therefore consider two canonical cases: in the first, Π is a filtration; in
the second, Π is the family of all finite partitions. The appropriateness of either
case depends on the application. Neither case is obviously more technically
challenging. When Π is larger, the theory leverages more information about
the decision maker, but also must rationalize more of her choices.

Given a partition π = {E1� � � � �En} ⊂ E and acts f1� � � � � fn ∈ F , define a new
act by

⎛
⎝
f1 E1
���

���

fn En

⎞
⎠ (s) =

⎧⎪⎨
⎪⎩
f1(s)� if s ∈ E1,
���

���

fn(s)� if s ∈ En.9

Null events for our setting with a family of preferences are defined as follows:

DEFINITION 1: Given π ∈ Π, an event E ∈ σ(π) is π-null if

(
p E

f E�

)
∼π

(
q E

f E�

)

for all f ∈ Fπ and p�q ∈ ΔX; E ∈ σ(π) is π-nonnull if it is not π-null. The
event E is null if E is π-null for any π such that E ∈ π; E is nonnull if it is not
null.10

3. PARTITION-DEPENDENT EXPECTED UTILITY

We study the following utility representation. The decision maker has a non-
additive set function ν : C → R+ over relevant contingencies. Presented with a
description π = {E1�E2� � � � �En} of the state space, she places a weight ν(Ek)
on each described event. Following Tversky and Koehler (1994), we refer to
ν(E) as the support of E. Normalizing by the sum, μπ(Ek) = ν(Ek)/

∑
i ν(Ei)

9Note that the partition π does not necessarily belong to Π. However, the assumption that
π ⊂ E guarantees that π is coarser than some partition π ′ ∈ Π. To see this, let πi ∈ Π be such
that Ei ∈ σ(πi) for each i = 1� � � � � n and let π ′ = π1 ∨ π2 ∨ · · · ∨ πn ∈ Π. Then π ≤ π ′ and the
new act defined above belongs to Fπ′∨π(f1)∨···∨π(fn) ⊂ F .

10Note that for an event E to be nonnull, E only needs to be nonnull for some partition π
including E, but not necessarily for all partitions whose algebras include E.
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defines a probability measure μπ over σ(π). Then her utility for the act f ex-
pressed as

f =

⎛
⎜⎜⎜⎝
p1 E1

p2 E2
���

���

pn En

⎞
⎟⎟⎟⎠

is
∑n

i=1 u(pi)μπ(Ei), where u :ΔX → R is an affine utility function over objec-
tive lotteries.

The following definition avoids division by zero during the normalization.

DEFINITION 2: A support function is a weakly positive set function ν : C → R+
such that

∑
E∈π ν(E) > 0 for all π ∈ Π.

Although ∅ is not in C , since it is not an element of any partition, we ad-
here to the convention that ν(∅) = 0. We can now formally define the utility
representation.

DEFINITION 3: {�π}π∈Π admits a partition-dependent expected utility (PDEU)
representation if there exist a nonconstant affine von Neumann–Morgenstern
(vNM) utility function u :ΔX → R and a support function ν : C → R+ such that
for all π ∈ Π and f�g ∈ Fπ ,

f �π g ⇐⇒
∫
S

u ◦ f dμπ ≥
∫
S

u ◦ gdμπ�

where μπ is the unique probability measure on (S�σ(π)) such that for all
E ∈ π,

μπ(E)= ν(E)∑
F∈π

ν(F)
�(1)

When such a pair (u� ν) exists, we call it a PDEU representation.
The support ν(E) corresponds to the relative weight of E in lists where E,

but not its subevents, are explicitly mentioned. The nonadditivity of ν allows
for framing effects: E and F can be disjoint yet ν(E) + ν(F) 
= ν(E ∪ F). The
normalization of dividing by

∑
E∈π ν(E) is also significant. If the complement

of E is unpacked into finer subsets, then the assessed likelihood of E will be
indirectly affected in the denominator. So the probability of E depends directly
on its description πE and indirectly on the description πE� of its complement.

PDEU is closely related to support theory, which was introduced by Tversky
and Koehler (1994) and extended by Rottenstreich and Tversky (1997). Sup-
port theory begins with descriptions of events, called hypotheses. Tversky and
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Koehler (1994) analyzed comparisons of likelihood between pairs (A�B) of
mutually exclusive hypotheses that they call evaluation frames, which consist
of a focal hypothesis A and an alternative hypothesis B. The probability judg-
ment of A relative to B is P(A�B) = s(A)/[s(A) + s(B)], where s(A) is the
support assigned to hypothesis A based on the strength of its evidence. They
focused on the case of nonadditive support for the same motivations as we
do. They also characterized the formula for P(A�B). However, they directly
treated P , rather than preference, as primitive (Tversky and Koehler (1994,
Theorem 1)). Our theory translates support theory from judgment to decision
making and extends its scope beyond binary evaluation frames. Our results
provide behavioral axiomatic foundations for the model and precise require-
ments for identifying a unique support function from behavioral data.

Alongside its psychological pedigree, there are sound methodological argu-
ments for PDEU. These points will develop in the sequel, but we summarize a
few here. First, while the beliefs μπ could be left unconnected across partitions,
the consequent lack of basic structure would not be amenable to applications
or comparative statics. Second, PDEU has an attractively compact form. As
in the standard case, preference is summarized by two mathematical objects:
one function for utility and another for likelihood. Third, an inherited virtue
of the standard model is that a large number of implied preferences can be
determined from a small number of choice observations. Under PDEU, once
the weights of specific events are fixed, the weights of many other events can
be computed by comparing likelihood ratios. This tractably generates counter-
factual predictions about behavior under alternative descriptions of the state
space, an exercise that would be difficult without any structure across parti-
tions.

Finally, PDEU associates interesting classes of behavior with features of ν.
For example, specific kinds of framing effects are characterized by subaddi-
tivity. The availability heuristic associates the probability of events with the
number of cases that the decision maker can recall; if more precise description
aid recall, then the support function is subadditive. These sorts of characteri-
zations are provided in the online supplement (Ahn and Ergin (2010)). PDEU
also guarantees natural structure on special collections of events, in particular,
those that are immune to framing and those that are completely overlooked
without explicit mention. These results are presented in Section 5.

We sometimes refer to the following prominent example of PDEU.

EXAMPLE 1—Principle of Insufficient Reason: Suppose ν is a constant func-
tion, for example, ν(E) = 1 for every nonempty E. Then the decision maker
puts equal probability on all described contingencies. Such a criterion for cases
of extreme ignorance or unawareness was advocated by Laplace and Leibnitz
as the principle of insufficient reason, but is sensitive to the framing of the
states.
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When the set function ν is additive, the probabilities of events do not depend
on their expressions and the model reduces to standard subjective expected
utility.

DEFINITION 4: {�π}π∈Π admits a partition-independent expected utility repre-
sentation if it admits a PDEU representation (u� ν) with finitely additive ν.

4. AXIOMS AND REPRESENTATION THEOREMS

This section provides axiomatic characterizations of PDEU in two settings:
when Π is a filtration and when Π includes all finite partitions.

4.1. Basic Axioms

We first present axioms that will be required in both settings. The first five
are standard and are collectively denoted as the Anscombe–Aumann axioms.

AXIOM 1—Weak Order: �π is complete and transitive for all π ∈ Π.

AXIOM 2—Independence: For all π ∈ Π, f�g�h ∈ Fπ and α ∈ (0�1), if f �π

g, then αf + (1 − α)h �π αg + (1 − α)h.

AXIOM 3—Archimedean Continuity: For all π ∈ Π and f�g�h ∈ Fπ , if f �π

g �π h, then there exist α�β ∈ (0�1) such that αf + (1 − α)h �π g �π βf + (1 −
β)h.

AXIOM 4—Nondegeneracy: For all π ∈ Π, there exist f�g ∈ Fπ such that
f �π g.

AXIOM 5—State Independence: For all π ∈ Π, π-nonnull E ∈ σ(π), p�q ∈
ΔX , and f ∈ Fπ ,

p�{S} q ⇐⇒
(
p E

f E�

)
�π

(
q E

f E�

)
�

State independence has some additional content here: not only is the utility
for a consequence invariant to the event in which it obtains, it also is invariant
to the description of the state space.

These axioms guarantee a collection of probability measures μπ :σ(π) →
[0�1] and an affine function u :ΔX → R such that

∫
S
u ◦ f dμπ represents �π .

That is, fixing a partition π, the preference �π is standard expected utility given
the subjective belief μπ . The model’s interest derives from the relationship
between preferences across descriptions.

Any expression of a contract f must mention at least the different events
in which it delivers the various payments. At a minimum, the events in π(f )
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must be explicitly mentioned, recalling that π(f ) is the coarsest available par-
tition π ∈ Π such that f ∈ Fπ . Similarly, when comparing two acts f and
g, the coarsest description available to express both f and g is π(f�g) =
π(f )∨π(g), where none of the payoff-relevant contingencies is unpacked into
finer subevents. This motivates the following binary relation � on F .

DEFINITION 5: For all f�g ∈ F , define f � g if f �π(f�g) g, where π(f�g) =
π(f )∨π(g).

Under the Anscombe–Aumann axioms, the single relation � compactly sum-
marizes the entire family of relations {�π}π∈Π . For example, consider the pref-
erence between two acts f and g given a description π that is strictly finer than
π(f�g). Does the preference f �π g hold? To answer this question equipped
only with �, take any act h such that π = π(h). Then f �π g if and only if
αf + (1 −α)h�π g for α ∈ (0�1) close to 1, since the mixture act αf + (1 −α)h
is close to f in terms of payoffs but requires the minimal description π.

We use � in the sequel for its notational convenience. However, where � is
invoked, much of the force is implicit in its construction. These assumptions
should, therefore, be delicately interpreted.

The following principle is a verbatim application of the classic axiom of
Savage (1954) to the defined relation �.

AXIOM 6—Sure-Thing Principle: For all events E ∈ E and acts f�g�h�h′ ∈ F ,(
f E

h E�

)
�

(
g E

h E�

)
⇐⇒

(
f E

h′ E�

)
�

(
g E

h′ E�

)
�

The sure-thing principle is usually invoked to establish coherent conditional
preferences: the relative likelihood of subevents of E is independent of the
prizes associated with E�. In our context, this coherence is already guaranteed
by the Anscombe–Aumann axioms. Here, the marginal power of the axiom is
to require that the preference conditional on E is independent of the descrip-
tion of E� induced by h or h′. To see this, assume for simplicity that the images
of h and h′ are disjoint from the images of f and g. Then the implied descrip-
tions to make the comparison in the left hand side can be divided into two
parts: the description of E implied by f and g, and the description of E� im-
plied by h. The descriptions in the right hand side can be similarly divided: the
same description of E generated by f and g, and the possibly different descrip-
tion of E� generated by h′. The sure-thing principle requires that the relative
likelihoods of subevents of E are independent of how the complement E� is
expressed.11

11Given the Anscombe–Aumann axioms, this feature of the sure-thing principle is perhaps
more transparently expressed by the following equivalent condition: Fix an event E ∈ E . Let
π|E = {A ∩ E :A ∈ π}. For any π�π ′ ∈ Π such that E ∈ σ(π)�σ(π ′), if π|E = π ′|E and f�g ∈
Fπ ∩ Fπ′ with f |E� = g|E� , then f �π g ⇐⇒ f �π′ g�
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There are situations where such separability might be restrictive. For exam-
ple, the judged relative likelihood of a failure of an automobile’s alarm system
to a failure of its transmission might depend on how finely its audio system
is described. This is because alarm and audio systems are electronic compo-
nents, while the transmission is mechanical. Nonetheless, such separability is
required in classic support theory, where the relative likelihood in an evalua-
tion frame (A�B) of hypothesis A to hypothesis B is independent of how any
third hypothesis is described. This separability is a consequence of summariz-
ing likelihood with a single function ν and, therefore, is necessary for PDEU
representation.

We occasionally reference the following standard condition, which excludes
any nonempty null events:

AXIOM 7—Strict Admissibility: If f (s) � g(s) for all s ∈ S and f (s′) � g(s′)
for some s′ ∈ S, then f � g.

4.2. Π Is a Filtration

We write Π is a filtration if the refinement relation ≥ is complete on Π.
Given the restriction to finite partitions, Π can then be indexed by a finite
or countably infinite sequence as Π = {πt}Tt=0 with π0 = {S} and πt+1 > πt for
0 ≤ t < T . When T is finite, πT is the finest partition in Π; therefore, F =⋃

π∈Π Fπ = FπT
and E = ⋃

π∈Π σ(π) = σ(πT). For any expressible act f ∈ F ,
here π(f ) refers to the first partition in {πt}Tt=0 for which f is measurable, but
π(f ) could be strictly finer than the algebra induced by f . Similarly, π(f�g)
refers to the first partition in the filtration where f and g become describable.

THEOREM 1: Given a filtration {πt}Tt=0, {�πt }Tt=0 admits a PDEU representa-
tion if and only if it satisfies the Anscombe–Aumann axioms and the sure-thing
principle.

See Appendix B for the proof.
Some intuition for Theorem 1 is provided after presenting the uniqueness

result. A precise statement regarding the uniqueness of u and ν requires an
additional definition.

DEFINITION 6: A filtration Π = {πt}Tt=0 is gradual with respect to {�πt }Tt=0 if
there exists a πt-nonnull event E ∈ πt ∩πt+1 for all t = 1� � � � � T − 1.

In words, Π is gradual if it never splits all of the πt-nonnull events
into finer descriptions. For example, suppose π1 = {{a�b}� {c�d}} and π2 =
{{a}� {b}� {c}� {d}}. This filtration is not gradual because π2 splits every event
in π1. An alternative elicitation could describe the state space as π ′

2 =
{{a}� {b}� {c�d}} and then as π ′

3 = {{a}� {b}� {c}� {d}}. This filtration collects a
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strictly richer set of preferences. In the alternative elicitation, ν is uniquely
identified up to a constant scalar.12

THEOREM 2: Suppose {πt}Tt=0 is a filtration and {�πt }Tt=0 admits a PDEU rep-
resentation (u� ν). Then the following statements are equivalent:

(i) {πt}Tt=0 is gradual with respect to {�πt }Tt=0.
(ii) If (u′� ν′) also represents {�πt }Tt=0, then there exist numbers a� c > 0 and

b ∈ R such that u′(p) = au(p) + b for all p ∈ ΔX and ν′(E) = cν(E) for all
E ∈ C \ {S}.

See Appendix B for the proof.
The identification of the support function ν is surprisingly delicate. This deli-

cacy provides some intuition for how the support function is elicited. When two
cells are in the same partition, identifying ν is simple. For example, if E�F ∈ π,
then the likelihood ratio ν(E)/ν(F) is identified by μπ(E)/μπ(F), where μπ

is the probability measure on π implied by the Anscombe–Aumann axioms on
�π . When E and F are not part of the same partition, an appropriate chain
of available partitions and betting preferences calibrates the likelihood ratio
ν(E)/ν(F). For example, suppose S = {a�b� c�d}, T = 2, π1 = {{a�b}� {c�d}},
and π2 = {{a}� {b}� {c�d}}. Consider the ratio ν({a�b})/ν({a}). First, consider
preferences when the states are described as the partition π1 to identify the
likelihood ratio ν({a�b})

ν({c�d}) of {a�b} to {c�d}. Next, considering the preferences
when the states are described as π2 reveals the ratio ν({c�d})

ν({a}) of {c�d} to {a}.
Then we can identify ν({a�b})

ν({a}) = ν({a�b})
ν({c�d}) × ν({c�d})

ν({a}) , that is, “the {c�d}’s cancel” when
the revealed likelihood ratios multiply out.

This approach of indirectly linking the cells with intermediate connections
might encounter two obstacles. First, if {c�d} is π1-null, then the ratio is un-
defined. Second, if the filtration specifies π2 = {{a}� {b}� {c}� {d}}, then it is
not gradual and there is no cell common to π1 and π2 with which to exe-
cute the indirect comparison of {a�b} to {b}. Instead, the ratios would reflect
ν({a�b})
ν({c�d}) in the first case and ν({c})+ν({d})

ν({a}) in the second. However, since generally
ν({c�d}) 
= ν({c})+ ν({d}), these ratios are not useful in identifying ν({a�b})

ν({a}) .
If two events E and F can be connected through such a chain of disjoint non-

null cells across partitions, then the ratio of ν(E) to ν(F) is pinned down. Oth-
erwise, the ratio cannot be identified. Assuming that the filtration is gradual
ensures that all cells can be connected, hence providing unique identification
of ν up to a scalar multiple.

12The exception is that value ν(S) at the vacuous description {S}, which is unidentified because
this quantity always divides itself to unity.
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4.3. Π Is the Collection of All Finite Partitions

We now consider the case where Π =Π∗, the collection of all finite partitions
of S. Then E = 2S and C = 2S \ {∅}. Unlike when Π is a filtration, the sure-
thing principle is insufficient for PDEU. The problem is that the calibrated
likelihood ratio of E to F can depend on the particular chain of comparisons
used to link them. When Π is a filtration, there is only one such sequence
available. The next example illustrates the potential dependence.

EXAMPLE 2: Let S = {a�b� c�d} and ΔX = [0�1]. Let π∗ = {{a�b}� {c�d}}
with μπ∗({a�b}) = 2

3 and μπ∗({c�d}) = 1
3 . For any π 
= π∗, let μπ(C) = 1

|π| for
all cells C ∈ π. Suppose u(p) = p, so �π is represented by

∫
S
f dμπ . These

preferences satisfy the Anscombe–Aumann axioms and the sure-thing princi-
ple, but admit no PDEU representation. To the contrary, suppose (u� ν) was
such a representation. Let π1 = {{a�b}� {c}� {d}}, π2 = {{a�d}� {b}� {c}}, and
π3 = {{a}� {b}� {c�d}}. Then, multiplying relevant likelihood ratios,

ν({a�b})
ν({c�d}) = ν({a�b})

ν({c}) × ν({c})
ν({b}) × ν({b})

ν({c�d})
= μπ1({a�b})

μπ1({c})
× μπ2({c})

μπ2({b}) × μπ3({b})
μπ3({c�d}) = 1�

We can directly obtain a contradictory conclusion:

ν({a�b})
ν({c�d}) = μπ∗({a�b})

μπ∗({c�d}) = 2�

The example suggests that an additional assumption on implied likeli-
hood ratios across different sequences of comparisons is required. Preferences
across partitions are summarized by the defined relation �, which compares
acts assuming their coarsest available description. This relation is intransitive:
the implied partitions π(f�g), π(g�h), and π(f�h) are generally distinct. The
following statement is a common generalization of transitivity.

AXIOM 8—Acyclicity: For all acts f1� � � � � fn ∈ F ,

f1 � f2� � � � � fn−1 � fn �⇒ f1 � fn�

This generalization is still too strong. Given the Anscombe–Aumann axioms,
acyclicity guarantees additivity of ν.
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PROPOSITION 1: {�π}π∈Π∗ admits a partition-independent expected utility rep-
resentation if and only if it satisfies the Anscombe–Aumann axioms and acyclic-
ity.13

See Appendix C for the proof.
Acyclicity therefore precludes nonadditive support functions. It is behav-

iorally restrictive because some cycles seem intuitive in the presence of framing
effects, such as the following example.

EXAMPLE 3: This example is inspired by Tversky and Kahneman (1983),
who reported that the predicted frequency across subjects of seven-letter words
ending with ing is higher than those with n as the sixth letter. Consider the
following events regarding a random seven-letter word:

E1 _ _ _ _ _t_,
E2 _ _ _ _ _n_.

The decision maker might consider E1 more likely than E2 because the letter
t is more common than n.

Now consider the following pair of events:

E2 _ _ _ _ _n_,
E3 _ _ _ _ing.

The decision maker considers E2 more likely than E3, because it is a strict
superset.

But, when presented with E1 and E3,

E1 _ _ _ _ _t_,
E3 _ _ _ _ing,

she thinks E3 is more likely, since she is now reminded of the large number of
present participles that end with ing. Letting p � q, we have a strict cycle:(

p E1

q E�
1

)
�

(
p E2

q E�
2

)
�

(
p E2

q E�
2

)
�

(
p E3

q E�
3

)
�

(
p E3

q E�
3

)
�

(
p E1

q E�
1

)
�14

The heart of this example is the nonempty intersection shared by E2 and E3.
When E2 and E3 are mentioned together, this intersection primes the consider-

13It is clear that Proposition 1 remains true if acyclicity of � is replaced with transitivity of �.
Define the certainty equivalence relation �∗ on F by: f �∗ g if there exists p�q ∈ ΔX such
that f ∼ p � q ∼ g. The relation �∗ is monotone (or weakly admissible) if f �∗ g whenever
f (s) �∗ g(s) for all s ∈ S. Then, Proposition 1 also remains true if acyclicity of � is replaced with
monotonicity of �∗. Details are available from the authors upon request.

14We are very grateful to an anonymous referee for suggesting this example.
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ation of subevents of E3, namely words ending with ing. The decision maker is
not comparing the likelihood of “seven-letter words ending with ing” against
“seven-letter words with n in the sixth place,” but against “seven-letter words
with n in the sixth place that may or may not end with ing.” On the other
hand, when comparing E1 to E2, she is directly comparing the two events, with-
out explicit mention of E2 ∩E3.

Finally, suppose E3 had been _ _ _ _ _d_. This event is disjoint from E1

and E2, and a cycle now seems less plausible. This suggests that cycles where
subsequent events are disjoint should be excluded, since these have meaningful
likelihood interpretations even in the presence of framing. This motivates the
following definition.

DEFINITION 7: A cycle of events E1�E2� � � � �En�E1 is sequentially disjoint if
E1 ∩E2 = E2 ∩E3 = · · · = En−1 ∩En =En ∩E1 = ∅.

AXIOM 9—Binary Bet Acyclicity: For any sequentially disjoint cycle of sets
E1� � � � �En�E1 and lotteries p1� � � � �pn;q ∈ ΔX ,

(
p1 E1

q E�
1

)
�

(
p2 E2

q E�
2

)
� � � � �

(
pn−1 En−1

q E�
n−1

)
�

(
pn En

q E�
n

)
�⇒

(
p1 E1

q E�
1

)
�

(
pn En

q E�
n

)
�

This consistency on likelihoods is only applicable across comparisons of dis-
joint events, a sensible restriction given our model of framing. If A and B in-
tersect, then eliciting whether A is judged more likely than B is delicate. The
delicacy is that we cannot directly measure the likelihood of the coarsest ex-
pression of A versus the coarsest expression of B, because no partition allows
a comparison of A to B. The best we can do is assess the subjective likelihood
of “A\B or A∩B” versus “B \A or A∩B.” Once framing effects are allowed,
this is a conceptually distinct question.

We can now characterize PDEU preferences when Π is rich.

THEOREM 3: {�π}π∈Π∗ admits a PDEU representation if and only if it satisfies
the Anscombe–Aumann axioms, the sure-thing principle, and binary bet acyclicity.

See Appendix C for the proof.
Turning to uniqueness, the following definition translates Definition 6 of a

gradual filtration to the current setting with all partitions.

DEFINITION 8: A sequence of events E1�E2� � � � �En is sequentially disjoint if
E1 ∩E2 = E2 ∩E3 = · · · = En−1 ∩En = ∅.
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AXIOM 10—Event Reachability: For any distinct nonnull events E�F � S,
there exists a sequentially disjoint sequence of nonnull events E1� � � � �En such that
E1 =E and En = F .

THEOREM 4: Assume that {�π}π∈Π∗ admits a PDEU representation (u� ν). The
following statements are equivalent:

(i) {�π}π∈Π∗ satisfies event reachability.
(ii) If (u′� ν′) also represents {�π}π∈Π∗ , then there exist numbers a� c > 0 and

b ∈ R such that u′(p) = au(p) + b for all p ∈ ΔX and ν′(E) = cν(E) for all
E � S.

The proof follows from Lemma 4 in Appendix A.
Strict admissibility implies event reachability, but the converse is false: event

reachability is strictly weaker than strict admissibility.

4.4. Binary Bet Acyclicity and the Product Rule

Binary bet acyclicity is reminiscent of an implication of support theory called
the product rule, which is well known in the psychological literature. Roughly
speaking, if R(A�B) denotes the relative likelihood of hypothesis A to a mu-
tually exclusive hypothesis B, the product rule requires R(A�C)R(C�B) =
R(A�D)R(D�B). Rewritten as R(A�C)R(C�B)R(B�D) = R(A�D), this is a
special case of the consistency across likelihood ratios implied by binary bet
acyclicity. The product rule and binary bet acyclicity have similar intuition: the
particular comparison event, C or D, used to calibrate the quantitative likeli-
hood ratio of A to B is irrelevant. One way to think of the product rule is as
a limited version of binary bet acyclicity that only precludes cycles of size four,
but allows for larger cycles. Given strict admissibility, if there are no cycles of
size four, then there are no cycles of any size. Therefore, binary bet acyclicity
is equivalent to the product rule. The product rule also enjoys some empirical
support.15

The next result formally states this equivalence. As Appendix D argues in
more detail, Theorem 1 of Tversky and Koehler (1994) can be restated as a
representation result for the relative likelihoods ratios R(A�B). Theorem 5(ii)
directly follows from Tversky and Koehler (1994) and from Nehring (2008),
who independently provided a proof of the same result.16

15In an experiment involving judging the likelihoods that professional basketball teams would
defeat others, Fox (1999) elicited ratios of support values and found an “excellent fit of the prod-
uct rule for these data” at both the aggregate and individual subject level.

16To clarify the relationship of the result to Tversky and Koehler (1994), we provide a proof of
Theorem 5(ii) based on the proof of Theorem 1 in Tversky and Koehler (1994) (see Lemma 7 in
Appendix D). As suggested above, Theorem 5(ii) can also be proven by showing that, under the
hypotheses of the theorem, if there are no binary bet cycles of size four, then there are no binary
bet cycles of any size. Details are available from the authors upon request.
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THEOREM 5—Tversky and Koehler (1994), Nehring (2008): Suppose that
{�π}π∈Π∗ satisfies the Anscombe–Aumann axioms, the sure-thing principle, and
strict admissibility. Then the following statements hold:

(i) There exists an affine vNM utility function u :ΔX → R and a unique family
of probabilities {μπ}π∈Π∗ with μπ :σ(π)→ [0�1], such that two conditions hold:

(a) For any π ∈ Π∗ and f�g ∈ Fπ , f �π g ⇐⇒ ∫
S
u ◦ f dμπ ≥ ∫

S
u ◦ gdμπ ,

and for any E ∈ π, μπ(E) > 0.
(b) For any nonempty disjoint events A�B, the ratio defined by

R(A�B)≡ μπ(A)

μπ(B)

is independent of π ∈ Π∗ such that A�B ∈ π.17

(ii) � satisfies binary bet acyclicity if and only if R satisfies the product rule
(Tversky and Koehler (1994))

R(A�B)R(B�C)=R(A�D)R(D�C)

for all nonempty events A�B�C�D such that [A∪C] ∩ [B ∪D] = ∅.

See Appendix D for the proof.
Theorem 5 can be leveraged to connect the cases where Π is a filtration

with the case where Π includes all partitions. Specifically, binary bet acyclicity
is equivalent to assuming that the likelihood ratio of E to F would not have
changed if another filtration had been used for elicitation. Details can be found
in the online supplement.

5. TRANSPARENT EVENTS AND COMPLETELY OVERLOOKED EVENTS

Throughout this section, let Π =Π∗. We now define two interesting families
of events. The first family consists of those events that are completely transpar-
ent to the decision maker prior to any further description of the state space.
The second family is the opposite: those events that are completely overlooked
until they are explicitly described. These definitions are imposed on the prefer-
ences directly. When preferences admit a PDEU representation, the families

17Under the assumptions of the theorem, these ratios can also be directly defined through
preference. Fix any p � q. For all disjoint nonempty A�B, define R(A�B) as follows. Without
loss of generality, suppose(

p A

q A�

)
�

(
p B

q B�

)
�

Then there exists a unique α ∈ (0�1] such that(
αp+ (1 − α)q A

q A�

)
∼

(
p B

q B�

)
�

Define R(A�B) = 1/α and R(B�A) = α.
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of transparent and of overlooked events are closed under union and intersec-
tion, which is potentially useful for applications. Moreover, these events can
be readily identified from the support function ν, which is another useful con-
sequence of PDEU for applications.

5.1. Transparent Events

We now consider those events whose explicit descriptions have no effect on
choice. If event A was already in mind when deciding between acts f and g,
then mentioning it explicitly should have no bearing on preference. Conversely,
if its explicit description reverses preference, then A must not have been com-
pletely considered.

DEFINITION 9: Fix {�π}π∈Π∗ . An event A is transparent if for any π ∈Π∗ and
for any f�g ∈ Fπ ,

f �π g ⇐⇒ f �π∨{A�A�} g�

Let A denote the family of all transparent events.

The events in A are those that are immune to manipulation by framing or
description. Someone designing a contract and deciding which contingencies
to explicitly mention cannot change the decision maker’s willingness to pay for
the contract by mentioning an event in A. The family A has some nice features
when preferences admit a strictly admissible PDEU representation.

PROPOSITION 2: Suppose {�π}π∈Π∗ admits a PDEU representation (u� ν) and
satisfies strict admissibility. Then the following statements hold:

(i) A ∈ A if and only if ν(E) = ν(E ∩A)+ ν(E ∩A�) for all events E 
= S.
(ii) A is an algebra.18

(iii) ν is additive on A \ {S}, that is, for all disjoint A�B ∈ A such that
A∪B 
= S,

ν(A∪B)= ν(A)+ ν(B)�

Moreover, ν(A)+ ν(A�)= ν(B)+ ν(B�) for any A�B ∈ A \ {∅� S}.
(iv) A = 2S if and only if ν is additive on 2S \ {S}.
See Appendix E for the proof.
Given a strictly admissible PDEU representation, an event A is transpar-

ent if every other event is additive with respect to its intersection and relative

18The algebraic structure of A is similar to the structure of unambiguous events under some
definitions (Nehring (1999)). This structure is arguably restrictive for unambiguous events, but
does not carry these shortcomings for our interpretation. Moreover, the behavioral definitions
that induce algebras in that literature are logically independent of our definition of transparent
events.
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complement with A. This is natural, since if A was already understood, men-
tioning it should have no effect on the judged likelihood of any other event.
Moreover, the family A is an algebra. Thus (S� A) can be sensibly interpreted
as the prior understanding of the state space before any descriptions. This un-
derstanding might vary across agents, that is, one decision maker might un-
derstand more events than another, but A can be elicited from preferences.
Finally, the support function is additive over the transparent events. Since
complementary weights sum to a constant number, if we redefine the value
ν(S) ≡ ν(A)+ ν(A�) for an arbitrary A ∈ A \ {∅� S}, then (S� A� ν|A) defines a
probability space after appropriate normalization.

EXAMPLE 4: Let π∗ = {A1� � � � �An} be a partition of the state space. Inter-
pret π∗ as the decision maker’s a priori understanding of the state space before
any additional details are provided in the description. Suppose that when the
state space is described as the partition π, the decision maker understands
both the explicitly described events in π and those events in π∗ which she
understood a priori. She then adapts the principle of insufficient reason over
the refinement π ∨ π∗. In terms of the representation, this is captured by set-
ting ν(E) = |{i :E ∩Ai 
= ∅}|. For example, a consumer might understand that
chemotherapy, surgery, drugs, and behavioral counseling are possible treat-
ments when purchasing health insurance, even if they are not specifically men-
tioned, but when a specific disease is mentioned, she applies the principle of
insufficient reason over its relevant treatments.

In this case, A is the algebra generated by π∗. Even if the prior understand-
ing π∗ of the decision maker is unknown to the analyst, the example confirms
that Definition 9 recovers π∗ from preferences.

The notion of transparency can also be defined relative to a partition. In
other words, one can define the events A(π) that are understood once the par-
tition π is announced to the decision maker. The operator A(π) has appealing
properties across partitions. Under strictly admissible PDEU representations,
A(π) has the properties of A described in Proposition 2 for every π. Details
are in the online supplement.

5.2. Completely Overlooked Events

As a counterpoint to the events that are understood perfectly, we now discuss
the events that are completely overlooked. In the unforeseen contingencies in-
terpretation of our model, these will correspond to the completely unforeseen
events.

DEFINITION 10: Fix {�π}π∈Π∗ . An event E ⊂ S is completely overlooked if
E = ∅ or if, for all three cell partitions {E�F�G} of S and p�q� r ∈ ΔX ,(

p E ∪ F

q G

)
∼ r ⇐⇒

(
p F

q E ∪G

)
∼ r�
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In words, E is completely overlooked if the decision maker never puts any
weight on E unless it is explicitly described to her. In the first comparison of
the definition, she attributes all the likelihood of receiving p to F , because E
carries no weight when it is not separately mentioned; in the second compari-
son, all the likelihood of q is similarly attributed to G. Due to the framing of
both acts, E remains occluded and the certainty equivalents are equal because
both appear to be bets on F or G.

It is important to notice that an event does not have to be either transpar-
ent in the sense of Definition 9 or completely overlooked. The two definitions
represent extreme cases that admit many intermediate possibilities.

A completely overlooked event is distinct from a null event. Whenever E ∪
F 
= S, the preference

(
p E ∪ F

q G

)
�

⎛
⎝p′ E

p F

q G

⎞
⎠

is consistent with E being completely overlooked. Here, the presentation of
the second act explicitly mentions E, at which point the decision maker as-
signs it some positive likelihood. In contrast, this strict preference is precluded
whenever E is null, because then the decision maker would be indifferent to
whether p′ or p was assigned to the impossible event E.

On the other hand, all null events are completely overlooked. The event
E might contribute no additional likelihood to E ∪ F for two reasons. First,
the decision maker may have completely overlooked the event E when it was
grouped as E ∪F . Second, she may have actually considered its possibility, but
concluded that E was impossible. These cases are behaviorally indistinguish-
able.

PROPOSITION 3: Suppose {�π}π∈Π∗ satisfies strict admissibility and admits the
PDEU representation (u� ν) where ν is monotone. Then the following statements
hold:

(i) E is completely overlooked if and only if ν(E ∪ F) = ν(F) for any non-
empty event F disjoint from E such that E ∪ F 
= S.

(ii) If E and F are completely overlooked and E ∪ F 
= S, then E ∩ F and
E ∪ F are also completely overlooked.

(iii) If |S| ≥ 3 and all nonempty events are completely overlooked, then ν(E) =
ν(F) for all nonempty E�F 
= S.

The first part of the proposition relates completely overlooked events with
their marginal contribution to the weighting function ν. The second part shows
that the family of completely overlooked events has some desirable properties:
closure under set operations is guaranteed when the sets do not cover all of S.
The third part characterizes the principle of insufficient reason. This extreme
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case where all nonempty events are completely overlooked is represented by
a constant support function where ν(E) = 1 for every nonempty E. The de-
cision maker places a uniform distribution over the events that are explicitly
mentioned in a description π.19

APPENDIX A: PRELIMINARY OBSERVATIONS

In this section we state and prove a set of preliminary lemmas and a unique-
ness result for general Π. We note that the results in this section apply to both
the case where Π is a filtration and the case where Π is the set of all finite par-
titions. We first state, without proof, the straightforward observation that the
first five axioms provide a simple analog of the Anscombe–Aumann expected
utility theorem.

LEMMA 1: The collection {�π}π∈Π satisfies the Anscombe–Aumann axioms if
and only if there exist an affine utility function u :ΔX → R with [−1�1] ⊂ u(ΔX)
and a unique family of probability measures {μπ}π∈Π with μπ :σ(π)→ [0�1] such
that

f �π g ⇐⇒
∫
S

u ◦ fdμπ ≥
∫
S

u ◦ gdμπ

for any f�g ∈ Fπ .

The next lemma states that the sure-thing principle is necessary for a PDEU
representation.

LEMMA 2: If {�π}π∈Π admits a partition-dependent expected utility representa-
tion, then � satisfies the sure-thing principle.

PROOF: For any f�g ∈ F , note that D(f�g) ≡ {s ∈ S : f (s) 
= g(s)} ∈
σ(π(f�g)); hence

f � g ⇐⇒ f �π(f�g) g

⇐⇒
∫
D(f�g)

u ◦ f dμπ(f�g) ≥
∫
D(f�g)

u ◦ gdμπ(f�g)

⇐⇒
∑

F∈π(f�g) :
F⊂D(f�g)

u(f (F))ν(F)≥
∑

F∈π(f�g) :
F⊂D(f�g)

u(g(F))ν(F)�

19In fact, part (iii) of Proposition 3 can be strengthened to the following statements: if two
disjoint sets E and F , with E∪F 
= S, are completely overlooked, then the principle of insufficient
reason is applied to subevents of their union: ν(D) = ν(D′) for all D�D′ ⊂E∪F . Then E∪F can
be considered an area of the state space of which the decision maker has no understanding.
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where the second equivalence follows from multiplying both sides by∑
F ′∈π(f�g) ν(F

′).
Now to demonstrate the sure-thing principle, let E ∈ E and f�g�h�h′ ∈ F .

Let

f̂ =
(
f E

h E�

)
� ĝ =

(
g E

h E�

)
�

f̂ ′ =
(
f E

h′ E�

)
� ĝ′ =

(
g E

h′ E�

)
�

Note that D ≡ D(f̂ � ĝ) = D(f̂ ′� ĝ′) ⊂ E and πD ≡ {F ∈ π(f̂ � ĝ) :F ⊂ D(f̂ �

ĝ)} = {F ∈ π(f̂ ′� ĝ′) :F ⊂ D(f̂ ′� ĝ′)}. Hence by the observation made in the first
paragraph,

f̂ � ĝ ⇐⇒
∑
F∈πD

u(f̂ (F))ν(F) ≥
∑
F∈πD

u(ĝ(F))ν(F)

⇐⇒
∑
F∈πD

u(f (F))ν(F) ≥
∑
F∈πD

u(g(F))ν(F)

⇐⇒
∑
F∈πD

u(f̂ ′(F))ν(F) ≥
∑
F∈πD

u(ĝ′(F))ν(F)

⇐⇒ f̂ ′ � ĝ′� Q.E.D.

The next lemma summarizes the general implications of the Anscombe–
Aumann axioms and the sure-thing principle.

LEMMA 3: Assume that {�π}π∈Π satisfies the Anscombe–Aumann axioms and
the sure-thing principle. Then {�π}π∈Π admits a representation (u� {μπ}π∈Π) as
in Lemma 1. For any events E�F ∈ C and partitions π�π ′ ∈ Π, the following
statements hold:

(i) If E ∈ π�π ′, then μπ(E)= 0 ⇔ μπ′(E)= 0.
(ii) If E�F ∈ π�π ′ and E ∩ F = ∅, then μπ(E)μπ′(F)= μπ(F)μπ′(E).

PROOF: To prove part (i), it suffices to show that if E ∈ π�π ′, then μπ(E)=
0 ⇒ μπ′(E) = 0. Suppose that μπ(E) = 0. Select any two lotteries p�q ∈ ΔX
that satisfy u(p) > u(q), and select any two acts h�h′ ∈ F such that π(h) = π
and π(h′)= π ′. Then

(
p E

h E�

)
∼

(
q E

h E�

)
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by Lemma 1. Hence
(
p E

h′ E�

)
∼

(
q E

h′ E�

)

by the sure-thing principle. Since u(p) > u(q), the last indifference can hold
only if μπ′(E)= 0 by Lemma 1.

To prove part (ii), observe that if either side of the desired equality is zero,
then part (ii) is immediately implied by part (i). So now assume that both sides
are strictly positive. Then all of the terms μπ(E), μπ′(F), μπ(F), and μπ′(E)
are strictly positive. As before, select any two lotteries p�q ∈ ΔX such that
u(p) > u(q) and define a new lottery r by

r = μπ(E)

μπ(E)+μπ(F)
p+ μπ(F)

μπ(E)+μπ(F)
q�

Select any two acts h�h′ ∈ F such that p�q� r /∈ h(S) ∪ h′(S), π(h) = π, and
π(h′) = π ′. By the choice of r and the expected utility representation of �π ,
we have ⎛

⎝p E

q F

h (E ∪ F)�

⎞
⎠ ∼

(
r E ∪ F

h (E ∪ F)�

)
�

Hence by the sure-thing principle,
⎛
⎝ p E

q F

h′ (E ∪ F)�

⎞
⎠ ∼

(
r E ∪ F

h′ (E ∪ F)�

)
�

This indifference, in conjunction with the expected utility representation of
�π′ , implies that

u(r) = μπ′(E)

μπ′(E)+μπ′(F)
u(p)+ μπ′(F)

μπ′(E)+μπ′(F)
u(q)�

We also have

u(r) = μπ(E)

μπ(E)+μπ(F)
u(p)+ μπ(F)

μπ(E)+μπ(F)
u(q)

by the definition of r. Subtracting u(q) from each side of the prior two expres-
sions for u(r) above, we obtain

μπ′(E)

μπ′(E)+μπ′(F)
[u(p)− u(q)] = μπ(E)

μπ(E)+μπ(F)
[u(p)− u(q)]�
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which further simplifies to

μπ′(F)

μπ′(E)
= μπ(F)

μπ(E)

since both sides of the previous equality are strictly positive. Q.E.D.

By part (i) of Lemma 3, for all π�π ′ ∈ Π, an event E ∈ π�π ′ is π-null if
and only if it is π ′-null. Hence under the Anscombe–Aumann axioms and the
sure-thing principle, we can change quantifiers in the definitions of null and
nonnull events in C . An event E ∈ C is null if and only if E is π-null for some
partition π ∈ Π with E ∈ π. Similarly, an event E ∈ C is nonnull if and only if
E is π-nonnull for every partition π ∈ Π with E ∈ π.20

We will next state and prove a general uniqueness result that will imply the
uniqueness Theorems 2 and 4. To do so, we first need to generalize event reach-
ability so that it applies to our general model.

AXIOM 11—Generalized Event Reachability: For any distinct nonnull events
E�F ∈ C \ {S}, there exists a sequence of nonnull events E1� � � � �En ∈ C such that
E =E1, F = En, and, for each i = 1� � � � � n−1, there is π ∈ Π such that Ei�Ei+1 ∈
π.

Note that when Π is the set of all finite partitions, generalized event reach-
ability is equivalent to event reachability.

LEMMA 4: Assume that {�π}π∈Π admits a PDEU representation (u� ν). Then
the following statements are equivalent:

(i) {�π}π∈Π satisfies generalized event reachability.
(ii) If (u′� ν′) also represents {�π}π∈Π , then there exist numbers a� c > 0 and

b ∈ R such that u′(p) = au(p) + b for all p ∈ ΔX and ν′(E) = cν(E) for all
E ∈ C \ {S}.

PROOF: Assume that {�π}π∈Π admits the PDEU representation (u� ν). Let
C ∗ denote the set of nonnull events in C . The collection C ∗ is nonempty since
nondegeneracy ensures that S ∈ C ∗. Define the binary relation ≈ on C ∗ by E ≈
F if there exists a sequence of events E1� � � � �En ∈ C ∗ with E =E1, F = En and,
for each i = 1� � � � � n − 1, there is π ∈ Π such that Ei�Ei+1 ∈ π. The relation
≈ is reflexive, symmetric, and transitive, defining an equivalence relation on
C ∗. For any E ∈ C ∗, let [E] = {F ∈ C ∗ :E ≈ F} denote the equivalence class of

20Note that ∅ is null and S is nonnull by nondegeneracy. Also, there may exist a nonnull event
E ∈ C, which is π-null for some π ∈ Π such that E ∈ σ(π). From the above observation concern-
ing the quantifiers, this can only be possible if E is not a cell in π, but a union of its cells. This
would correspond to a representation where, for example, E is a union of two disjoint subevents
E =E1 ∪E2 and ν(E) > 0, yet ν(E1)= ν(E2) = 0.
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E with respect to ≈. Let C ∗/ ≈= {[E] :E ∈ C ∗} denote the quotient set of all
equivalence classes of C ∗ modulo ≈, with a generic class R ∈ C ∗/ ≈. Note that,
given the above definitions, event reachability is equivalent to C ∗/≈ consisting
of two indifference classes {S} and C ∗ \ {S}.

We first show the (i) ⇒ (ii) part. Suppose that (u′� ν′) is a PDEU repre-
sentation of {�π}π∈Π and that generalized event reachability is satisfied. For
each π ∈ Π, let μπ and μ′

π , respectively, denote the probability distributions
derived from ν and ν′ by Equation (1). Applying the uniqueness component of
the Anscombe–Aumann expected utility theorem to �π , we have μπ = μ′

π and
u′ = au+ b for some a > 0 and b ∈ R.

If E ∈ C is null, then ν(E) = μπ(E) = 0 = μ′
π(E) = ν′(E) for any π ∈ Π

with E ∈ π. Also note that if E�F ∈ C ∗ are such that there exists π ∈ Π with
E�F ∈ π, then

ν(E)

ν(F)
= μπ(E)

μπ(F)
= μ′

π(E)

μ′
π(F)

= ν′(E)
ν′(F)

�

We next extend the equality ν(E)

ν(F)
= ν′(E)

ν′(F) to any pair of events E�F ∈ C ∗ \ {S}, so
as to conclude that there exists c > 0 such that ν′(E)= cν(E) for all E ∈ C \{S}.
Let E�F ∈ C ∗ \ {S}. By generalized event reachability, there exist E1� � � � �En ∈
C ∗ such that E =E1, F =En and, for each i = 1� � � � � n− 1, there is π ∈Π such
that Ei�Ei+1 ∈ π. Then

ν(E)

ν(F)
= ν(E1)

ν(E2)
× · · · × ν(En−1)

ν(En)
= ν′(E1)

ν′(E2)
× · · · × ν′(En−1)

ν′(En)
= ν′(E)

ν′(F)
�

where the middle equality follows from the existence of π ∈ Π such that
Ei�Ei+1 ∈ π for each i = 1� � � � � n−1. Thus ν′ is a scalar multiple of ν on C ∗ \{S},
determined by the constant c = ν′(E)/ν(E) for any E ∈ C ∗ \ {S}.

To see the (i) ⇐ (ii) part, suppose that generalized event reachability is not
satisfied. Then the relation ≈ defined above has at least two distinct equiva-
lence classes R and R′ that are different from {S}. Define ν′ : C → R+ by

ν′(E)=
{
ν(E)� if E ∈ R�

2ν(E)� otherwise

for E ∈ C . Take any π ∈ Π. If π ∩ R 
= ∅, then ν′(E) = ν(E) for all E ∈ π.
If π ∩ R = ∅, then ν′(E) = 2ν(E) for all E ∈ π. Hence (u� ν) and (u� ν′) are
two partition-dependent expected utility representations of {�π}π∈Π such that
there does not exist a c > 0 with ν′(E)= cν(E) for all E ∈ C \ {S}. Q.E.D.

APPENDIX B: PROOFS FOR SECTION 4.2

PROOF OF THEOREM 1: Necessity is implied by Lemmas 1 and 2. We now
prove sufficiency. Let u and {μπ}π∈Π be as guaranteed by Lemma 1. We de-
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fine ν on
⋃k

t=0 πt recursively on k ≥ 0, which will define ν on the whole
C = ⋃T

t=0 πt .21

Step 0: Let ν(S) := c0 for an arbitrary constant c0 > 0.
Step 1: For all E ∈ π1, set ν(E) := c1μπ1(E) for an arbitrary constant c1 > 0.
Step k+ 1 (k≥ 0): Assume the following inductive assumptions:

(i) The nonnegative set function ν has already been defined on
⋃k

t=0 πt .
(ii) For all t = 0�1� � � � �k,

∑
E′∈πt

ν(E′) > 0 (i.e., nondegeneracy is satis-
fied).

(iii) For all t = 0�1� � � � �k and for all E ∈ πt , μπt (E)= ν(E)/
∑

E′∈πt
ν(E′).

Case 1. Assume that there exists E∗ ∈ πk ∩πk+1 such that μπk
(E∗) > 0. Then

by Lemma 3, μπk+1(E
∗) > 0 and by the inductive assumption, ν(E∗) > 0. For all

E ∈ πk+1 \ πk = πk+1 \ (⋃k

t=1 πt) (the equality is because we have a filtration)
define ν(E) by

ν(E)= ν(E∗)
μπk+1(E

∗)
μπk+1(E)�(2)

Equation (2) also holds (as an equation rather than a definition) for E ∈ πk+1 ∩
πk, since

ν(E)

ν(E∗)
= μπk

(E)

μπk
(E∗)

= μπk+1(E)

μπk+1(E
∗)
�

where the first equality is by the inductive assumption and the second is by
Lemma 3. It is now easy to verify that ν satisfies (i), (ii), and (iii) on

⋃k+1
t=1 πt .

Case 2. Assume that for all E ∈ πk ∩ πk+1, μπk
(E) = 0. Let ck+1 > 0 be an

arbitrary constant and for all E ∈ πk+1 \πk = πk+1 \ (⋃k

t=1 πt), define ν(E) by

ν(E)= ck+1μπk+1(E)�(3)

Equation (2) actually also holds (as an equation rather than a definition) for
E ∈ πk+1 ∩πk, since for all such E, μπk

(E)= 0; hence by Lemma 3, μπk+1(E)=
0 and by the inductive assumption, ν(E) = 0. It is now easy to verify that ν

satisfies (i), (ii), and (iii) on
⋃k+1

t=1 πt . Q.E.D.

PROOF OF THEOREM 2: In light of the general uniqueness result Lemma 4,
we only need to prove that generalized event reachability is equivalent to grad-
ualness for filtrations. Suppose that {�πt }Tt=0 admits a PDEU representation
(u� ν).

21The ck constants in the iterative definition show just how flexible we are in defining ν, which
also hints to the role of gradualness in guaranteeing uniqueness. In the iterative definition, Step 1
is a subcase of the subsequent step; however, we prefer to write it down explicitly because it is
substantially simpler.
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First assume that {πt}Tt=0 is gradual with respect to {�π}π∈Π . Let E�F ∈ C \{S}
be distinct nonnull events. Then there exist πi�πj such that 0 < i� j ≤ T , E ∈
πi, and F ∈ πj . Without loss of generality, let i ≤ j, let Ei−1 := E, Ej := F ,
and, for each t ∈ {i� i + 1� � � � � j − 1}, let Et ∈ πt ∩ πt+1 be a πt-nonnull event
as guaranteed by gradualness. Then Ei−1�Ei�Ei+1� � � � �Ej ∈ C is sequence of
nonnull events such that E = Ei−1, F = Ej , and Et�Et+1 ∈ πt+1 ∈ Π for each
t = i− 1� i� � � � � j − 1. Hence generalized event reachability is satisfied.

Now assume that generalized event reachability is satisfied. Let 0 < t∗ < T .
By nondegeneracy, there exist a πt∗ -nonnull event E ∈ πt∗ and a πt∗+1-nonnull
event F ∈ πt∗+1. Then E�F ∈ C \ {S} are nonnull, hence by generalized event
reachability, there exists a sequence of nonnull events E1� � � � �En ∈ C such that
E =E1, F = En, and, for each i = 1� � � � � n− 1, there is t such that Ei�Ei+1 ∈ πt .
For each i = 1� � � � � n, let t(i) = min{t :Ei ∈ πt} and t̄(i) = sup{t :Ei ∈ πt}.22

Then Ei ∈ πt if and only if t(i) ≤ t ≤ t̄(i). Note that t(1) ≤ t∗ ≤ t̄(1), t(n) ≤
t∗ +1 ≤ t̄(n), and t(i+1)≤ t̄(i) for i = 1� � � � � n−1. Hence t(i)≤ t∗ and t∗ +1 ≤
t̄(i) for some i = 1� � � � � n. Then Ei ∈ πt∗ ∩ πt∗+1 and Ei is nonnull, hence Ei is
πt∗ -nonnull by Lemma 3. We conclude that {πt}Tt=0 is gradual with respect to
{�πt }Tt=0. Q.E.D.

APPENDIX C: PROOFS FOR SECTION 4.3

PROOF OF PROPOSITION 1: For the necessity part, assume that {�π}π∈Π∗ ad-
mits a partition-independent expected utility representation (u� ν). Note that
f � g if and only if

∫
S
u ◦ f dν ≥ ∫

S
u ◦ gdν for any f�g ∈ F . Thus � is tran-

sitive, hence acyclic. The necessity of the Anscombe–Aumann axioms follows
immediately from the standard Anscombe–Aumann expected utility theorem.

Now turning to sufficiency, assume that {�π}π∈Π∗ satisfies the Anscombe–
Aumann axioms and acyclicity. Let u and {μπ}π∈Π∗ be as guaranteed by
Lemma 1. We first show that, for all π ∈Π∗ \ {{S}} and E ∈ π:

μπ(E)= μ{E�E�}(E)�(4)

Suppose for a contradiction that μπ(E) > μ{E�E�}(E) in (4). Let μπ(E) > α >
μ{E�E�}(E). Since the range of u contains the interval [−1�1], there exist p�q ∈
ΔX such that u(p)= 1 and u(q) = 0. Define the act h by

h=
(
p E

q E�

)
�

Note that αp+ (1−α)q � h. Let f ∈ F be such that π(f ) = π and for all s ∈ S,
u(f (s)) < 0. Then there exists ε ∈ (0�1) such that the act hε ≡ (1 − ε)h + εf

22We use supremum here since this value can be +∞.
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satisfies π(hε)= π and hε �π αp+(1−α)q. Then h� hε � αp+(1−α)q � h,
a contradiction to � being acyclic. The argument for the case where μπ(E) <
μ{E�E�}(E) is entirely symmetric, hence omitted.

Define ν: 2S → [0�1] by ν(∅) ≡ 0, ν(S) ≡ 1, and ν(E) ≡ μ{E�E�}(E) for E 
=
∅� S. To see that μ is finitely additive, let E and F be nonempty disjoint sets. If
E ∪ F = S, then F =E� so

ν(E)+ ν(F) = μ{E�E�}(E)+μ{E�E�}(E
�) = 1 = ν(E ∪ F)�

If E ∪F � S, let π = {E�F� (E ∪F)�} and π ′ = {E ∪F� (E ∪F)�}. Then by (4),

ν(E)+ ν(F) = μπ(E)+μπ(F)= 1 −μπ((E ∪ F)�)

= 1 −μπ′((E ∪ F)�)= μπ′(E ∪ F)= ν(E ∪ F)�

Therefore ν is additive. To conclude, note that for any π ∈ Π∗, the definition
of ν and (4) imply that μπ(E)= ν(E) for all E ∈ π. Hence (u� ν) is a partition-
independent representation of {�π}π∈Π∗ . Q.E.D.

PROOF OF THEOREM 3: The necessity of the Anscombe–Aumann axioms
follows from the standard Anscombe–Aumann expected utility theorem. The
necessity of the sure-thing principle was established in Lemma 2. We now es-
tablish the necessity of binary bet acyclicity.

LEMMA 5: If {�π}π∈Π∗ admits a PDEU representation, then it satisfies binary
bet acyclicity.

PROOF: First note that for any (possibly empty) disjoint events E and F , and
(not necessarily distinct) lotteries p�q� r ∈ ΔX , we have

(
p E

q E�

)
�

(
r F

q F�

)
⇐⇒

[u(p)− u(q)]ν(E) ≥ [u(r)− u(q)]ν(F)�
To see the necessity of binary bet acyclicity, let E1� � � � �En�E1 be a sequen-

tially disjoint cycle of events and let p1�p2� � � � �pn;q ∈ ΔX be such that

∀i = 1� � � � � n− 1:
(
pi Ei

q E�
i

)
�

(
pi+1 Ei+1

q E�
i+1

)
�

The observation made in the first paragraph implies that

[u(p1)− u(q)]ν(E1) > [u(p2)− u(q)]ν(E2) > · · ·
> [u(pn)− u(q)]ν(En)�
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Since [u(p1)− u(q)]ν(E1) > [u(pn)− u(q)]ν(En), we conclude that
(
p1 E1

q E�
1

)
�

(
pn En

q E�
n

)
� Q.E.D.

We next prove the sufficiency part. Suppose that {�π}π∈Π∗ satisfies the
Anscombe–Aumann axioms, the sure-thing principle, and binary bet acyclic-
ity. Let (u� {μπ}π∈Π∗) be a representation of {�π}π∈Π∗ guaranteed by Lemma 1.
For any two disjoint nonnull events E and F , define the ratio

E

F
≡ μπ(E)

μπ(F)
�

where π is a partition such that E�F ∈ π. By part (ii) of Lemma 3, the value of
E
F

does not depend on the particular choice of π. Moreover, E
F

is well defined
and strictly positive since E and F are nonnull. Finally, F

E
× E

F
= 1 by construc-

tion. The following lemma appeals to binary bet acyclicity in generalizing this
equality.

LEMMA 6: Suppose that {�π}π∈Π∗ satisfies the Anscombe–Aumann axioms, the
sure-thing principle, and binary bet acyclicity. Then, for any sequentially disjoint
cycle of nonnull events E1� � � � �En�E1 ∈ E ,

E1

E2
× E2

E3
× · · · × En−1

En

× En

E1
= 1�(5)

PROOF: Let (u� {μπ}π∈Π∗) be a representation of {�π}π∈Π∗ guaranteed by
Lemma 1. We first show that for any p1� � � � �pn�q ∈ ΔX such that u(q) = 0
and u(pi) ∈ (0�1) for i = 1� � � � � n,

(∀i = 1� � � � � n− 1)�
(
pi Ei

q E�
i

)
∼

(
pi+1 Ei+1

q E�
i+1

)
(6)

�⇒
(
p1 E1

q E�
1

)
∼

(
pn En

q E�
n

)
�

Note that it is enough to show that the hypothesis in Equation (6) above implies
(
p1 E1

q E�
1

)
�

(
pn En

q E�
n

)
�

Let ε̄ ∈ (0�1) be such that u(pi) + ε̄ < 1 for i = 1� � � � � n. Since the range
of the utility function u over lotteries contains the unit interval [−1�1], for
each ε ∈ (0� ε̄) and i ∈ {1� � � � � n}, there exists pi(ε) ∈ ΔX such that u(pi(ε)) =
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u(pi)+εi, where εi refers to the ith power of ε. The expected utility represen-
tation of Lemma 1 and the fact that Ei is nonnull implies that for sufficiently
small ε ∈ (0� ε̄),

(
pi(ε) Ei

q E�
i

)
�

(
pi+1(ε) Ei+1

q E�
i+1

)

for i = 1� � � � � n− 1. By binary bet acyclicity, this implies
(
p1(ε) E1

q E�
1

)
�

(
pn(ε) En

q E�
n

)
�

Appealing to the continuity of the expected utility representation of Lemma 1
in the assigned lotteries f (s) and taking ε → 0 proves the desired conclusion.

We can now prove Equation (5). The case where n = 2 immediately follows
from our definition of event ratios, so assume that n ≥ 3. Fix t1 > 0 and recur-
sively define

ti = t1 × E1

E2
× E2

E3
× · · · × Ei−1

Ei

for i = 2� � � � � n. By selecting a sufficiently small t1, we may assume that
t1� � � � � tn ∈ (0�1). Also note that ti+1/ti = Ei/Ei+1 for i = 1� � � � � n − 1. Recall
that the range of the utility function u over lotteries contains the unit inter-
val [−1�1], so there exist lotteries p1� � � � �pn�q ∈ ΔX such that u(pi) = ti for
i = 1� � � � � n and u(q) = 0.

Fix any i ∈ {1� � � � � n − 1}. Let π = {Ei�Ei+1� (Ei ∪ Ei+1)
�}. Since ti+1/ti =

Ei/Ei+1, we have μπ(Ei+1)u(pi+1)= μπ(Ei)u(pi). Hence(
pi Ei

q E�
i

)
∼

(
pi+1 Ei+1

q E�
i+1

)

by the expected utility representation of Lemma 1. Since the above indiffer-
ence holds for any i ∈ {1� � � � � n− 1}, by Equation (6), we have(

p1 E1

q E�
1

)
∼

(
pn En

q E�
n

)
�

Hence by the expected utility representation of �π for π = {E1�En� (E1 ∪En)
�},

we have μπ(E1)u(p1) = μπ(En)u(pn). This implies tn/t1 = E1/En. Recalling
the construction of tn, we then have the desired conclusion:

E1

E2
× E2

E3
× · · · × En−1

En

= E1

En

� Q.E.D.

We can now conclude the proof of sufficiency. Assume that {�π}π∈Π∗ satis-
fies the Anscombe–Aumann axioms, the sure-thing principle, and binary bet
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acyclicity. Define C ∗ and ≈ as in the proof of Lemma 4. Let C ∗ denote the set
of nonnull events in C . The collection C ∗ is nonempty, since nondegeneracy
ensures that S ∈ C ∗. Define the binary relation ≈ on C ∗ by E ≈ F if there exists
a sequentially disjoint sequence of nonnull events E1� � � � �En ∈ C ∗ with E = E1

and F = En.23 The relation ≈ is reflexive, symmetric, and transitive. So ≈ is an
equivalence relation on C ∗. For any E ∈ C ∗, let [E] = {F ∈ C ∗ :E ≈ F} denote
the equivalence class of E with respect to ≈. Let C ∗/ ≈= {[E] :E ∈ C ∗} denote
the quotient set of all equivalence classes of C ∗ modulo ≈, with a generic class
R ∈ C ∗/ ≈.24 Select a representative event GR ∈ R for every equivalence class
R ∈ C ∗/ ≈, invoking the axiom of choice if the quotient is uncountable.

We next define ν. For all null E ∈ C , let ν(E) = 0. For every class R ∈ C ∗/ ≈,
arbitrarily assign a positive value ν(GR) > 0 for its representative. We con-
clude by defining ν(E) for any E ∈ C ∗ \ {S}. If E = G[E], then E represents its
equivalence class and ν(E) has been assigned. Otherwise, whenever E 
= G[E],
since E ≈ G[E], there exists a sequentially disjoint path of nonnull events
E1� � � � �En ∈ C ∗ such that E = E1 and G[E] =En. Then let

ν(E)= E1

E2
× · · · × En−1

En

× ν
(
G[E]

)
�

Note that the definition of ν(E) above is independent of the particular choice
of the path E1� � � � �En, because for any other such sequentially disjoint path of
nonnull events E = F1� � � � �Fm =G[E],

E1

E2
× · · · × En−1

En

× Fm

Fm−1
× · · · × F2

F1
= 1

by Lemma 6.
We next verify that ν : C \ {S} → R+ defined above is a nondegenerate set

function that satisfies

μπ(E)= ν(E)∑
F∈π

ν(F)
(7)

for any event E ∈ π of any partition π ∈ Π∗ \ {{S}}.
Let π ∈ Π∗ \ {{S}}. By nondegeneracy and the expected utility representa-

tion for �π , there exists a π-nonnull F ∈ π. Then, since Lemma 3 implies that
π-nonnull events in C are nonnull, F is nonnull so the denominator on the
right hand side of Equation (7) is strictly positive and so the fraction is well

23Note that this definition slightly differs from that used in the general uniqueness result
(Lemma 4). The two definitions can easily be verified as equivalent, since Π is the set of all
finite partitions.

24Note that [S] = {S} and E ≈ F for any disjoint nonnull E and F .
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defined. This also implies that ν is a nondegenerate set function. Observe that
Equation (7) immediately holds if E is null, since then ν(E) = 0 and μπ(E)= 0
follows from E being π-null. Let C ∗

π ⊂ π denote the nonnull cells of π. To fin-
ish the proof of the theorem, we show that (μπ(E))/(μπ(F))= (ν(E))/(ν(F))
for any distinct E�F ∈ C ∗

π . Along with the fact that
∑

E∈C∗
π
μπ(E) = 1, this will

prove Equation (7).
Let E�F ∈ C ∗

π be distinct. Note that [E] = [F] since E and F are disjoint.
Suppose first that neither E nor F is G[E]. Then there exists a sequentially
disjoint path of nonnull events E1� � � � �En ∈ C ∗ such that E = E1, G[E] =En and

ν(E)= E1

E2
× · · · × En−1

En

× ν
(
G[E]

)
�

Then F�E1� � � � �En =G[E] forms such a path from F to G[E], hence we have

ν(F) = F

E1
× E1

E2
× · · · × En−1

En

× ν
(
G[E]

)
�

Dividing the term for ν(E) by the term for ν(F), we obtain E
F

= ν(E)

ν(F)
.

The other possibility is that exactly one of E or F (without loss of generality
E) is G[E]. Then the nonnull events F =E1 and E2 = E make up a path from F
to E =G[E]. Then

ν(F) = F

E
× ν(E)

as desired. Q.E.D.

APPENDIX D: PROOF OF THEOREM 5

Part (i) follows from Lemma 1 and Lemma 3 in Appendix A. In part (ii),
if {�π}π∈Π∗ satisfies binary bet acyclicity, then it has a PDEU representation,
implying the product rule. The next lemma shows that the product rule is also
sufficient for a PDEU representation, establishing the other direction of The-
orem 5(ii).

LEMMA 7 —Tversky and Koehler (1994), Nehring (2008): Suppose that
{�π}π∈Π∗ satisfies the Anscombe–Aumann axioms, the sure-thing principle, and
strict admissibility. Let u : ΔX → R, {μπ}π∈Π∗ , and R be as in Theorem 5(i).
Then the product rule implies that there exists a strictly positive support function ν
such that μπ(E)= (ν(E))/(

∑
F∈π ν(F)), for any π ∈ Π∗ and E ∈ π.

We will show that the above lemma follows from the proof of Theorem 1
in Tversky and Koehler (1994). The general idea is first to establish a nat-
ural correspondence between probability judgments P (which are the primi-
tive of their analysis) and event ratios R, and then to translate Tversky and
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Koehler’s (1994) axioms and arguments to event ratios. We also argue that
a key assumption of Tversky and Koehler (1994) on probability judgments—
proportionality—is implied by our construction of event ratios using the
Anscombe–Aumann axioms and the sure-thing principle.

Throughout the remainder of this section, we assume strict admissibility,
which is also implicitly assumed in Tversky and Koehler (1994). Remember
that for any two disjoint nonempty events A and B, R(A�B) ≡ A

B
and in Tver-

sky and Koehler’s (1994) representation, P(A�B) = ν(A)

ν(A)+ν(B)
.25 Therefore, the

probability judgment function P is related to event ratios via

A

B
= P(A�B)

P(B�A)
�(8)

P(A�B)= 1

1 + B

A

�(9)

where A and B are nonempty disjoint events. Tversky and Koehler (1994) also
used the operation A ∨ B for explicit disjunction of disjoint nonempty events
A and B. Then the term P(A�B ∨C) is naturally related to event ratios via

P(A�B ∨C) = 1

1 + B

A
+ C

A

�(10)

where A, B, and C are nonempty disjoint events.26 We next state Tversky and
Koehler’s (1994) proportionality axiom on P (see Tversky and Koehler (1994,
Equation (4), p. 549).

AXIOM 12—Proportionality: For all pairwise disjoint nonempty events A, B,
and C,

P(A�B)

P(B�A)
= P(A�B ∨C)

P(B�A∨C)
�

Given Equations (9) and (10) and A
B

= 1/( B
A
) for disjoint nonempty events

A and B, one can equivalently express the proportionality axiom in terms of
event ratios.

25Tversky and Koehler (1994) distinguished between the collection of hypotheses H and the
collection of events 2S . They assumed that every hypothesis A ∈H corresponds to a unique event
A′ ∈ 2S , and defined the functions P(·� ·) and ν(·) on hypotheses rather than events. For simplicity
of exposition, we directly work with events rather than hypotheses.

26Note that the object B ∨ C that denotes the explicit disjunction of B and C is not an event.
Intuitively, P(A�B ∨ C) = 1/(1 + B∨C

A
) where B∨C

A
is naturally associated with B

A
+ C

A
, yielding

Equation (10).
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AXIOM 13—Proportionality: For all pairwise disjoint nonempty events A, B,
and C,

A

B

B

C
= A

C
�

Under the assumptions of the lemma, event ratios satisfy proportionality
since π = {A�B�C� (A∪B ∪C)�} is a partition and

A

B

B

C

C

A
= μπ(A)

μπ(B)

μπ(B)

μπ(C)

μπ(C)

μπ(A)
= 1�

Therefore, the probability judgment function also satisfies proportionality. We
adopt the convention that A

A
= 1 for any nonempty event A.

PROOF OF LEMMA 7: We next prove a verbatim adaption of the proof of
Theorem 1 in Tversky and Koehler (1994). To establish sufficiency, we define
ν as follows. Let S = {{a} :a ∈ S} be the set of singleton events.27 Select some
D∗ ∈ S and set ν(D∗) = 1. For any other singleton event C ∈ S, such that C 
=
D∗, define ν(C) = C

D∗ . Given any event A ∈ 2S such that A 
= S�∅, select some
C ∈ S such that A∩C = ∅ and define ν(A) through

ν(A)

ν(C)
= A

C
�

that is,

ν(A) = A

C

C

D∗ �

To demonstrate that ν(A) is uniquely defined, suppose B ∈ S\{C} and A∩B =
∅. We want to show that

A

C

C

D∗ = A

B

B

D∗ �(11)

If D∗ = B or D∗ = C, then Equation (11) directly follows from proportionality.
If, on the other hand, D∗ ∩ B = D∗ ∩ C = ∅, then by repeated application of
proportionality,

A

C
= A

B

B

C
= A

B

B

D∗
D∗

C
�

27Tversky and Koehler (1994) called a hypothesis A elementary if the associated event A′ is a
singleton. Therefore, the collection of singleton events S above takes the role of the collection of
elementary hypotheses E in their proof.
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proving Equation (11).
To complete the definition of ν, let ν(∅)= 0 and fix ν(S) > 0 arbitrarily.
To establish the desired representation, we first show that for any disjoint

events A and B such that A�B 
= S�∅, we have ν(A)/ν(B) = A
B

. Two cases
must be considered.

First suppose that A ∪ B 
= S; hence, there exists a singleton event C ∈ S
such that A∩C = B ∩C = ∅. In this case,

ν(A)

ν(B)
=

(
A

C
ν(C)

)/(
B

C
ν(C)

)
= A

C

C

B
= A

B

by proportionality.
Second, suppose A∪B = S. In this case, there is no C ∈ S that is not included

in either A or B, so the preceding argument cannot be applied. To show that
(ν(A))/(ν(B))= A

B
, suppose C�D ∈ S and A∩C = B ∩D= ∅. Hence,

ν(A)

ν(B)
= ν(A)ν(C)ν(D)

ν(C)ν(D)ν(B)

= A

C

C

D

D

B

= A

B
(by the product rule).

For any pair of disjoint events, therefore, we obtain A
B

= (ν(A))/(ν(B)) and
ν is unique up to a choice of unit which is determined by ν(D∗). It is easy to
see that this implies that μπ(E)= ν(E)∑

F∈π ν(F)
for any π ∈ Π∗ and E ∈ π. Q.E.D.

APPENDIX E: PROOFS FOR SECTION 5

PROOF OF PROPOSITION 2: (i) To see the ⇒ part of (i), assume that A ∈ A
and let E be any event. Assume without loss of generality that E 
= ∅. Consider
the partition π = {E�E� ∩A�E� ∩A�}. Since E 
= S, the sets E� ∩A and E� ∩
A� cannot both be empty. Hence by strict admissibility ν(E� ∩ A) + ν(E� ∩
A�) > 0. Assume without loss of generality that [0�1] ⊂ u(ΔX) and let p�q� r ∈
ΔX be such that u(p)= 1, u(q) = 0, and

u(r) = ν(E)

ν(E)+ ν(E� ∩A)+ ν(E� ∩A�)
�(12)

Define the act f by

f =
(
p E

q E�

)
�
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Then f ∈ Fπ and f ∼π r. Hence by A ∈ A we have that f ∼π∨{A�A�} r. Since
π ∨ {A�A�} = {E ∩A�E ∩A��E� ∩A�E� ∩A�}, the last indifference implies
that

u(r) = ν(E ∩A)+ ν(E ∩A�)

ν(E ∩A)+ ν(E ∩A�)+ ν(E� ∩A)+ ν(E� ∩A�)
�(13)

By Equations (12), (13), and ν(E� ∩ A) + ν(E� ∩ A�) > 0, we conclude that
ν(E) = ν(E ∩A)+ ν(E ∩A�).

To see the ⇐ part of (i), assume that ν(E) = ν(E ∩A)+ ν(E ∩A�) for any
event E 
= S. Take any π ∈ Π∗. If π is the trivial partition, then the desired
conclusion follows trivially from state independence. So assume without loss
of generality that π is nontrivial and let π ′ = π ∨ {A�A�}. It suffices to show
that μπ(F) = μπ′(F) for all F ∈ π. To see this, note that

μπ(F)= ν(F)∑
E∈π

ν(E)
= ν(F ∩A)+ ν(F ∩A�)∑

E∈π
[ν(E ∩A)+ ν(E ∩A�)]

= μπ′(F)�

where the middle equality follows from our assumption, and F 
= S and E 
= S
since π is nontrivial.

(ii) By definition, A is closed under complements and ∅� S ∈ A. It suffices
to show that A is closed under intersections. Let A�B ∈ A and take any event
E 
= S. We have that

ν(E) = ν(E ∩A)+ ν(E ∩A�)

= ν(E ∩A∩B)+ ν(E ∩A∩B�)+ ν(E ∩A�)

by part (i), A�B ∈ A, and E�E ∩A 
= S. Similarly, we have that

ν(E ∩ (A∩B)�) = ν(E ∩ (A∩B)� ∩A)+ ν(E ∩ (A∩B)� ∩A�)

= ν(E ∩A∩B�)+ ν(E ∩A�)�

The two equalities above imply that

ν(E)= ν(E ∩A∩B)+ ν(E ∩ (A∩B)�)�

Therefore, by part (i), A∩B ∈ A.
(iii) We next prove the first part of (iii). Let A�B ∈ A be disjoint events such

that A∪B 
= S. Since A ∈ A, we have by part (i) that

ν(A∪B)= ν([A∪B] ∩A)+ ν([A∪B] ∩A�)= ν(A)+ ν(B)�

Hence ν is additive on A \ {S}.
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To see the second part of (iii), let A�B ∈ A \ {∅� S}. Note that

ν(A)+ ν(A�)= ν(A∩B)+ ν(A∩B�)+ ν(A� ∩B)+ ν(A� ∩B�)

by part (i) applied twice to B ∈ A and to A�A� 
= S. By the exact symmetric
argument, and interchanging the roles of A and B, we also have that

ν(B)+ ν(B�)= ν(B ∩A)+ ν(B ∩A�)+ ν(B� ∩A)+ ν(B� ∩A�)�

Hence ν(A)+ ν(A�)= ν(B)+ ν(B�) as desired.
(iv) Immediately follows from parts (i) and (iii). Q.E.D.

PROOF OF PROPOSITION 3: (i) The ⇐ part of (i) is easily seen to hold even
without monotonicity of ν. To see the ⇒ part, assume that E is completely
overlooked. If E = ∅, then the conclusion is immediate, so assume without loss
of generality that E 
= ∅. Take any nonempty event F disjoint from E such that
E ∪ F 
= S. Let G= S \ (E ∪ F) 
= ∅.

We first show that

ν(E ∪ F)

ν(G)
= ν(F)

ν(E ∪G)
�(14)

The fractions above are well defined since strict admissibility guarantees that
the denominators do not vanish. To see (14), let p�q� r ∈ ΔX be such that
u(p) > u(q) and

ν(E ∪ F)

ν(E ∪ F)+ ν(G)
u(p)+ ν(G)

ν(E ∪ F)+ ν(G)
u(q) = u(r)(15)

⇐⇒
(
p E ∪ F

q G

)
∼ r�

By E being completely overlooked, we have

ν(F)

ν(F)+ ν(E ∪G)
u(p)+ ν(E ∪G)

ν(F)+ ν(E ∪G)
u(q) = u(r)(16)

⇐⇒
(
p F

q E ∪G

)
∼ r�

Since u(p) > u(q), (15) and (16) imply that

ν(E ∪ F)

ν(E ∪ F)+ ν(G)
= ν(F)

ν(F)+ ν(E ∪G)
�

which is equivalent to (14).
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By monotonicity of ν, we have that

ν(F)

ν(E ∪G)
≤ ν(F)

ν(G)
≤ ν(E ∪ F)

ν(G)
�

By Equation (14), all the weak equalities above are indeed equalities, hence,
in particular, ν(F) = ν(E ∪ F) as desired.

(ii) Assume that E and F are completely overlooked and E ∪ F 
= S. To see
that E ∪ F is completely overlooked, let G be a nonempty event disjoint from
E ∪ F such that E ∪ F ∪G 
= S. Then G is disjoint from E and E ∪G 
= S. By
part (i), we have ν(E ∪ G) = ν(G). Moreover, E ∪ G is disjoint from F and
E ∪ F ∪ G 
= S. Again by part (i), we have, ν(E ∪ F ∪ G) = ν(E ∪ G). Hence
ν(E ∪ F ∪G)= ν(G), as desired.

To see that E ∩ F is completely overlooked, suppose that G is a nonempty
event disjoint from E ∩ F such that [E ∩F] ∪G 
= S. We show that ν(G∪ [E ∩
F]) = ν(G) by considering three cases. This will imply, by part (i), that E ∩ F
is completely overlooked.

Case 1. G ⊂ E. In this case, G \ F 
= ∅, for otherwise G ⊂ E ∩ F would not
be disjoint from E ∩F . Moreover, (G \F)∪F =G∪F ⊂E ∪F 
= S, hence by
part (i) we have that ν([G \ F] ∪ F)= ν(G \ F). By monotonicity

ν(G) ≤ ν(G∪ [E ∩ F])≤ ν(G∪ F)(17)

= ν([G \ F] ∪ F)= ν(G \ F)≤ ν(G)�

Hence ν(G∪ [E ∩ F])= ν(G).
Case 2. G ⊂ F . We again have that ν(G ∪ [E ∩ F]) = ν(G) by exactly the

same argument as the one above, changing the roles of events E and F .
Case 3. G \ E 
= ∅ and G \ F 
= ∅. It cannot be that both G ∪ E and G ∪

F are equal to S, because otherwise [G ∪ E] ∩ [G ∪ F] = G ∪ [E ∩ F] = S,
contradicting the hypothesis. Assume without loss of generality that G∪F 
= S.
Hence by part (i), we have that ν([G \ F] ∪ F) = ν(G \ F). By Equation (17)
again, we conclude that ν(G∪ [E ∩ F])= ν(G).

(iii) The ⇐ part of (iii) is easily seen to hold even without monotonicity of ν.
We only prove the ⇒ part. We first show that ν(G) = ν(G�) if G 
= ∅� S. To see
this, note that since there are at least three states, G or G� is not a singleton.
Without loss of generality, suppose that G has at least two elements and let
{G1�G2} be a two element partition of G. Then by part (i),

ν(G) = ν(G1 ∪G2)= ν(G1)= ν(G1 ∪G�)= ν(G�)�

where the second equality follows because G2 and G1 ∪G2 
= S are completely
unforeseen; the third equality follows because G� and G1 ∪ G� 
= S are com-
pletely unforeseen; and the fourth equality follows because G1 and G1 ∪G� 
= S
are completely unforeseen.
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Take any distinct events E�F 
= ∅� S. If E \ F 
= ∅, then

ν(E \ F)≤ ν(E) = ν(E�)≤ ν((E \ F)�)= ν(E \ F)�
where the inequalities follow from monotonicity of ν, hence ν(E) = ν(E \ F).
Similarly

ν(E \ F)≤ ν(F�)= ν(F) ≤ ν((E \ F)�)= ν(E \ F)�
hence ν(F) = ν(E \F)= ν(E) as desired. The case where F \E 
= ∅ is entirely
symmetric. Q.E.D.
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