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Abstract

We present a theory of interactive beliefs analogous to Mertens and Zamir [31] and Branden-
burger and Dekel [10] that allows for hierarchies of ambiguity. Each agent is allowed a compact
set of beliefs at each level, rather than just a single belief as in the standard model. We propose
appropriate definitions of coherency and common knowledge for our types. Common knowledge
of coherency closes the model, in the sense that each type homeomorphically encodes a compact
set of beliefs over the others’ types. This space universally embeds every implicit type space
of ambiguous beliefs in a beliefs-preserving manner. An extension to ambiguous conditional
probability systems [4] is presented. The standard universal type space and the universal space
of compact continuous possibility structures are epistemically identified as subsets.
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1 Introduction

The idea of a player’s type introduced by Harsanyi [19] provides a useful and compact represen-
tation of the interactive belief structures that arise in a game, encoding a player’s beliefs on some
“primitive” parameter of uncertainty, her belief about the others’ beliefs, their beliefs about her
belief about their beliefs, and so on. Mertens and Zamir [31], hereafter MZ, constructed a universal
type space encoding all internally consistent streams of beliefs, ensuring that Bayesian games with
Harsanyi types lose no analytic generality.1
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1An earlier discussion of the problem can be found in [2] and [8].
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There remains a fundamental caveat. This notion of type implicitly assumes probabilistic
sophistication, in the sense that each player has precise beliefs. In reality, the decision maker’s
beliefs can be ambiguous, as pointed out by Ellsberg [13], and she may consider multiple beliefs
to be plausible [7, 17]. Even given a precise assessment of the natural uncertainty, she may be
ambiguous of her opponents’ beliefs, or whether they hold precise beliefs. In games, agents may
have multiple levels of multiple beliefs. A growing literature studies interactive situations with sets
of beliefs [3, 20–28], for which the standard construction is inadequate.

We construct a model of interactive beliefs where each player is allowed a compact set of
multiple priors. In turn, she is allowed multiple beliefs about the possibly multiple priors of the
other player, and so on. If agents share common knowledge of the internal consistency of their
orders of ambiguous beliefs, then an agent’s type completely specifies her set of joint beliefs on the
primitive state and the other’s type. This space is universal in the sense that it can embed any
other type space with this property in a manner that preserves the implicit hierarchies of belief.
Two significant subspaces are the standard universal type space and the universal space of compact
continuous possibility models [30].

The preceding criticism of the standard construction is hardly new. In fact, Epstein and Wang
[15] address these concerns with hierarchies of preferences over acts. This approach has been
recently extended by Di Tillio [12] for finite games. Instead of working with preferences, we explicitly
model ambiguity with sets of beliefs. The comparison is clearer after formally introducing our
model, hence postponed until Section 4.

2 Model

We build our model of interactive ambiguity, extending the economical construction of Branden-
burger and Dekel [10], henceforth BD. Our main line of proof, establishing conditions for the
Kolmogorov Extension Theorem, parallels their development and many mathematical steps are
appropriately adapted. The technical contribution is mild; such adaptations are now endemic to
the literature on universal spaces.

We first introduce some notation. For any metric space X, let ∆X denote its Borel probability
measures endowed with the topology of weak convergence, metrized by the Prohorov distance ρ.
If X is compact Polish, then ∆X is compact Polish. If Y is also metric, for any measurable
f : X → Y , let Lf : ∆X → ∆Y denote the law or image measure on Y induced by f , defined by
[Lf (µ)](E) = µ(f−1(E)) for any µ ∈ ∆X and any Borel set E ⊆ Y . If µ ∈ ∆(X × Y ), its marginal
measure on X is defined as margXµ = LProjX (µ), where ProjX denotes projection to X.

Lemma 1. Suppose X,Y, Z are compact metric spaces and f : X → Y , g : Y → Z are measurable.
Then:

1. Lg◦f = Lg ◦ Lf

2. If f is continuous, then Lf is continuous;
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3. If f is injective, then Lf is injective;

4. If f is surjective, then Lf is surjective.

Let K(X) denote the family of nonempty compact subsets of X, endowed with the Hausdorff
distance metric dh : K(X)→ R:

dh(A,B) = max
{

max
a∈A

min
b∈B

d(a, b) , max
b∈B

min
a∈A

d(a, b)
}
,

where d is the metric on X. If X is compact Polish, then K(X) is compact Polish. For any
continuous f : X → Y , define its extension fK : K(X) → K(Y ) by fK(A) = f(A). In particular,
margKX(A) = {margXµ : µ ∈ A} denotes the set of marginal measures on X induced by the product
measure in A.

Lemma 2. Suppose X,Y, Z are compact metric spaces and f : X → Y , g : Y → Z are continuous.
Then:

1. (g ◦ f)K = gK ◦ fK;

2. fK is continuous;

3. If f is injective, then fK is injective;

4. If f is surjective, then fK is surjective.

We now introduce the interactive model. Two agents, i and j, share a fundamental space of
uncertainty S, which is compact metric, hence compact Polish. The set of first order ambiguous
beliefs is the family of sets of probabilities on S, or elements of K(∆S). This expands on the
standard beliefs ∆S, which are naturally embedded as singletons in K(∆S). Here, each agent is
allowed multiple beliefs on S, with the proviso that their limit points are also included.

Moreover, i is uncertain of j’s beliefs. Her second order ambiguous beliefs are then compact sets
of joint probabilities on S and first order ambiguous beliefs of j. Formally continuing this process,
let

X0 = S

X1 = X0 ×K(∆X0)
...

Xn+1 = Xn ×K(∆Xn)
... .

An ambiguous type is then a hierarchy of ambiguous beliefs: t = (A1, A2, . . .) ∈
∏∞
n=0K(∆Xn).

The space of all possible types is denoted T0 and carries the product topology. A type t̄ =
(Ā1, Ā2, . . .) is unambiguous if Ān is a singleton for every n. The space of all unambiguous types is
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denoted T̄0 and obviously embeds
∏∞
n=0 ∆Xn. As a general mnemonic, for any set of types T ⊆ T0,

the overlined T̄ = T ∩ T̄0 will denote its unambiguous types. Also, for any function f from a subset
T of types, the overlined f̄ = f |T̄ will denote its restriction to unambiguous types.

Recall that margXn−1
µn+1 = LProjXn−1

(µn+1) refers to the marginal measure on Xn−1 induced
by µn+1 ∈ ∆Xn = ∆(Xn−1 × K(∆Xn−1)). Then, carrying our earlier notation, margKXn−1

An+1

refers to the compact set of marginal measures on Xn−1 induced by elements of An+1.

Definition 1. A type t = (A1, A2, . . .) ∈ T0 is coherent if for all n ≥ 1,

An = margKXn−1
An+1.

Definition 1 may be more transparent as its two set containments. First {margXn−1
µn : µn+1 ∈

An+1} ⊆ An. This means i’s ambiguous beliefs are supported by her lower level beliefs. She cannot
suddenly add an unrelated possible belief in the dimension Xn of her joint beliefs on Xn+1 =
Xn ×K(∆Xn). We can think of this set containment as a form of forward consistency.

However, this direction does not imply that all lower level beliefs are necessary to support higher
level beliefs. For example, the set of all probabilities An = ∆Xn−1 can support any specification
of An+1. The other set containment, An ⊆ {margXn−1

µn+1 : µn+1 ∈ An+1}, eliminates superfluous
lower level beliefs and requires that each element of An be in the service of some higher level belief.
This direction can therefore be considered a form of backward consistency. The combination of
directions generalizes [10, Definition 1], and is identical when An is restricted to the singletons.

Let T1 denote the space of all coherent types. The space of unambiguous coherent types is
T̄1 = T1 ∩ T̄0 = {(A1, A2, . . .) ∈ T1 : |An| = 1,∀n}. Both spaces are compact.

Lemma 3. T1 and T̄1 are compact.

Proof. Let T1,n = {(A1, A2, . . .) ∈ T0 : An = margKXn−1
An+1}. We prove each of these sets T1,n is

closed. Take a convergent sequence {tk}∞k=1 ⊆ T1,n with tk → t as k →∞; we need to show t ∈ T1,n.
Identify each tk = (Ak1, A

k
2, . . .) and t = (A1, A2, . . .). By the definition of the product topology,

Akn+1 → An+1 as k →∞. Projection is continuous and margXn−1
= LProjXn−1

, so Lemmata 1 and
2 imply the function margKXn−1

: K(∆Xn) → K(∆Xn−1) is continuous. Then the images of Akn+1

approach the image of An+1: margKXn−1
Akn+1 → margKXn−1

An+1 as k → ∞. Since each tk ∈ T1,n,
by construction margKXn−1

Akn+1 = Akn for all k. Hence Akn → An. Collecting equalities,

An = lim
k→∞

Akn = lim
k→∞

[
margKXn−1

Akn+1

]
= margKXn−1

An+1.

Therefore t ∈ T1,n. Since T1 =
⋂∞
n=1 T1,n is an intersection of closed sets, the set of coherent types

T1 is itself a closed subset of T0.
K(∆S) is compact Polish, so each K(∆Xn) is inductively compact Polish. Because T0 =∏∞

n=0K(∆Xn) is a product of compact sets, T0 is compact by the Tychonoff Product Theorem.
Thus T1 is a closed subset of a compact space, hence compact.
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Let T̄0,n = {(A1, A2, . . .) ∈ T0 : |An| = 1}. In Hausdorff distance, any convergent sequence of
singletons approaches a singleton limit, so T̄0,n is closed. Then T̄0 =

⋂∞
n=1 T̄0,n is also closed. Thus

T̄1 = T1 ∩ T̄0 is a closed subset of T0, hence compact.

3 The universal type space

Coherence removes one level of uncertainty from the model: each coherent type for i identifies i’s
set of beliefs on j’s type.

Proposition 4. There exists a homeomorphism f : T1 → K(∆(S × T0)) that is canonical in the
following sense: for all n ≥ 0,

margKXn
◦ f = ProjK(∆Xn).

Proof. S is compact Polish, so K(∆S) is compact Polish. By induction, each K(∆Xn) is hereditarily
compact and Polish. Recall that T̄1 is the subset of coherent unambiguous beliefs in

∏∞
n=0K(∆Xn),

and also naturally identified as a subset of
∏∞
n=0 ∆Xn. Define Z0 = X0 and Zn = K(∆Xn−1).

Since each Zn is Polish, a version of the Kolmogorov Extension Theorem [10, Lemma 1] produces
a homeomorphism f̄ from

D =

{
(δ1, δ2, . . .) :

δn ∈ ∆(Z0 × · · ·Zn−1),∀n ≥ 1, and
margZ0×···×Zn−2

δn = δn−1,∀n ≥ 2

}

to ∆(
∏∞
n=0 Zn). But, recalling the construction, Z0 × · · · ×Zn = Xn and

∏∞
n=0 Zn = S × T0, while

T̄1 = D. So f̄ : T̄1 → ∆(S×T0). Applying Lemma 2 to f̄K : K(T̄1)→ K(∆(S×T0)) and its inverse
proves that f̄K is a homeomorphism.

For any nonempty compact set of unambiguous coherent types K ⊆ T̄1, define

G(K) = (ProjK∆X0
(K),ProjK∆X1

(K), . . .).

In words, G(K) associates a set of unambiguous beliefs with its induced sets of beliefs at each level.
We have

Gn(K) = ProjK∆Xn−1
(K)

= {Proj∆Xn−1
(t̄) : t̄ ∈ K}

= {margXn−1
Proj∆Xn

(t̄) : t̄ ∈ K}

= margKXn−1
Gn+1(K),

where the third equality follows from the coherence of each t̄ ∈ K ⊆ T̄1. Therefore the hierarchy
G(K) is coherent, so G(K(T̄1)) ⊆ T1. Thus G : K(T̄1) → T1 takes a compact set of coherent
unambiguous hierarchies and maps to a single coherent ambiguous hierarchy.

We now prove G is injective. Suppose K,K ′ ∈ K(T̄1) and G(K) = G(K ′). Fix an unambiguous
type t̄ = (µ1, µ2, . . .) ∈ K. We show (µ1, µ2, . . .) ∈ K ′. Let K ′n = {(µ′1, µ′2, . . .) ∈ K ′ : µ′n = µn},
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Figure 1: Commutative diagram of proof of Proposition 4

so K ′n consists of the unambiguous types in K ′ whose beliefs on Xn agree with those of t̄. Since
K ′n = K ′∩G−1

n ({t̄}), each K ′n is closed. We will prove {K ′n}∞n=1 has the finite intersection property.
By coherence, if µ′n = µn, then iteratively µ′m = µm for all m ≤ n, since these lower order beliefs
are determined by marginalization. So, for any finite n, K ′n ⊆

⋂
m≤nK

′
m. Thus, to demonstrate

the finite intersection property, it suffices to show that each K ′n is nonempty. Since G(K) = G(K ′),
we have that Gn(K) = Gn(K ′). Since µn is obviously an element of Gn(K), it is also an element of
Gn(K ′). So, there must exist some (µ′1, µ

′
2, . . .) ∈ K ′ such that µ′n = µn, i.e. K ′n = {(µ′1, µ′2, . . .) ∈

K ′ : µ′n = µn} is nonempty. As K ′ is compact and {K ′n} is a family of closed subsets with the finite
intersection property, the intersection

⋂∞
n=1K

′
n is nonempty. Thus there exists (µ′1, µ

′
2, . . .) ∈ K ′

such that µ′n = µn for all levels n. Then (µ1, µ2, . . .) = (µ′1, µ
′
2, . . .) ∈ K ′. This proves K ⊆ K ′.

Mutatis mutandis, K ′ ⊆ K. So K = K ′. Hence G is injective.
Let

F (A1, A2, . . .) = {t̄ ∈ T̄1 : Proj∆Xn−1
(t̄) ∈ An, ∀n}.

For any t ∈ T1, G(F (t)) = t, so G is a surjection onto T1. Lemma 2 implies each component Gn is
continuous, hence G is continuous in the product topology. Since T̄1 is compact by Lemma 3, so is
K(T̄1). Therefore G : K(T̄1)→ T1 is a continuous bijection from a compact space to a metric, hence
Hausdorff, space. So G and its inverse F : T1 → K(T̄1) are homeomorphisms. Finally, f = f̄K ◦ F
is a composition of homeomorphisms, hence the required function in the theorem, as shown in the
commutative diagram of Figure 1.

The homeomorphism F from T1 to K(T̄1) demonstrates the mathematical bite of coherency
for our ambiguous hierarchies: a coherent set of beliefs is completely characterized by its coherent
unambiguous selections. This bridges the homeomorphism produced by the Kolmogorov Extension
Theorem on the space of coherent unambiguous beliefs to the space of all coherent beliefs.

We now inductively impose common knowledge of coherency in our model. We first introduce
a notion of knowledge for multiple beliefs. If E is a closed subset of S×T0, slightly abuse notation
and let ∆E denote {µ ∈ ∆(S×T0) : µ(E) = 1}, which defines a closed face. Then type t ∈ T1 knows
event E ⊆ S × T0 if all her canonically associated beliefs put probability one on E: f(t) ⊆ ∆E.2

Let K0(E) = E and Km(E) = {t ∈ T1 : f(t) ⊆ ∆(S ×Km−1(E))} denote m-th order knowledge.
Common knowledge of E is defined as CK(E) =

⋂∞
m=0 Km(E).

2Brandenburger and Dekel [9, 10] provide a detailed analysis of why this almost sure notion of knowledge is
appropriate for the infinite space S × T0.
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Lemma 5. If E is a closed subset of S × T0, then Km(E) is a closed subset of S × T0.3

Proof. We proceed by induction. Base step: K0(E) = E is closed by assumption. Inductive step:
Suppose Km(E) is closed. Let D = S × Km(E). Since D is closed, ∆D is closed [1, Corollary
14.6]. It remains to show that f−1(K(∆D)) is closed. Since f is continuous, it suffices to prove
that K(∆D) = {K ∈ K(∆(S × T0)) : K ⊆ ∆D} is a closed subfamily of K(∆(S × T0)). Suppose
Ki ∈ K(∆D) and Ki → K. Let x ∈ K. By the definition of the Hausdroff metric, there exists a
sequence xi → x with xi ∈ Ki for all i. But, xi ∈ Ki ⊆ ∆D and ∆D is closed, so x = limxi ∈ ∆D.
So K ⊆ ∆D, i.e. K ∈ K(∆D). Thus K(∆D) = K(∆(S ×Km(E))) = Km+1(E) is closed.

Let Tm = Km−1(S × T1), the types with m-level knowledge of coherence. For example, T3

contains each type that: is coherent; knows that her opponent is coherent; and knows that her
opponent knows that she is coherent. Let T∞ denote the set of types with common knowledge of
coherence: T∞ = CK(S × T1) =

⋂∞
m=1 Tm. This restriction closes the model.

Proposition 6. There exists a canonical homeomorphism g : T∞ → K(∆(S × T∞)).

Proof. T1 is compact by Lemma 3, so each Tm is closed by Lemma 5. So ∆(S×Tm) is well-defined.
Let

T̄m = {t̄ ∈ T̄1 : f(t̄) ∈ ∆(S × Tm−1)} = f−1(∆(S × Tm−1)),

recalling that f(t̄) is a singleton if and only if t̄ ∈ T̄1. In words, T̄m is the set of unambiguous types
which have m− 1 knowledge of coherence. Let T̄∞ =

⋂∞
m=1 T̄m.

We now show that f(T̄∞) = ∆(S × T∞). Pick t̄ ∈ T̄∞. By definition, [f(t̄)](S × Tm) = 1 for
every m. Hence [f(t̄)](S × T∞) = 1, since S × T∞ =

⋂∞
m=1 S × Tm and a countable intersection of

probability one events has probability one. So f(T̄∞) ⊆ ∆(S × T∞).
In the other direction, take µ ∈ ∆(S×T∞). Since T∞ ⊂ Tm−1 and µ(S×T∞) = 1, monotonicity

of µ implies µ(S×Tm−1) = 1. Thus µ ∈ ∆(S×Tm−1) for each m−1. Since T̄m = f−1(∆(S×Tm−1)),
we have µ ∈ f(T̄m) for each m, i.e. µ ∈

⋂∞
m=1 f(T̄m). Because f is bijective, it distributes

intersections:
⋂∞
m=1 f(T̄m) = f(

⋂∞
m=1 T̄m) = f(T̄∞). Thus µ ∈ f(T̄∞). So ∆(S × T∞) ⊆ f(T̄∞).

Then f(T̄∞) = ∆(S × T∞).
Since f = f̄ on T̄∞, we have f̄(T̄∞) = ∆(S×T∞). Then the restriction of f̄K from K(T̄∞) maps

onto K(S × T∞), i.e. f̄K : K(T̄∞)→ K(∆(S × T∞)) is a homeomorphism.
Recall the functions F and G from the proof of Proposition 4. Since f = f̄K ◦F and we proved

that f̄K is a homemorphism between K(T̄∞) and K(∆(S × T∞)), it now suffices to demonstrate
that F , restricted to T∞, is a homeomorphism between T∞ and K(T̄∞). Since this restriction is
hereditarily injective and continuous, it only remains to show that F (T∞) = K(T̄∞).

Take t ∈ T∞. Since f(t) ⊆ ∆(S × Tm) and f = f̄K ◦ F , we have F (t) ∈ K(T̄m) for each m.
Then F (t) ⊆ T̄m for each m, so F (t) ⊆

⋂∞
m=1 Tm = T̄∞. Thus F (t) ∈ K(T̄∞). So F (T∞) ⊆ K(T̄∞).

Now take K ⊆ T̄∞. Then G(K) ∈ T∞ because f ◦ G = f̄K and f̄K(K) ⊆ ∆(S × T∞). But
F (G(K)) = K, so F (T∞) ⊇ K(T̄∞). Thus F (T∞) = K(T̄∞), so f(T∞) = K(∆(S × T∞)). Hence

3We thank a referee for suggesting this step and essentially providing the proof.
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Figure 2: Commutative diagram of proof of Proposition 6

the restriction g = f |T∞ is the desired canonical homeomorphism. The relationship is shown in the
commutative diagram in Figure 2.

In applications, a complete type space T , admitting a surjection onto K(∆(S×T )), would often
be sufficient. Many such complete structures exist.4 Several features distinguish the particular
type space we constructed. First, T∞ was canonically selected from explicit hierarchies, which
seems methodologically sensible and avoids redundant types. Second, and more important, we
now show that T∞ is universal. Formally, if T is an implicit type space continuously mapped to
K(∆(S × T )), then T is uniquely and continuously embedded into T∞ in a manner preserving the
implicit higher-order beliefs.

This can be proven directly using arguments analogous to those used by Mertens and Zamir
[31] or by Battigali and Siniscalchi [4]. Here, we adapt a novel indirect architecture, originally
developed by Mariotti, Meier, and Piccione [30, Section 3.2], both for its structural elegance and
for the clarity it later provides in comparing T∞ to the infinite consumption problems of Gul and
Pesendorfer [18]. This strategy first demonstrates that an alternative space is universal. Then, it
proves that T∞ is homeomorphic to this alternative space, hence itself universal.

We begin by constructing our analog to the ∗-beliefs of Mariotti, Meier, and Piccione [30].
These ∗-beliefs are distinct from the hierarchies considered so far, because ∗-beliefs do not carry
the lower level space as separate component of the higher level space. Instead, the higher level
space is a product of the primitive state space and beliefs on prior level space. Formally, let

X∗0 = S

...

X∗n+1 = S ×K(∆X∗n)
...

A ∗-hierarchy is an sequence (A∗1, A
∗
2, . . .) ∈

∏∞
n=0K(∆Xn) = T ∗0 . Let P1 : K(∆X∗1 ) → K(∆S) be

defined by P1(A∗2) = margKSA2. Consider the image measure L(IdS ;Pn) : ∆X∗n → ∆X∗n−1 induced
by the function (IdS ;Pn) : S × K(∆X∗n+1) → S × K(∆X∗n). Then inductively define Pn+1 :

4For example, the Cantor set C immediately provides a complete type space, because any compact metric space,
such as K(∆(S×C)) can be expressed as a continuous image of the Cantor set; this general and elegant argument was
first used by Brandenburger, Friedenberg, and Keisler [11, Proof of Proposition 6.1, p. 29]. We thank an associate
editor for pointing this out to us.
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K(∆X∗n+1)→ K(∆X∗n) by
Pn+1 = LK(IdS ;Pn).

Definition 2. A ∗-hierarchy (A∗1, A
∗
2, . . .) is coherent if A∗n = Pn(A∗n+1) for all n ≥ 1.

Denote the space of all coherent ∗-hierarchies as T ∗1 .5 Suppose f : T → K(∆(S × T )) is
continuous, so T is a type space. We now show how to embed T into T ∗1 . We first naively unpack
each type t ∈ T to its implied hierarchy of beliefs on the state space S × T . Let

X̂0 = S × T
...

X̂n+1 = S ×K(∆X̂n)
...

Let R0 = f : T → K(∆X̂0). Consider L(IdS ;Rn) : ∆X̂n → ∆X̂n+1. Inductively define Rn+1 :
K(∆X̂n)→ K(∆X̂n+1) by

Rn+1 = LK(IdS ;Rn).

Any type t ∈ T identifies a hierarchy (Â1, Â2, . . .) ∈
∏∞
n=0K(∆X̂n) of joint beliefs on the state

space and the type space by setting Ân = [Rn−1 ◦ · · · ◦ R0](t). But, these identified hierarchies
depend on the particular type space T , while a truly explicit description of beliefs should make no
reference to the type structure. We identify each naive hierarchy with a ∗-hierarchy by recursively
marginalizing out notational artifacts involving the type space T from the expression. The rest of
this section formalizes and studies this identification.

Let Q0 : K(∆X̂0) → K(∆X∗0 ) be defined by Q0(Â1) = margKS Â1. In words, Q0 takes a set of
beliefs on S × T and integrates out the dependence on the type space T , leaving only a belief on
S. We now recursively carry this marginalization to higher orders. Define Qn+1 : K(∆X̂n+1) →
K(∆X∗n+1) by

Qn+1 = LK(IdS ;Qn).

In words, Qn applies the marginalization from the previous level to the second dimension of the
next level. We can apply the appropriate marginalization level by level. Then (Â1, Â2, . . .) identifies
the ∗-hierarchy (Q0(Â1), Q1(Â2), . . .) ∈

∏∞
n=0K(∆X∗n).

Suppose f : T → K(∆(S×T )) is continuous. Define ϕT,f : T → T ∗0 by (ϕT,f )n = Qn−1 ◦Rn−1 ◦
Rn−2 ◦ . . . R0, for n ≥ 1. Thus ϕ composes the two procedures: first each type t ∈ T is taken to a
naive hierarchy (Â1, Â2, . . .) of beliefs on the space S × T ; then (Â1, Â2, . . .) is taken to the space
of ∗-hierarchies by integrating out the type space at each order.

This function ϕT,f continuously maps each type in T to a coherent ∗-hierarchy, embedding T
into T ∗1 . Moreover, the embedding of the previously constructed space T∞ covers all of T ∗1 . Hence
T ∗1 is isomorphic to T∞, demonstrating that T∞ is indeed universal.

5The space T ∗1 is mathematically identical to the class of infinite horizon consumption problems considered in Gul
and Pesendorfer [18, Appendix A]; we will compare the models explicitly in Section 4.
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Proposition 7. Suppose f : T → K(∆(S × T )) is continuous. Then:

1. ϕT,f continuously maps T into T ∗1 ;

2. ϕT∞,g : T∞ → T ∗1 is a homeomorphism.

Since ϕT∞,g is a homeomorphism from T∞ to T ∗1 , the composition g∗ = LK(IdS ;ϕT∞,g) ◦ g ◦ φ
−1
T∞,g

defines a homeomorphism from T ∗1 to K(∆(S × T ∗1 )). Moreover, g∗ canonically satisfies Pn ◦ g∗ =
ProjK(∆X∗n−1). Then ϕT,f preserves the hierarchies implicitly coded in T because g∗ ◦ ϕT,f =
LK(IdS ;ϕT,f ) ◦ f from T to K(S × T ∗1 ), i.e. the following diagram commutes:

T T ∗1

K(∆(S × T )) K(∆(S × T ∗1 ))

................................................................................................................................................................................................................................................................................................ ............
ϕT,f

..................................................................................................................................................................................................................
...
.........
...

f

..................................................................................................................................................................................................................
...
.........
...

g∗

................................................................................................................................................................ ............
LK(IdS ;ϕT,f )

Finally, ϕT,f is the unique map from T to T ∗1 with this property. The following result can be proven
by adapting the argument outlined by [30, p. 312].

Proposition 8. If φ : T → T ∗1 satisfies g∗ ◦ φ = LK(IdS ;φ) ◦ f , then φ = ϕT,f .

4 Extensions and related literature

Here, we outline relationships between our space and others in the literature. Proofs can be found
in an online appendix linked to the author’s website.

4.1 Conditional probability systems

Simple probabilities are generally inadequate as descriptions of beliefs in extensive form games. For
example, a fully specified strategy must assign actions on subtrees that may occur with probability
zero. In an important paper, Battigalli and Siniscalchi [4], henceforth BS, consider hierarchies
of conditional probability systems, providing a formal language for epistemic analysis of dynamic
games [4, 5, 6]. Our model easily extends to such systems. To our knowledge, this extension is the
first universal space designed to address interactive ambiguity for dynamic games.

We briefly review the model of BS; their original paper gives a comprehensive discussion. Sup-
pose X is a compact Polish space, with Borel σ-algebra A, and B is a nonempty countable collection
of clopen subsets of X, which are interpreted as conditioning events.

Definition 3. A conditional probability system (CPS) on (X,B) is a mapping µ(·|·) : A×B → [0, 1]
such that:

10
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1. For all B ∈ B, µ(B|B) = 1;

2. For all B ∈ B, µ(·|B) ∈ ∆X;

3. For all A ∈ A and B,C ∈ B, if A ⊆ B ⊆ C, then µ(A|B)µ(B|C) = µ(A|C).

Let ∆BX denote the space of all CPS’s on (X,B). Since µ(·|B) ∈ ∆X, we can identify ∆BX ⊂
[∆X]B and endow ∆BX with the relative product topology and its Borel σ-algebra. BS prove that
∆BX is compact Polish whenever X is compact Polish.

As before, S is compact Polish, but is now equipped with a countable collection B of conditioning
hypotheses. Let

X0 = S B0 = B
...

...

Xn+1 = Xn ×K(∆BnXn) Bn+1 = {B ×K(∆BnXn) : B ∈ Bn}
...

...

The right column projectively carries each basic conditioning event B to its cylinders Cn(B) =
B ×

∏n−1
m=0K(∆BnXm) in higher order spaces. Since each Bn ∈ Bn is identified with a unique

cylinder Cn(B), we abuse notation and write ∆BXn for ∆BnXn. An ambiguous conditional type is
a hierarchy of sets of CPS’s (A1, A2, . . .) ∈

∏∞
n=0K(∆BXn) = H0. For any set An ∈ K(∆BXn−1),

let An(·|B) = {µn(·|B) : µn ∈ An} for all B ∈ B.6

The following is a simple generalization of the definition of coherence by BS: a hierarchy is
coherent if every induced conditional hierarchy is coherent in the sense of Definition 1.

Definition 4. An ambiguous conditional type (A1, A2, . . .) ∈ H0 is coherent if

An(·|Cn−1(B)) = margKXn−1
An+1(·|Cn(B)).

Let H1 denote the space of all coherent ambiguous conditional types.

Proposition 9. There exists a homeomorphism f : H1 → K(∆B(S ×H0)) that is canonical in the
following sense:

[margKXn−1
f(h)](·|C∞(B)) = [ProjK(∆BXn−1)(h)](·|Cn−1(B)).

Let Hm+1 = {h ∈ H1 : [f(h)](·|B) ⊆ ∆(S × Hm), ∀B ∈ B} and H∞ =
⋂∞
k=1Hk. Then H∞

corresponds to common knowledge of coherence and closes the model.
6Here, we have slightly expanded the model of BS to allow for sets of CPS’s; beliefs are expressed as K(∆BX)

rather than as ∆BX. Another approach might allow for conditional sets of probability measures, which could be
formally expressed as subsets of [K(∆X)]B. We chose the former strategy because the generalization Bayes rule, the
third part of Definition 3, for sets of beliefs is unclear and an active area of inquiry even for updating problems on
non-null sets.
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Proposition 10. There exists a canonical homeomorphism g : H∞ → K(∆B(S ×H∞)).

Finally, the arguments in BS and in Section 3 can be modified to demonstrate that H∞ is
universal: if H admits a continuous function f : H → K(∆B(S ×H)), then H is embedded in H∞

in a unique beliefs-preserving manner.

4.2 Standard hierarchies of beliefs

MZ and BD construct a space ΘMZ
∞ representing all coherent unambiguous hierarchies where XMZ

0 =
S and XMZ

n+1 = XMZ
n × ∆XMZ

n . Any standard type space Θ equipped with a continuous function
f : Θ→ ∆(S×Θ) defines an ambiguous type space, by naturally translating f : Θ→ K(∆(S×Θ)).
Then Θ is embedded as a subset of our universal space T∞. In particular, the standard universal
type space ΘMZ

∞ is subset of T∞.
We can identify the embedding with explicit epistemic conditions. Assuming probabilistic so-

phistication, restricting attention to singleton beliefs in T̄∞, does not guarantee that i knows that
j’s beliefs are unambiguous. But common knowledge of probabilistic sophistication does work and
identifies the embedding exactly. Let TMZ

∞ = CK(S × T̄∞), those types with common knowledge
of coherence and of probabilistic sophistication, which reduces the model to the standard case.

Proposition 11. TMZ
∞ is homeomorphic to ΘMZ

∞ .

4.3 Hierarchies of compact possibilities

Mariotti, Meier, and Piccione [30], hereafter MMP, consider compact continuous possibility struc-
tures, consisting of a space Θ and a continuous map f : Θ→ K(S ×Θ). Such types are obviously
related to partitioned representations of knowledge and possible states. Let XMMP

0 = S and
XMMP
n+1 = XMMP

n × K(XMMP
n ). The space of MMP-hierarchies is ΘMMP

0 =
∏∞
n=0K(XMMP

n ). An
MMP-hierarchy (AMMP

1 , AMMP
2 , . . .) is MMP-coherent if, for all n ≥ 1:

AMMP
n = ProjXMMP

n−1
AMMP
n+1 .

MMP construct a universal space ΘMMP
∞ homeomorphic to K(S ×ΘMMP

∞ ).
Since a marginal measure is the image measure induced by a projection function, MMP-

coherence on projections naturally translates to our definition. Let δ : X → ∆X continuously
map each x ∈ X to its Dirac measure δ(x). Observe that margX ◦ δ = δ ◦ ProjX . A possibility
hierarchy (AMMP

1 , AMMP
2 , . . .) is MMP-coherent if and only if the induced hierarchy of ambiguous

beliefs (δK(AMMP
1 ), δK(AMMP

2 ), . . .) is coherent. Then any possibility structure Θ defines an am-
biguous type structure, by δK ◦ f : Θ → K(S × Θ) → K(∆(S × Θ)), and hence embedded in T∞.
In particular, MMP’s universal space ΘMMP

∞ is embedded.
This embedding can be made more explicit. Let TMMP = {t ∈ T∞ : g(t) ⊆ δ(S × T∞)}, the set

of resolute types with Dirac beliefs. Let TMMP
∞ = CK(S × TMMP), the set of types with common

knowledge of resoluteness.
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Proposition 12. TMMP
∞ is homeomorphic to ΘMMP

∞ .

As MMP carefully explain, the standard type space of MZ and BD cannot be embedded as a
possibility structure; nor does the opposite embedding exist. By working with both possibility and
probability, we encompass both spaces and hope this provides some unifying perspective.

4.4 Infinite horizon consumption problems

Gul and Pesendorfer [18, Appendix A] examine a similar technical structure to model recursive
consumption problems, extending a construction by Epstein and Zin [16]. They construct a space
of recursive consumption problems Z homeomorphic to K(∆(S × Z)). The space Z is not obvi-
ously homeomorphic to T∞, since there are spaces T which are homeomorphic to K(∆(S × T )),
but topologically distinct from T∞. Nor is it obvious that Z is universal and captures all recur-
sive formulations. However, their Z is exactly T ∗1 , the space of coherent ∗-hierarchies of beliefs.
Then, corollary to Proposition 7, Z is indeed homeomorphic to T∞, hence embeds all recursive
consumption problems.

Besides the interpretative difference, our construction is formally distinct: we set Xn+1 =
Xn × K(∆Xn+1), replacing S with Xn. This replacement allows separate components at n + 1
regarding others’ beliefs at lower orders. Removing these independent lower order components
precludes a formal expression of common or m-level knowledge of coherence, while our ambient
type space is designed to highlight its implications. Therefore, we do not consider our construction
subsidiary, as the results of BD similarly do not follow from those in Epstein and Zin [16].

4.5 Hierarchies of preferences

The seminal work of Epstein and Wang [15], henceforth EW, provides another notion of type which
deviates from the standard model. Their departure is much more fundamental than ours, dropping
the dependence on probability and belief entirely. Instead, types are hierarchies of preferences over
acts, rather than hierarchies of beliefs. Using this novel space, [14] provides epistemic foundations
for game theoretic equilibria.

By assuming particular forms of preference, one can relate subsets of T∞ to subsets of the EW
space of preference hierarchies. As EW point out, common knowledge of Choquet expected utility
[32] with a fixed vNM index identifies a space TC homeomorphic to the family C(S×TC) of regular
capacities on S×TC. Under common knowledge of maxmin expected utility [17] with a fixed vNM
index, one can similarly derive a space TM homeomorphic to the family KC(∆(S × TM)) of convex
compact sets of probabilities on S × TM. Since KC(∆(S × TM) ⊂ K(∆(S × TM), the universality
result Proposition 7 implies that TM can be embedded as a subset of T∞.7

The examples assume a specific class of preferences with a fixed vNM index is commonly known,
which might be unnatural in games. For example, many models specify uncertainty by varying

7While often natural, convexity is sometimes restrictive. For example, sets of Dirac measures are not convex, so
T M does not embed the possibility structures of MMP.
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players’ payoffs with states of the world. Such state dependence confounds a player’s belief and
vNM index, precluding any meaningful identification of common knowledge of the latter. We do not
know of an approach linking general preferences to compact sets of beliefs, nor a particular class of
preferences that can derive the existence of a set T homeomorphic to the entirety of K(∆(S × T )).
We therefore consider the two approaches as loosely orthogonal, but with at least some specific
intersections as outlined above.

By working only with preferences, EW cannot distinguish the existence of ambiguity from its
resolution; by working only with beliefs, neither can we. We take the ambiguity as fixed, but
remain agnostic on how this ambiguity is resolved by preference. On the other hand, EW take
the preference as fixed, but remain agnostic on the exact nature of ambiguity. We believe both
approaches have merits in particular applications.

A Appendix

A.1 Proof of Lemma 1

(1) Observe µ(g−1(f−1(E))) = µ((g ◦ f)−1(E)).
(2) Suppose µn weakly converges to µ ∈ ∆X. Fix any continuous and bounded g : Y → R.

Then
∫
Y g dLf (µn) =

∫
X g ◦ f dµn →

∫
X g ◦ Fdµ =

∫
Y g dLF (µ); convergence follows because µn

weakly converges to µ and g ◦ f : X → R is continuous and bounded. So Lf (µn) weakly converges
to Lf (µ).

(3) Suppose f is injective. Then f−1(f(D)) = D for any D ⊆ X. Suppose µ, µ′ are distinct
probability measures on X. There exists some Borel set D ⊆ X such that µ(D) 6= µ′(D). Measur-
able injections between Polish spaces preserve Borel measurability, so f(D) is a Borel subset of Y
[1, Theorem 10.28]. Then µ(f−1(f(D)) 6= µ′(f−1(f(D)), so [Lf (µ)](f(D)) 6= [Lf (µ′)](f(D)). Thus
Lf (µ) 6= Lf (µ′).

(4) Suppose f is surjective. Fix ν ∈ ∆Y . Let ME = {µ ∈ ∆X : µ(f−1(E)) = ν(E)}, for
any nonempty Borel set E ⊆ Y . Each ME is a closed subset of ∆X [1, Corollary 14.6]. We now
demonstrate the finite intersection property for the family {ME : BorelE ⊆ Y }. Consider any finite
family E1, . . . , Em of Borel subsets of Y . Eliminate intersections through the standard construction:
let E′k = Ek \

⋃k−1
i=1 Ei and E′m+1 = Y \

⋃m
i=1Ei. Because E′1, . . . , E

′
m+1 constitutes a partition of

Y and ν is additive, µ(f−1(E′k)) = ν(E′k) for all k = 1, . . . ,m + 1 implies µ(f−1(Ek)) = ν(Ek) for
all k = 1, . . . ,m. We lose no generality by assuming that each E′k is nonempty, since µ(f−1(∅)) =
ν(∅) = 0. Since f is surjective, f−1(E) is nonempty for any nonempty E ⊆ Y . A probability
measure µ such that µ(f−1(E′k)) = ν(E′k) for all k = 1, . . . ,m+1 can be obviously constructed as a
convex combination of m+ 1 point masses on selections xk ∈ f−1(E′k) from each k. The collection
{ME : Borel E ⊆ Y } is a collection of closed subsets with the finite intersection property and ∆X
is compact. Then any µ ∈

⋂
Borel EME 6= ∅ satisfies Lf (µ) = ν.

14



A.2 Proof of Lemma 2

The first, third, and fourth claims follow immediately from definitions. The second claim is proven
more generally in [30]; we provide a proof for the metric definition we use here. Fix ε > 0. Let
d, e respectively refer to the metrics on X,Y and let dh, eh refer to their induced Hausdorff met-
rics. By continuity of f , there exists γ > 0 such that e(f(x), f(x′)) < ε whenever d(x, x′) < γ.
Take K,K ′ ∈ K(X) with dh(K,K ′) < γ. By definition of dh, maxx∈K minx′∈K′ d(x, x′) < γ.
Fix x ∈ K and let x′∗ ∈ arg minx′∈K′ d(x, x′), which exists since K is compact and d is contin-
uous. Then d(x, x′∗) < γ. By selection of γ, e(f(x), f(x′∗)) < ε. Then minx′∈x′ e(f(x), f(x′)) ≤
e(f(x), f(x′∗)) < ε. Since x ∈ K was arbitrary, this implies maxx∈K minx′∈K′ e(f(x), f(x′)) < ε.
Similarly, maxx′∈K′ minx∈K e(f(x), f(x′)) < ε. Thus eh(fK(K), fK(K ′)) < ε, therefore fK is con-
tinuous.

A.3 Proof of Proposition 7

We begin by demonstrating the following result.

Lemma 13. Qn = Pn+1 ◦Qn+1 ◦Rn+1, for all n ≥ 0, i.e. the following diagram commutes:

T K(∆X̂0) K(∆X̂1) K(∆X̂2) · · ·

K(∆X∗0 ) K(∆X∗1 ) K(∆X∗2 ) · · ·

..................................................................................................................................... ............
R0 ....................................................................................................... ............

R1 ....................................................................................................... ............
R2 ..................................................................................................................................... ............

R3

................................................................................................................................................................
...
.........
...

Q0

................................................................................................................................................................
...
.........
...

Q1

................................................................................................................................................................
...
.........
...

Q2

..............................................................................................................

P1

..............................................................................................................

P2

..............................................................................................................................................

P3

Proof. The proof is by induction on n. First:

P1 ◦Q1 ◦R1 = margKS ◦ LK(IdS ;Q0) ◦ L
K
(IdS ;R0)

= LKProjS
◦ LK(IdS ;Q0) ◦ L

K
(IdS ;Q0)

= LKProjS◦(IdS ;Q0)◦(IdS ;Q0), by Lemmata 1 and 2

= LKProjS
= margS = Q0

Now, suppose Qn−1 = Pn ◦Qn ◦Rn. Then:

Pn+1 ◦Qn+1 ◦Rn+1 = LK(IdS ;Pn) ◦ L
K
(IdS ;Qn) ◦ L

K
(IdS ;Rn)

= LK(IdS ;Pn)◦(IdS ;Pn)◦(IdS ;Rn), by Lemmata 1 and 2

= LK(IdS ;Pn◦Qn◦Rn)

= LK(IdS ;Qn−1), by hypothesis

= Qn
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We now prove the first claim. R0 = f is continuous by assumption. Lemma 2 implies Q0 =
margKS is continuous. Inductively, Rn+1 = LK(IdS ;Rn) and Qn+1 = LK(IdS ;Rn) are continuous by
Lemmata 1 and 2. Because each component of ϕT,f is a composition of continuous functions, ϕT,f
is continuous. Coherence of ϕT,f (t) follows immediately from Lemma 13.

We now prove the second claim. We begin by proving that ϕT∞,g is surjective. Obviously
R0 = g is homeomorphic. Now suppose Rn is homeomorphic. Then (IdS , Rn) is homeomorphic, so
Rn+1 = L(IdS ,Rn) is homeomorphic by Lemma 1. So each Rn is onto. Similarly, each Qn is onto.
Fix some ∗-hierarchy (A∗1, A

∗
2, . . .) ∈ T ∗1 . Let Dn = {t ∈ T∞ : [Qn−1 ◦ Rn−1 ◦ · · · ◦ R0](t) = A∗n+1}.

Dn is the inverse image of the singleton family {A∗n+1}, which is trivially closed in the Hausdorff
metric, hence itself closed. By the commutativity established in Lemma 13 and the coherence of
T ∗1 , Dn ⊆

⋂
m≤nDm. But Dn is nonempty, because Qn−1 ◦Rn−1 ◦ · · · ◦R0 is onto, so

⋂
m≤nDm is

nonempty. Thus {Dn} is a family of closed subsets of T∞ with the finite intersection property and
T∞ is compact, so there exists some t ∈

⋂∞
n=1Dn. But then ϕT∞,g(t) = (A∗1, A

∗
2, . . .). So ϕT∞,g is

onto.
Next, ϕT∞,g is continuous and injective. Let Kn = ProjK(∆Xn−1)(T∞) and

Kn = [ProjK(∆X0), . . . ,ProjK(∆Xn−1)](T∞).

Define τn : Kn → Kn by τn : (A1, . . . , An) 7→ An. By iterated application of coherence, τn is
homeomorphic. Let f1 : K1 → K(∆S) be defined by f1 = IdK(∆S). Clearly, f1 is continuously
injective. By canonicity of g, f1 ◦ ProjK(∆S) = margS ◦ g = Q0 ◦R0 = (ϕT∞,g)1.

Qn ◦Rn ◦ · · · ◦R0 = LK(IdS ,Qn−1) ◦ L
K
(Ids,Rn−1) ◦ · · · ◦ L

K
(IdS ,R0) ◦ g

= LK(IdS ,Qn−1◦Rn−1◦···◦R0) ◦ g

= LK(IdS ,fn◦ProjK(∆Xn−1))
◦ g

= LK(IdS ,fn◦τn◦[ProjK(∆X0),...,ProjK(∆X0)])
◦ g

= LK(IdS ,fn◦τn) ◦ L
K
(IdS ,[ProjK(∆X0),...,ProjK(∆X0)])

◦ g

= LK(IdS ,fn◦τn) ◦ L
K
[ProjS ,ProjK(∆X0),...,ProjK(∆X0)]

◦ g

= LK(IdS ,fn◦τn) ◦ L
K
ProjXn

◦ g

= LK(IdS ,fn◦τn) ◦margKXn
◦ g, as g is canonical

= LK(IdS ,fn◦τn) ◦ ProjK(∆Xn+1).

Thus fn+1 = LK(IdS ,fn◦τn) is a continuous injection satisfying fn ◦ ProjK(∆Xn) = (ϕT∞,g)n.
Now, suppose ϕT∞,g(t) = ϕT∞,g(t′). Since each fn is injective, it follows that ProjK(∆Xn)(t) =

ProjK(∆Xn)(t′) for all n, i.e. that t = t′. Thus ϕT∞,g is injective. Being a continuous bijection
between compact sets, ϕT∞,g is a homeomorphism.
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