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Abstract

We introduce an equilibrium framework that relaxes the standard assumption
that people have a correctly-specified view of their environment. Players repeat-
edly play a simultaneous-move game where they potentially face both strategic
and payoff uncertainty. Each player has a potentially misspecified view of the
environment and uses Bayes’ rule to update her views based on the (possibly
partial) feedback obtained at the end of each period. We show that steady-state
behavior of this multi-player decision and learning problem is captured by a
generalized notion of equilibrium: a strategy profile such that each player opti-
mizes given certain beliefs and where these beliefs put probability one on those
subjective distributions over consequences that are closest—in terms of relative
entropy—to the correct, equilibrium distribution. Standard solution concepts
such as Nash equilibrium and self-confirming equilibrium constitute special cases
where players learn with correctly-specified models. The framework provides a
systematic approach to modeling players with misspecified views and also unifies
a specific bounded rationality literature where mistakes are driven by misspeci-
fications.
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1 Introduction

Economic models provide a simplified framework to understand complex environ-
ments. Most economists recognize that the simplifying assumptions underlying our
models are often wrong, but we nevertheless make these assumptions in our search
for insights. Despite recognizing that our models are likely to be misspecified, the
standard approach in economics is to assume that the economic agents themselves
have a correctly specified view of their environment. In this paper, we introduce an
equilibrium framework that relaxes this standard assumption and forces the modeler
to take a stand on the subjective view of the world held by the economic agents.

We define a game to be composed of an objective game and a subjective model.
An objective game represents the true environment faced by the players. Payoff rel-
evant states and privately observed signals are realized according to some objective
probability distribution. Each player observes her own private signal and then play-
ers simultaneously choose actions. The action profile and the realized payoff-relevant
state determine a consequence for each player, and these consequences in turn deter-
mine each player’s payoffs. This objective description of the game is fairly standard
in economics.

While it is also standard to implicitly assume that players know the objective
game, we deviate from this practice by assuming that each player has a subjective
model that represents her own view of the game. Formally, a subjective model is a
set of probability distributions over own consequences conditional on a player’s own
action. A key feature is that we allow the subjective model of one or more players to
be misspecified, which roughly means that the set of subjective distributions do not
include the true, objective distribution. For example, firms might incorrectly believe
that sales depend only on their own price and not also on the price of other firms.
Or a consumer might perceive a nonlinear price schedule to be linear and, therefore,
respond to average, not marginal, prices. Or traders might not realize that the value
of trade is partly determined by the terms of trade.

Players play the objective game repeatedly. They believe that the environment
they face is stationary—it might not be, if other players are also present and learning
simultaneously. In particular, we ignore repeated game considerations where players
take into account how their actions affect others’ future play. Players start with a
prior over a set of subjective distributions over consequences. In each period, they
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play the objective game and use the observed consequences to update their beliefs
according to Bayes’ rule. Players maximize discounted expected utility, for some fixed
discount factor. The problem of each player can then be cast recursively as a dynamic
optimization problem where the state variable is a player’s own belief. The main
objective is to characterize limiting behavior when players behave optimally but learn
with a possibly misspecified subjective model.

The main result is that, if players’ behavior converges, then it converges to what
we call an equilibrium of the game. An equilibrium is defined to be a strategy profile
such that, for each player, there exists a belief with support in that player’s subjective
model that satisfies two conditions. First, the strategy must be optimal (in a static
sense) given the belief. Second, the belief puts probability one on the set of subjective
distributions over consequences that are “closest” to the true distribution, where the
true distribution is determined by the objective game and the actual strategy pro-
file. The notion of “closest” is given by a weighted version of the Kullback-Leibler
divergence, also known as relative entropy, that we define formally in the main text.

A converse of the main result, showing that we can converge to any equilibrium of
the game for some initial (non-doctrinaire) prior, does not hold. But we do obtain a
positive convergence result by relaxing the assumption that players exactly optimize.
We show that, for any equilibrium, there exists a policy rule that is myopic and
asymptotically optimal (in the sense that optimization mistakes vanish with time)
under which convergence to equilibrium occurs with probability one.

Our notion of equilibrium includes Nash equilibrium as a special case. Suppose
that the game is correctly specified, which means that the support of each player’s
prior contains the true, objective distribution. Suppose, in addition, that the game
is identified, which means that there is always a unique distribution (whether or not
correct) that matches the observed data. Then, our notion of equilibrium is equiv-
alent to Nash equilibrium. The novelty of our framework is to force the modeler to
make explicit any assumptions about players’ subjective models and to entertain the
possibility that these subjective models might be misspecified.

There is a longstanding interest among economists in studying the behavior of
economic agents who hold misspecified views of the world. As we illustrate in Section
5, there are examples from such diverse fields as industrial organization, mechanism
design, psychology and economics, macroeconomics, and information economics, al-
though many times there is no explicit reference to a problem of misspecified learning.
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Most of the literature, however, focuses on particular settings, and there has been lit-
tle progress in developing a unified framework. Moreover, one message that emerges
from some of the literature is often discouraging, emphasizing that misspecified mod-
els lead to non-convergent behavior, multiplicity of equilibrium, or even non-existence
of equilibrium. Our unifying treatment clarifies that these are all natural features
of equilibrium analysis—whether or not players are misspecified—and that modeling
the behavior of misspecified players does not constitute a large departure from the
standard framework.

Early examples of misspecified learning are provided by Arrow and Green (1973),
Kirman (1975), Sobel (1984), Nyarko (1991), and Sargent (1999), among others. Ar-
row and Green (1973) also provide a general treatment and make a distinction between
an objective and subjective game. Their framework, though, is more restrictive than
ours in terms of the types of misspecifications that players are allowed to have. More-
over, they do not establish existence of equilibrium and they do not provide a learning
foundation for equilibrium.1

More recently, new equilibrium concepts have been proposed to capture the behav-
ior of players who are boundedly rational and who might be viewed as learning from
past interactions: sampling equilibrium (Osborne and Rubinstein (1998), Spiegler
(2006)), the inability to recognize patterns (Piccione and Rubinstein (2003), Eyster
and Piccione (2013)), valuation equilibrium (Jehiel and Samet, 2007), analogy-based
expectation equilibrium (Jehiel (2005), Jehiel and Koessler (2008)), cursed equilib-
rium (Eyster and Rabin, 2005), behavioral equilibrium (Esponda, 2008), sparse Nash
equilibrium (Gabaix, 2012), cursed expectations equilibrium (Eyster et al., 2013),
and personal equilibrium (Spiegler, 2014). In particular, analogy-based expectation,
(fully) cursed, and behavioral equilibrium can all be integrated into our framework,
thus clarifying the underlying misspecification in each of these cases.2

1Misspecified models have also been studied in contexts that are outside the scope of our paper
either because the decision problem is dynamic (instead, we focus on the repetition of a static
problem) or because a market mechanism mediates the interactions between agents. Examples include
the early literature on rational expectations with misspecified players (e.g., Blume and Easley (1982),
Bray (1982), and Radner (1982)), the macroeconomics literature on bounded rationality (e.g., Sargent
(1993), Evans and Honkapohja (2001)), a behavioral finance literature that studies under and over-
reaction to information (e.g., Barberis et al., 1998), and a literature that formalizes psychological
biases and studies related applications (e.g., Rabin (2002), Rabin and Vayanos (2010), Spiegler
(2013)).

2Of course, many aspects of bounded rationality do not seem naturally fitted to misspecified
learning, such as the literature that studies biases in information processing due to computational
complexity (e.g., Rubinstein (1986), Salant (2011)), bounded memory (e.g., Wilson, 2003), or self-
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Our paper highlights that this literature fits well within mainstream equilibrium
analysis in non-cooperative game theory. The initial notion of Nash equilibrium (Nash,
1951) assumed that players only faced strategic uncertainty. Subsequently, the work
of Vickrey (1961), Harsanyi (1967-8), and others extended Nash equilibrium to also
account for payoff uncertainty. The previous literature and our paper relax yet an-
other assumption of the standard framework, which is the assumption that players
have a correctly-specified view of the game they are playing. We hope that the in-
troduction of misspecified models into an otherwise standard format can stimulate
further development of ideas that have so far been studied under different, specific
frameworks.

Our paper is also related to the bandit literature, which shows that agents in a
decision problem might optimally end up with incorrect beliefs if experimentation is
costly (e.g., Rothschild (1974), McLennan (1984), Easley and Kiefer (1988)). The self-
confirming equilibrium literature (Battigalli (1987), Fudenberg and Levine (1993a),
Dekel et al. (2004)) extends this insight to games by requiring players to have beliefs
that are consistent with observed past play, though not necessarily correct when feed-
back is coarse. In our framework, we also allow beliefs to be incorrect due to lack of
experimentation: our equilibrium notion is equivalent to self-confirming equilibrium
when we drop the assumption that the game is identified but maintain the assumption
that the subjective model is correctly specified.3 In all of these cases with coarse feed-
back, players’ beliefs are endogenous and depend on everyone’s actions. But, when
players have misspecified models, we show that beliefs continue to be endogenous
even if players persistently experiment with all actions. Thus, an equilibrium frame-
work is needed to characterize behavior even in single-agent settings with perpetual
experimentation.4

From a technical point of view, our results extend and combine results from two
literatures. First, the idea that equilibrium is a result of a learning process is taken
from the literature on learning in games. This literature studies explicit learning
models in order to justify Nash and self-confirming equilibrium (e.g., Fudenberg and

deception (e.g., Bénabou and Tirole (2002), Compte and Postlewaite (2004)).
3In the macroeconomics literature, the term “self-confirming equilibrium” is sometimes used in a

broader sense to include cases where agents have misspecified models (e.g., Sargent, 1999).
4The literature on self-confirming equilibrium considers two interesting extensions, neither of

which are captured in our paper: refinements that restrict beliefs by allowing players to introspect
about other players’ motivations (e.g., Rubinstein and Wolinsky, 1994), and non-Bayesian models of
updating that capture ambiguity aversion (Battigalli et al., 2012).
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Kreps (1988), Fudenberg and Kreps (1993), Fudenberg and Kreps (1995), Fudenberg
and Levine (1993b), Kalai and Lehrer (1993)).5 In particular, we follow Fudenberg
and Kreps (1993) in making the assumption that payoffs are perturbed, à la Harsanyi
(1973), to guarantee that behavior is continuous in beliefs and, therefore, to justify
how players might learn to play mixed strategy equilibria. We also rely on an idea by
Fudenberg and Kreps (1993) to prove the converse of the main result. We extend this
literature to account for the possibility that players learn with models of the world
that are misspecified even in steady state.

Second, we rely on and contribute to the statistics literature that studies the
consistency of Bayesian updating in order to characterize limiting beliefs. In decision
problems with correctly-specified models, the standard approach is to use a martingale
convergence theorem to prove that beliefs converge (e.g., Easley and Kiefer, 1988).
This result guarantees convergence of beliefs from a subjective point of view, which
is, unfortunately, not useful for our results because beliefs might still not converge in
an objective sense when the agent has a misspecified model. Thus, we take a different
route and follow the statistics literature on misspecified learning. This literature
characterizes limiting beliefs in terms of the Kullback-Leibler divergence (e.g., Berk
(1966), Bunke and Milhaud (1998)). We extend this statistics literature to the case
where agents are not only passively learning about their environment but are also
actively learning by taking actions.

Finally, in this paper, we take players’ misspecifications as given and characterize
the resulting behavior. This is a natural first step towards endogenizing the subjective
model. It is important to emphasize, however, that Bayesian players in our setting
have no reason to “discover” that they are misspecified.6

In Section 2, we illustrate the equilibrium concept in the context of a simple
example. We introduce the equilibrium framework in Section 3 and provide a learning
foundation in Section 4. In Section 5, we illustrate the applicability of the framework
with examples that come from a variety of different fields. We conclude in Section 6.

5See Fudenberg and Levine (1998, 2009) for a survey of this literature.
6Some explanations for why agents may have misspecified models include the use of heuristics

(Tversky and Kahneman, 1973), complexity (Aragones et al., 2005), the desire to avoid over-fitting
the data (Al-Najjar (2009), Al-Najjar and Pai (2013)), and costly attention (Schwartzstein, 2009).
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2 Example: monopolist with unknown demand

The following example of a monopolist with uncertain and misspecified demand func-
tion illustrates our equilibrium concept in a single-agent setting.7 The setup is taken
from Nyarko (1991). A monopolist chooses, at every period t = 0, 1, ..., a price
xt ∈ X = {2, 10} and then sells quantity yt according to the demand function

yt = a0 − b0xt + εt,

where (εt)t is an i.i.d. normally distributed process with mean zero and unit variance.
The monopolist observes sales yt but it does not observe the random shocks εt; it does
know, however, the distribution of (εt)t. The monopolist has no costs of production
and, therefore, her profits in period t are π(xt, yt) = xtyt. The monopolist wishes to
maximize discounted expected profits, where her discount factor is δ ∈ [0, 1).

The monopolist does not know the true demand intercept and slope (a0, b0). It
starts with a prior µ0 with full support over the set Θ ⊂ R2 of parameters that it views
as possible, where θ = (a, b) denotes a demand intercept and slope, and it updates its
prior using Bayes’ rule. As is well known, the monopolist’s problem can be represented
recursively by a value function which is defined over the set of beliefs over Θ. Our
objective is to characterize the limiting behavior of the monopolist.

Figure 1 shows the true demand parameter θ0 and the set of parameters Θ, which
is given by the rectangle with vertices at the points θ′, θ′′, (a′, b′′) and (a′′, b′). In this
case θ0 /∈ Θ and, therefore, we say that the monopolist has a misspecified model. The
dashed line separates the space of all parameters into two regions. If a parameter
lies to the left of the dashed line, then the unique optimal price of a monopolist who
is certain of that parameter is 10; if a parameter lies to the right, then the unique
optimal price is 2; and if a parameter lies on the line, then the monopolist is indifferent
between these two prices.

Nyarko (1991) shows that the monopolist’s action does not converge. To see the
intuition behind this result, suppose that the monopolist were to always choose price
2. Then, it would observe that average sales are a0 − b02. It would eventually believe
that any (a, b) that also gives rise to such average sales can explain the data. The set of

7The alternative problem of a monopolist with a correctly specified model was originally studied
by Rothschild (1974) and McLennan (1984), who highlighted the trade-off between exploitation and
experimentation.
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Figure 1: Monopolist with unknown demand

all such (a, b)’s is given by the line with slope 2 passing through the true parameter θ0.
Moreover, θ′ = (a′, b′) is the only point on that line that also belongs to Θ. Therefore,
the probability that the monopolist puts on any neighborhood of θ′ will converge to
1. But θ′ lies to the left of the dashed line, so that the monopolist would eventually
strictly prefer to charge price 10, contradicting our initial assumption that it always
charges 2. Similarly, if the monopolist were to always charge a price of 10, then it
would eventually become very confident that the true parameter is θ′′, but then, since
θ′′ is to the right of the dashed line, it would prefer to deviate and charge 2. Thus,
the monopolist’s behavior cycles forever between prices 2 and 10.

Non-convergent behavior, however, is due to the fact that actions are not contin-
uous in beliefs. This feature is well known to possibly lead to non-convergence in
correctly-specified settings. To avoid this issue, we extend Nyarko’s example by al-
lowing the monopolist to choose mixed strategies. Our interpretation and justification
of mixed strategies will be standard and follows Harsanyi (1973) and Fudenberg and
Kreps (1993).

Figure 1 depicts the mixed strategy where the monopolist chooses price 2 with
probability σ∗. If the monopolist chooses σ∗, then it is not too difficult to show that
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it will eventually become very confident that the true parameter is given by the point
(a′, bσ∗) in Figure 1. This is the point on the set Θ that is closest to θ0 when distance
is measured along the line with slope 2σ∗ + 10(1 − σ∗) passing through θ∗. If the
monopolist were to be certain that the parameter is (a′, bσ∗), then, because (a′, bσ∗)

lies on the dashed line, the monopolist would be indifferent between both prices and
mixing would be optimal. A strategy such as σ∗, with the property that it is optimal
given beliefs that are generated by playing it, is said to be an equilibrium strategy.
This equilibrium strategy, which is unique in this example, represents the steady-state
of this dynamic environment.

Next, we introduce a general framework, provide the definition of equilibrium, and
finally show that this definition captures the steady-state of a corresponding dynamic
learning environment.

3 The framework

3.1 The environment and the equilibrium concept

A (simultaneous-move) game G =< O,Q > is composed of a (simultaneous-move)
objective game O and a corresponding subjective model Q. We now describe each of
these two components in detail.

Objective game. A (simultaneous-move) objective game is a tuple

O = 〈I,Ω,S, p,X,Y, f, π〉 ,

where: I is a finite set of players; Ω is a finite set of payoff-relevant states; S = ×i∈ISi

is a finite set of profiles of signals, where Si is the set of signals of player i; p is a
full-support probability distribution over Ω × S; X = ×i∈IXi is a finite set of profiles
of actions, where Xi is the set of actions of player i; Y = ×i∈IYi is a finite set of
profiles of (observable) consequences, where Yi is the set of consequences of player i;
f = (f i)i∈I is a profile of feedback functions, where the feedback function of player
i, f i : Ω × X → Yi, maps outcomes in Ω × X into consequences of player i; and
π = (πi)i∈I , where πi : Xi × Yi → R is a bounded payoff function of player i. This
environment includes the special case where there is a single player.

The timing of the objective game is as follows: First, (ω, s) ∈ Ω × S are drawn
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according to the probability distribution p. Second, each player i privately observes si.
Third, each player i simultaneously chooses an action from Xi, resulting in a profile of
actions x ∈ X. Fourth, each player i observes her own consequence yi = f i(ω, x) ∈ Yi

and obtains payoff πi(xi, yi). This description of the game is standard; the explicit use
of a feedback function is borrowed from the self-confirming equilibrium literature and
allows us to capture situations where players might not get perfect feedback about
the outcome of the game.8

A strategy of player i is a mapping σi : Si → ∆(Xi). The probability that player i
chooses action xi after observing signal si is denoted by σi(xi | si). A strategy profile
is a vector of strategies σ = (σi)i∈I ; let Σ denote the space of all strategy profiles.

For a fixed objective game, if we also fix a strategy profile σ, then we obtain an
objective distribution over player i’s consequences, Qi

σ, where, for each (si, xi) ∈
Si × Xi, Qi

σ(· | si, xi) ∈ ∆(Yi) is defined as follows:

Qi
σ(yi | si, xi) =

∑
{(ω,x−i):f i(ω,xi,x−i)=yi}

∑
s−i

∏
j 6=i

σj(xj | sj)p(ω, s−i | si). (1)

The objective distribution represents the true distribution over consequences given
the objective game and a strategy profile followed by the players.9

Subjective model. For a fixed objective game, a subjective model is a tuple

Q = 〈Θ, (Qθ) θ∈Θ〉 ,

where: Θ = ×i∈IΘi is a parameter space, where Θi, the parameter set of player i, is a
compact subset of a (finite-dimensional) Euclidean space; andQθ = (Qi

θi)i∈I is a profile
of distributions, where Qi

θi is a distribution over player i’s consequences parameterized
by θi ∈ Θi that satisfies two properties: (i) Qi

θi(y
i | si, xi) is continuous as a function

of θi and all (yi, si, xi) ∈ Yi×Si×Xi; and (ii) for each player i ∈ I, there exists θi ∈ Θi

such that, for all (si, xi) ∈ Si × Xi, Qi
θi(y

i | si, xi) > 0 for all yi ∈ f i(Ω, xi,X−i). The
second property rules out a stark form of misspecification by guaranteeing that there
exists a parameter that can rationalize every feasible observation; otherwise, Bayesian
updating is not well defined and we would expect players to re-consider their subjective

8For simplicity, the setup implicitly assumes that players observe at least their own payoffs and
actions.

9As usual, the superscript −i denotes a profile where the i’th component is excluded.
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models.10

While the objective game represents the true environment, the subjective model
represents the players’ perception of their environment. Each player forms beliefs
about the distribution over own consequences conditional on each private signal and
on each action they can take. In particular, Qi = (Θi, (Qi

θi)θi∈Θi) represents all the
distributions, i.e., all the models of the world, that player i views as possible. This
separation between objective and subjective models, which is often implicit in standard
treatments of games, is crucial in this paper.

Remark 1. A special case of a subjective model is what we call a strategic subjective
model: Players know the structure of the game and have beliefs over others’ strategies
and over the state-signal space Ω× S which are parameterized by θi ∈ Θi: (σ−i

θi
, pθi).

The distributions Qi
θi are then derived by replacing (σ−i

θi
, pθi) for (σ−i, p) in the RHS

of equation (1). In particular, players are allowed to have correlated beliefs about
their opponents’ strategies, as in Fudenberg and Levine (1993a).

Distance to true model. In equilibrium, we will require players’ beliefs to
put probability one on the set of subjective distributions over consequences that are
“closest” to the objective distribution. In order to describe the right notion of “closest”,
we need some some additional definitions. The following function, which we call the
weighted Kullback-Leibler divergence (wKLD) function of player i, is a weighted
version of the standard Kullback-Leibler divergence in statistics (Kullback and Leibler,
1951). It represents a non-symmetric measure between the objective distribution over
i’s consequences given σ ∈ Σ and the distribution as parameterized by θi ∈ Θi:11

Ki(σ, θi) =
∑

(si,xi)∈Si×Xi
EQiσ(·|si,xi)

[
ln
Qi
σ(Y i | si, xi)

Qi
θi

(Y i | si, xi)

]
σi(xi | si)pSi(si), (2)

where we use the convention that − ln 0 =∞. The set of closest parameters of player
i given σ ∈ Σ is the set

Θi(σ) ≡ arg min
θi∈Θi

Ki(σ, θi).

The interpretation is that Θi(σ) ⊂ Θi is the set of parameters of the world that player
i believes to be possible after observing feedback consistent with strategy profile σ.

10For simplicity, this definition of a subjective model assumes that players know the distribution
over their own signals.

11The notation EQ denotes expectation with respect to the probability measure Q.
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The next result collects some useful properties of the wKLD.

Lemma 1. (i) For all σ ∈ Σ, θi ∈ Θi, and i ∈ I, Ki(σ, θi) ≥ 0, with equality holding
if and only if Qθi(· | si, xi) = Qi

σ(· | si, xi) for all (si, xi) such that σi(xi | si) > 0. (ii)
For every i ∈ I, Θi(·) is non-empty, compact valued, and upper hemicontinuous.

Proof. See the Appendix.

Remark 2. (a) The use of the Kullback-Leibler divergence to measure distance is not
an arbitrary assumption. We show in Section 4 that this is the right notion of distance
when players are Bayesian. (b) Because the wKLD function is weighted by a player’s
own strategy, it will in general place no restrictions on beliefs about outcomes that
only arise following out-of-equilibrium actions.

Optimality. In equilibrium, we will require each player to choose a strategy that
is optimal given her beliefs. A strategy σi for player i is optimal given µi ∈ ∆(Θi) if
σi(xi | si) > 0 implies that

xi ∈ arg max
x̄i∈Xi

EQ̄i
µi

(·|si,x̄i)
[
πi(x̄i, Y i)

]
(3)

where, for all i and (yi, si, xi),

Q̄i
µi(y

i | si, xi) =

ˆ
Θi
Qi
θi(y

i | si, xi)µi(dθi)

is the distribution over consequences of player i induced by µi.

Definition of equilibrium. We propose the following solution concept.

Definition 1. A strategy profile σ ∈ Σ is an equilibrium of game G if, for all players
i ∈ I, there exists µi ∈ ∆(Θi) such that

(i) σi is optimal given µi, and
(ii) µi ∈ ∆(Θi(σ)).
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Definition 1 places two types of restrictions on equilibrium behavior: (i) optimiza-
tion given beliefs, and (ii) endogenous restrictions on beliefs.12 For comparison, notice
that the definition of a Nash equilibrium is identical to Definition 1 except that con-
dition (ii) is replaced with the condition that Q̄i

µi = Qi
σ; in other words, players must

have correct beliefs in a Nash equilibrium.
The following example illustrates the previous definitions in the context of a mis-

specification captured by (fully) cursed equilibrium (Eyster and Rabin, 2005) and
analogy-based expectation equilibrium (Jehiel (2005), Jehiel and Koessler (2008)).13

Example. Objective game. There are two players, I = {A,B}, and two states of
the world, Ω = {0, 1}. State ω = 1 is chosen with probability pΩ(1) = 2/3. Players
obtain perfect signals about the state: SA = SB = S = {0, 1}, where pS|Ω(s | ω) = 1

for s = ω. Players A and B simultaneously choose actions from XA = XB = {0, 1}.
Player A gets a payoff of 1 if he matches the action of player B and a payoff of 0
otherwise. Player B gets a payoff of 1 if she matches the state and zero otherwise.
Player A’s space of consequences is the action space of player B, YA = XB, and
he receives feedback about player B’s action, fA(ω, xA, xB) = xB. Player B’s space
of consequences is the state space, YB = Ω, and she receives feedback about the
state, fB(ω, xA, xB) = ω. A strategy for player i is a mapping σi : S → ∆(Xi).
Given a strategy profile σ = (σA, σB), the objective distribution over consequences
are QA

σ (xB | s, xA) = σB(xB | s) for player A and QB
σ (ω | s, xB) = pΩ|S(ω | s) for

player B.
Subjective model. Suppose, for simplicity, that both players know the primitive

p ∈ ∆(Ω × S2). Then player B has nothing to learn and we will focus on player A.
Suppose, as an example of a potential misspecification, that player A believes that
player B’s action does not depend on player B’s signal: σBθA(1 | 1) = σBθA(1 | 0) = θA.
Player A wants to learn the parameter θA ∈ ΘA = [0, 1], which is his perceived
probability that player B plays xB = 1. Player A’s subjective model is

QA
θA(xB | s, xA) = θAxB + (1− θA)(1− xB),

12Our setting is restricted to unitary beliefs (cf., Fudenberg and Levine, 1993a), which requires the
same belief to rationalize each action in the support of a strategy. This is the standard assumption
when there is one player in each role, as opposed to a setting where there is a population of players
in each player role (e.g., Fudenberg and Levine, 1993b).

13The example is taken from Fudenberg and Levine (2009, page 408).
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which does not depend on (s, xA).
Equilibrium analysis. The wKLD function of player A is

KA(σ, θA) =
∑
s∈S

∑
xB∈XB

ln

(
σB(xB | s)

θAxB + (1− θA)(1− xB)

)
σB(xB | s)pS(s)

= −σ̄B(1) ln θA − (1− σ̄B(1)) ln(1− θA) + C,

where σ̄B(1) =
∑

s∈S σ
B(1 | s)pS(s) is the average probability that player B plays

xB = 1 and C is a constant term that does not depend on θA. The unique minimizer
of KA(σ, θA) is θA(σ) = σ̄B(1). Since it is dominant for player B to play xB = 1 if
s = 1 and xB = 0 if s = 0, then σ̄B(1) = pS(1) = 2/3. Therefore, in equilibrium,
player A believes that player B chooses xB = 1 with probability θA = 2/3 irrespective
of the state. By optimality, player A must then play xA = 1 in equilibrium irrespective
of his signal. In contrast, in a Nash equilibrium, player A would realize that player
B plays differently in different states and would, therefore, best respond by matching
his action to his own signal. �

3.2 Properties of games

We introduce several properties of games that play an important role either in the
results to follow or in certain applications.

Definition 2. A game is identifiable given σ if the subjective model satisfies the
following condition for all i ∈ I: if θi1, θi2 ∈ Θi(σ), then Qi

θi1
(· | si, xi) = Qi

θi2
(· | si, xi)

for all (si, xi) ∈ Si × Xi such that σi(xi | si) > 0; if the condition is satisfied for
all (si, xi) ∈ Si × Xi, then we say that the game is identified given σ. A game is
identifiable [identified] if it is identifiable [identified] for all σ.

A game is identifiable if, whenever more than one parameters are closest to the
objective distribution, then the distributions associated with these parameters must
be indistinguishable given the observed feedback. Identification, on the other hand,
is a stronger condition. A game is identified when there is always a unique belief
about the consequences of all (on and off path) actions that is closest to the objective
distribution. As the examples throughout the paper illustrate, these conditions are
easy to check.
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Identifiability (as opposed to identification) is a relatively mild condition that
allow players to entertain a multitude of off-path beliefs due to lack of feedback. It
rules out, however, misspecified models where a player might not be able to distinguish
between two distributions that are different but equidistant (in terms of wKLD) to the
objective distribution, in the sense that they provide an equally good fit of the observed
data. In this knife-edge case, beliefs might never settle down. We later assume
identifiability to show existence of equilibrium and to show convergence to equilibrium
in the dynamic model. The following example, due to Berk (1966), illustrates a failure
of identifiability.

Example. An unbiased coin is tossed every period and the agent believes that
the probability of heads is either 1/4 or 3/4, but not 1/2. The agent, who takes no
actions in this simple example, observes the outcome of each coin toss and updates
her (non-doctrinaire) prior. In this case, both 1/4 and 3/4 are equidistant to the
true distribution 1/2, and it is straightforward to show that the agent’s beliefs do not
settle down (see Berk, 1966). The failure of identifiability is not robust, however, in
the sense that, if the agent were to entertain the possibility of any parameter strictly
between 1/4 and 3/4, the model would be identifiable (and also identified, because
there are no actions) and beliefs would converge to a unique parameter. �

The next property distinguishes between misspecified and correctly specified games.

Definition 3. A game is correctly specified given σ if the subjective model satisfies
the following condition for all i ∈ I: there exists θi ∈ Θi such that Qi

θi(y
i | si, xi) =

Qi
σ (yi | si, xi) for all (si, xi) ∈ Si × Xi and yi ∈ Yi; otherwise, the subjective model is

misspecified given σ. A game is correctly specified if it is correctly specified for
all σ; otherwise, it is misspecified.

In decision problems, Definition 3 coincides with the standard definition of mis-
specification in the statistics literature. For example, in the monopoly problem of
Section 2, being correctly specified means that the true demand parameter is one of
the parameters a priori considered possible by the monopolist. In games, where the
objective distribution depends on the strategy profile, a game is correctly specified if
players do not a priori rule out any of the objective distributions that might possibly
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arise in equilibrium.14

Definition 4. A game has full feedback if the subjective model satisfies the following
condition for all i ∈ I: for all θi ∈ Θi, Qi

θi does not depend on xi, i.e., Qi
θi(y

i | si, xi) =

Qi
θi(y

i | si, x̂i) for all xi, x̂i, si, yi.

The full feedback property says that each player believes (either correctly or not)
that the distribution over her consequences does not depend on her actions. Thus,
players will get full feedback about their payoff-relevant consequences irrespective of
the action they take. This condition rules out those types of incorrect beliefs that are
mainly due to lack of experimentation (but not due to other reasons, such as having
a misspecified model).15

Remark 3. In the case of strategic subjective models (see Remark 1 for a definition),
an equivalent definition of full feedback is that, for each player i, the feedback function
f i does not depend on xi.

We conclude by establishing useful connections between these properties.

Proposition 1. A game that is correctly specified is identifiable. A game that is
correctly specified and has full feedback is identified.

Proof. Fix any σ and i ∈ I. Because the game is correctly specified, there exists θi∗ ∈
Θi such that Qi

θi∗
= Qi

σ. In particular, Ki(θi∗, σ) = 0. By Lemma 1(i), Ki(θi, σ) ≥ 0

for all θi ∈ Θi; therefore, θi∗ ∈ Θi(σ). Now consider any θ̂i ∈ Θi(σ). Since Ki(θi∗, σ) =

0, it must also be true that Ki(θ̂i, σ) = 0. Lemma 1(i) then implies that Qi
θ̂i

(· |
si, xi) = Qθi∗

(· | si, xi) for all (si, xi) such that σi(xi | si) > 0. Thus, a game that
is correctly specified is also identifiable. Now suppose, in addition, that the game
has full feedback. Then it follows that Qi

θ̂i
does not depend on xi and, therefore,

Qi
θ̂i

(· | si, xi) = Qθi∗
(· | si, xi) for all (si, xi). Thus, the game is identified.

As illustrated in Section 5.4, a correctly specified game might be identified even if
it does not satisfy full feedback.

14A more precise, though longer, terminology would say that a game is correctly specified in
steady state. The reason is that, in the dynamic model, players believe that they face a stationary
environment while in fact the environment might be nonstationary before reaching the steady state.

15Arrow and Green (1973) defined a similar condition and restricted their entire setup to satisfy
this condition.
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3.3 Relationship to Nash equilibrium

The next result shows that our solution concept is equivalent to Nash equilibrium
when the game is both correctly specified and identified.

Proposition 2. (i) Suppose that the game is correctly specified and that σ is a Nash
equilibrium of its objective game. Then σ is an equilibrium of the (objective and
subjective) game.
(ii) Suppose that σ is an equilibrium of a game that is correctly specified and identified.
Then σ is a Nash equilibrium of the corresponding objective game.

Proof. (i) Let σ be a Nash equilibrium and fix any i ∈ I. Then σi is optimal given
Qi
σ. Because the game is correctly specified, there exists θi∗ ∈ Θi such that Qi

θi∗
= Qi

σ

and, therefore, θi∗ ∈ Θi(σ). Then σi is also optimal given Qi
θi∗

and θi∗ ∈ Θi(σ). Thus,
σ is an equilibrium. (ii) Let σ be an equilibrium and fix any i ∈ I. Then σi is optimal
given Q̄i

µi , where µ
i ∈ ∆(Θi(σ)). Because the game is correctly specified, there exists

θi∗ ∈ Θi such that Qi
θi∗

= Qi
σ and, therefore, θi∗ ∈ Θi(σ). Moreover, because the game

is identified, any θ̂i ∈ Θi(σ) satisfies Qi
θ̂i

= Qi
θi∗

= Qi
σ. Then σi is also optimal given

Qi
σ. Thus, σ is a Nash equilibrium.

For games that are correctly specified but not identified, our notion of equilibrium
is equivalent to self-confirming equilibrium (e.g., Dekel et al., 2004); it is well known
that the equilibrium set in that case includes Nash but might also include non-Nash
outcomes. The examples in Section 5 illustrate that, for games that are misspecified
(whether or not identified), it is no longer true that Nash outcomes must be equilibrium
outcomes.16

3.4 Perturbed game and existence of equilibrium

The standard proof of existence of Nash equilibrium cannot be used to show exis-
tence of equilibrium in our framework because the corresponding version of a best

16Arrow and Green (1973) impose a condition that requires the game to be correctly specified but
only on the equilibrium path. This is equivalent to the requirement that the wKLD function is zero
at the equilibrium belief. In this case, equilibrium can also differ from Nash equilibrium, but this is
no longer true if a small amount of experimentation leads to every action being played with positive
probability in equilibrium.
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response correspondence is not necessarily convex valued.17 To prove existence, we
first perturb the payoffs of the game and establish that equilibrium exists under a
class of perturbations. We then consider a sequence of equilibria of perturbed games
where the perturbations go to zero and establish that the limit is an equilibrium of
the (unperturbed) game introduced in Section 3.1.18

A perturbation structure is a tuple P = 〈Ξ, Pξ〉, where: Ξ = ×i∈IΞi and Ξi ⊆
R#Xi is a set of payoff perturbations for each action of player i; Pξ = (Pξi)i∈I , where
Pξi ∈ ∆(Ξi) is a distribution over payoff perturbations of player i that is absolutely
continuous with respect to the Lebesgue measure, satisfies

´
Ξi
||ξi||Pξ(dξi) < ∞, and

is independent from the perturbations of other players.

Definition 5. A perturbed game GP = 〈G,P〉 is composed of a game G and a
perturbation structure P . A fully-perturbed game is a perturbed game where the
support of Pξi is R#Xi for all i ∈ I.

The timing of a perturbed game GP coincides with the timing of its corresponding
(unperturbed) game G, except for two modifications. First, before taking an action,
each player not only observes a signal si but now she also privately observes a vector of
own payoff perturbations ξi ∈ Ξi, where ξi(xi) denotes the perturbation corresponding
to action xi. Second, her payoff given action xi and consequence yi is πi(xi, yi)+ξi(xi).

A strategy σi for player i is optimal in the perturbed game given µi ∈ ∆(Θi)

if, for all (si, xi) ∈ Si × Xi,19

σi(xi | si) = Pξ

(
ξi : xi ∈ arg max

x̄i∈Xi
EQ̄i

µi
(·|si,x̄i)

[
πi(x̄i, Y i)

]
+ ξi(x̄i)

)
. (4)

In other words, if σi is an optimal strategy, then σi(xi | si) is the probability that
xi is optimal when the state is si and the perturbation is ξi, taken over all possible
realizations of ξi.

17For example, fix σ and suppose that Θi(σ) = {θi1, θi2}. Then it is possible that σi1 is optimal if
player i puts probability 1 on θi1 and that σi2 is optimal if she puts probability 1 on θi2, but that a
convex combination of σi1 and σi2 is not optimal for any belief satisfying µi ∈ ∆(Θi(σ)).

18The idea of perturbations and the strategy of the existence proof date back to Harsanyi (1973);
Selten (1975) and Kreps and Wilson (1982) also used these ideas to prove existence of perfect and
sequential equilibrium, respectively.

19Equation (4) is well defined by the assumption of absolute continuity of perturbations and the fact
that the set of ξ’s such that a player is indifferent between any two actions lies in a lower-dimensional
hyperplane.
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Games that are not just perturbed but also fully perturbed have the following
convenient properties.

Lemma 2. (i) If σi is an optimal strategy of player i in a fully-perturbed game, then
σi(xi | si) > 0 for all (si, xi) ∈ Si × Xi; (ii) Suppose that the game is identifiable.
For all σ ∈ Σ, if σi(xi | si) > 0 for all (si, xi) ∈ Si × Xi and some i ∈ I, then
Q̄i
µi1

(· | si, xi) = Q̄i
µi2

(· | si, xi) for all (si, xi) ∈ Si × Xi and all µi1, µi2 ∈ ∆(Θ(σ)).

Proof. See the Appendix.

The first claim in Lemma 2 says that, in fully-perturbed games, optimality implies
that all actions are chosen with positive probability. The second claim simply says
that an identifiable game is identified under fully perturbed strategies.

The definition of equilibrium of a perturbed game GP is analogous to Definition
1, with the obvious difference that optimality must be required with respect to the
perturbed game.

Definition 6. A strategy profile σ ∈ Σ is an equilibrium of the perturbed game
GP if, for all players i ∈ I, there exists µi ∈ ∆(Θi) such that

(i) σi is optimal in the perturbed game given µi, and
(ii) µi ∈ ∆(Θi(σ)).

The next result establishes existence of equilibrium for fully-perturbed and iden-
tifiable games.

Theorem 1. Every fully-perturbed and identifiable game has an equilibrium.

Proof. See the Appendix.

The proof of Theorem 1 follows by characterizing equilibrium as a fixed point of a
continuous function and then applying Brouwer’s fixed point theorem. Continuity is
obtained from identifiability, the upper hemicontinuity of Θi(·), continuity of Qi

θi as a
function of θi, and the absolute continuity of Pξ.

We now consider sequences of perturbed games where the payoff perturbations go
to zero.
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Definition 7. A sequence of vanishing [fully] perturbed games is a sequence of
[fully] perturbed games where each game in the sequence shares the same primitives,
except possibly for the perturbation structure 〈Ξν , Pξν 〉, where ν ∈ N indexes the
element of the sequence, and where, for all i ∈ I, (ξiν) converges in probability to 0 as
ν →∞, i.e., for all ε > 0,

lim
ν→∞

Pξν
(∥∥ξiν∥∥ ≥ ε

)
= 0. (5)

The next result follows by standard continuity arguments.

Theorem 2. Fix a sequence of vanishing perturbed games and a corresponding se-
quence (σν)ν of equilibria such that limν→∞ σν = σ. Then σ is an equilibrium of the
(unperturbed) game.

Proof. See the Appendix.

Existence of equilibrium in (unperturbed) identifiable games follows as a corollary
of the previous results.

Corollary 1. Every (unperturbed) identifiable game has an equilibrium.

Proof. Fix a sequence of vanishing fully-perturbed games where the (unperturbed)
game remains fixed and is identifiable.20 By Theorem 1, there exists a corresponding
sequence of equilibria. Since equilibria live in a compact space, then there exists a
subsequence of equilibria that converges. Theorem 2 says that this limit point is an
equilibrium of the (unperturbed) game.

4 Learning foundation for equilibrium

In this section, we provide a learning foundation for equilibrium. We focus on iden-
tifiable games because, as illustrated by the Example in Section 3.2, beliefs need not
converge without identifiability. We also consider perturbed games (see Section 3.4)

20For example, suppose that for every player and action, each perturbation is drawn independently
from a normal distribution with mean zero and variance that goes to zero.
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because, as highlighted by Fudenberg and Kreps (1993), behavior need not be contin-
uous in beliefs for unperturbed games. Thus, even if beliefs were to converge, behavior
would not necessarily settle down in an unperturbed game. One important role of the
perturbations is to make sure that if beliefs converge then behavior also converges.

Throughout this section, we fix a perturbed game GPand consider a setting where
players repeatedly play the corresponding objective game at each moment in time
t = 0, 1, 2, ..., and where the time-t state and signals, (ωt, st), are independently drawn
from the same distribution p every period. In addition, each player i has a prior µi0 with
full support over her (finite-dimensional) parameter space, Θi.21 At the end of each
period t, each player uses Bayes’ rule and the information obtained in that period
(her own signal, action, and consequence) to update her beliefs. Players maximize
discounted expected payoffs, where δi ∈ [0, 1) is the discount factor of player i. In
particular, players can be forward looking and decide to experiment. Players believe,
however, that they face a stationary environment and, therefore, have no incentives to
influence the future behavior of other players. Finally, we assume for simplicity that
players know the distribution of their own payoff perturbations.

Let Bi : ∆(Θi)× Si × Xi × Yi → ∆(Θi) denote the Bayesian operator of player i:
for all A ⊆ Θ Borel measurable and all (µi, si, xi, yi),

Bi(µi, si, xi, yi)(A) =

´
A
Qi
θi(y

i | si, xi)µi(dθ)´
Θ
Qi
θi

(yi | si, xi)µi(dθ)
.

Because players believe that they face a stationary environment, they solve a (sub-
jective) dynamic optimization problem that can be cast recursively as follows. By the
Principle of Optimality, V i(µi, si) denotes the maximum expected discounted payoffs
(i.e., the value function) of player i who starts a period by observing signal si and by
holding belief µi if and only if

V i(µi, si) =

ˆ
Ξi

{
max
xi∈Xi

EQ̄µi (·|si,xi)
[
πi(xi, Y i) + ξi(xi) + δEpSi

[
V i(µ̂i, Si)

]]}
Pξ(dξ

i),

(6)
21We restrict attention to finite dimensional parameter spaces because, otherwise, Bayesian updat-

ing need not converge to the truth for most priors and parameter values even in correctly specified
statistical settings (Freedman (1963), Diaconis and Freedman (1986)).
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where µ̂i = Bi(µi, si, xi, Y i) is the updated belief. For all (µi, si, ξi), let

Φi(µi, si, ξi) = arg max
xi∈Xi

EQ̄µi (·|si,xi)
[
πi(xi, Y i) + ξi(xi) + δEpSi

[
V i(µ̂i, Si)

]]
.

We use standard arguments to prove the following properties of the value function.22

Lemma 3. There exists a unique solution V i to the Bellman equation (6); this solution
is bounded in ∆(Θi)× Si and continuous as a function of µi. Moreover, Φi is single-
valued and continuous with respect to µi, a.s.- Pξ.

Proof. See the Appendix.

Without loss of generality, we restrict behavior to depend on the state of the
recursive problem.

Definition 8. A policy of player i is a sequence of functions φi = (φit)t, where
φit : ∆(Θi)× Si ×Ξi → Xi. A policy φi is optimal if φit ∈ Φ for all t. A policy profile
φ = (φi)i∈I is optimal if φi is optimal for all i ∈ I.

Let H = (S × Ξ × graph (×i∈If i(Ω, ·)))∞ denote the set of observable histories,
where any history h = (s0, ξ0, x0, y0, ..., st, ξt, xt, yt...) ∈ H must satisfy the feasibility
restriction that yt ∈ ×i∈If i(Ω, xt) for all t. Let Pµ0,φ denote the (objective) probability
distribution over H that is induced by the primitives of the game, the priors µ0 =

(µi0)i∈I—which partly determine the initial actions—, and the policy profiles φ =

(φi)i∈I . Let (µt)t denote the sequence of beliefs µt : H → ×i∈I∆(Θi) such that, for
all t ≥ 1 and all i ∈ I, µit is the posterior at time t defined recursively by µit(h) =

Bi(µit−1(h), sit−1(h), xit−1(h), yit−1(h)) for all h ∈ H, where sit−1(h) is player i’s signal at
t− 1 given history h, and similarly for xit−1(h) and yit−1(h).

Definition 9. The sequence of intended strategy profiles given policy profile
φ = (φi)i∈I is the sequence (σt)t of random variables σt : H→ ×i∈I∆(Xi)S

i such that,
for all t and all i ∈ I,

σit(h)(xi | si) = Pξ
(
ξi : φit(µ

i
t(h), si, ξi) = xi

)
. (7)

22Doraszelski and Escobar (2010) study a similarly perturbed version of the Bellman equation.
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An intended strategy profile σt describes how each player would behave at time t
for each possible signal; it is random because it depends on the players’ beliefs at time
t, µt, which in turn depend on the past history.

One reasonable criteria to claim that the players’ behavior stabilizes is that their
intended behavior stabilizes with positive probability (cf. Fudenberg and Kreps, 1993).

Definition 10. A strategy profile σ ∈ Σ is stable [or strongly stable] under policy
profile φ if the sequence of intended strategies, (σt)t, converges to σ with positive
probability [or with probability one], i.e.,

Pµ0,φ
(

lim
t→∞
‖σt(h)− σ‖ = 0

)
> 0 [or = 1]

The next result extends results from the statistics of misspecified learning (Berk
(1966), Bunke and Milhaud (1998)) to establish that, if behavior stabilizes to a strat-
egy profile σ, then, for each player i, the support of the posterior beliefs converges
to Θi(σ). The proof clarifies the origin of the wKLD function in the definition of
equilibrium in Section 3.

Lemma 4. Suppose that, for a policy profile φ, the sequence of intended strategies,
(σt)t, converges to σ for all histories in a set H ⊆ H such that Pµ0,φ (H) > 0. Then,
for all open sets U i ⊇ Θi(σ),

lim
t→∞

µit
(
U i
)

= 1

Pµ0,φ-a.s. in H.

Proof. It is sufficient to establish that limt→∞
´

Θi
di(σ, θi)µit+1(dθi) = 0 a.s. in H,

where di(σ, θi) = inf θ̂i∈Θi(σ)

∥∥∥θi − θ̂i∥∥∥. Fix i ∈ I and h ∈ H. Then

ˆ
Θi
di(σ, θi)µit+1(dθi) =

´
Θi
di(σ, θi)

∏t
τ=1Q

i
θi(y

i
τ | siτ , xiτ )µi0(dθi)´

Θi

∏t
τ=1 Q

i
θi

(yiτ | siτ , xiτ )µi0(dθi)

=

´
Θi
di(σ, θi)

∏t
τ=1

Qi
θi

(yiτ |siτ ,xiτ )

Qiστ (yiτ |siτ ,xiτ )
µi0(dθi)

´
Θi

∏t
τ=1

Qi
θi

(yiτ |siτ ,xiτ )

Qiστ (yiτ |siτ ,xiτ )
µi0(dθi)

=

´
Θi
di(σ, θi) exp {tKi

t(h, θ
i)}µi0(dθi)´

Θi
exp {tKi

t(h, θ
i)}µi0(dθi)

,
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where the first line is well-defined given the definition of a subjective model (i.e.,
properties (i) and (ii)), where the second line is well-defined because Pµ0,φ (H) > 0

implies that all the terms we divide by are positive, and where we define Ki
t(h, θ

i) =

−1
t

∑t
τ=1 ln

Qiστ (yiτ |siτ ,xiτ )

Qi
θi

(yiτ |siτ ,xiτ )
.23 Then, for all ε > 0 and η > 0,

ˆ
Θi
di(σ, θi)µit+1(dθi) ≤ ε+ C

Ait(h, ε)

Bi
t(h, η)

, (8)

where C ≡ supθi1,θi2∈Θi ‖θi1 − θi2‖ <∞ (because Θi is bounded) and where

Ait(h, ε) =

ˆ
{θi:di(σ,θi)≥ε}

exp
{
tKi

t(h, θ
i)
}
µi0(dθi)

and
Bi
t(h, η) =

ˆ
{θi:di(σ,θi)≤η}

exp
{
tKi

t(h, θ
i)
}
µi0(dθi).

In particular, expression (8) is well defined because the assumption that the priors have
full support implies that Bi

t(h, η) > 0.24 The proof concludes by showing that for every
(sufficiently small) ε > 0, there exists ηε > 0 such that limt→∞A

i
t(h, ε)/B

i
t(h, ηε) = 0.

This result is achieved in several steps. First, in Online Appendix A, we use a law of
large numbers argument to show that

lim
t→∞

Ki
t(h, θ

i) = −Ki(σ, θi) (9)

for all θi ∈ Θi, a.s. in H. Recall that Ki(σ, θi) denotes the wKLD function (see
equation 2). Next, for all ε > 0, define Ki

ε(σ) = inf {Ki(σ, θi) | θi ∈ Θi, di(σ, θi) ≥ ε}
and αε = (Ki

ε(σ)−Ki
0(σ)) /3. By continuity of Ki(σ, ·), there exists ε̄ and ᾱ such

that 0 < αε ≤ ᾱ <∞ for all ε ≤ ε̄. From now on, fix ε ≤ ε̄. It follows that

Ki(σ, θi) > Ki
0(σ) + 2αε (10)

for all θi such that di(σ, θi) ≥ ε. Also, by continuity of Ki(σ, ·), there exists ηε > 0

23If, for some θi, Qiθi(y
i
τ | siτ , xiτ ) = 0 for some τ ∈ {1, ..., t}, then we define Ki

t(h, θ
i) = −∞ and

exp
{
tKi

t(h, θ
i)
}

= 0.
24Note that this result is also true if we replace the assumption that the priors have full support

with the assumption that µi0(Θi(σ)) > 0 and Θi(σ) 6= Θi.
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such that
Ki(σ, θi) < Ki

0(σ) + αε/2 (11)

for all θi such that di(σ, θi) ≤ ηε. Then

lim inf
t→∞

Bi
t(h, ηε) exp

{
t(Ki

0(σ) +
αε
2

)
}

= lim inf
t→∞

ˆ
{θi:di(σ,θi)≤ηε}

exp
{
t(Ki

0(σ) +
αε
2

+Ki
t(h, θ

i))
}
µi0(dθi)

≥
ˆ
{θi:di(σ,θi)≤ηε}

exp
{

lim
t→∞

t(Ki
0(σ) +

αε
2
−Ki(σ, θi))

}
µi0(dθi)

=∞,

a.s.-Pµ0,φ, where the second line follows from Fatou’s Lemma and (9), and the third
line follows from (11).

Finally, it suffices to show

lim
t→∞

Ait(h, ε) exp
{
t(Ki

0(σ) + αε)
}

= lim
t→∞

ˆ
{θi:di(σ,θi)≥ε}

exp
{
t(Ki

0(σ) + αε +Ki
t(h, θ

i))
}
µi0(dθi)

= 0, (12)

a.s.-Pµ0,φ. The intuition is that equation (12) follows from (9) and (10); this result,
however, requires a rather tedious proof because it is not obvious that the the limit
and the integral can be interchanged in equation (12). We prove equation (12) in
Online Appendix A.

Lemma 4 only implies that the support of posteriors converges, but posteriors need
not converge.25 We can always find, however, a subsequence of posteriors that con-
verges. By continuity of behavior in beliefs, the stable strategy profile is dynamically
optimal (in the sense of solving the dynamic optimization problem) given this conver-
gent posterior. For identifiable games, the convergent posterior is a fixed point of the
Bayesian operator. Thus, the players understand that their limiting strategies will
provide no new information. Since the value of experimentation is non-negative, it
follows that the stable strategy profile must also be myopically optimal (in the sense
of solving the optimization problem that ignores the future), which is the definition

25One obvious way of obtaining convergence of player i’s posteriors is to restrict attention to games
that are identified. But this assumption rules out some interesting cases of multiplicity, such as those
captured by self-confirming equilibrium. Instead, we rely on the weaker assumption of identifiability.
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of optimality used in the equilibrium model of Section 3. Thus, we obtain the follow-
ing characterization of the set of stable strategy profiles when players follow optimal
policies.

Theorem 3. Suppose that σ ∈ Σ is stable under an optimal policy profile for a
perturbed and identifiable game. Then σ is an equilibrium of the game.

Proof. Let φ denote the optimal policy function under which σ is stable. By Lemma
4, there exists H ⊆ H with Pµ0,φ (H) > 0 such that, for all h ∈ H, limt→∞ σt(h) = σ

and limt→∞ µ
i
t (U i) = 1 for all i ∈ I and all open sets U i ⊇ Θi(σ); for the remainder

of the proof, fix any h ∈ H. For all i ∈ I, compactness of ∆(Θi) implies the existence
of a subsequence, which we denote as (µit(j))j, such that µit(j) converges (weakly) to
µi∞ (the limit could depend on h). We now show that µi∞ ∈ ∆(Θi(σ)). Suppose
not, so that there exists θ̂i ∈ supp(µi∞) such that θ̂i /∈ Θi(σ). Then, since Θi(σ)

is closed (by Lemma 1(ii)), there exists an open set U i ⊃ Θi(σ) with closure Ū i

such that θ̂i /∈ Ū i. Then µi∞(Ū i) < 1, but this contradicts the fact that µi∞
(
Ū i
)
≥

lim supj→∞ µ
i
t(j)

(
Ū i
)
≥ limj→∞ µ

i
t(j) (U i) = 1, where the first inequality holds because

Ū i is closed and µit(j) converges (weakly) to µ
i
∞.

Given that limj→∞ σt(j) = σ and µi∞ ∈ ∆(Θi(σ)) for all i, it remains to show that,
for all i, σi is optimal for the perturbed game given µi∞ ∈ ∆(Θi), i.e., for all (si, xi),

σi(xi | si) = Pξ
(
ξi : ψi(µi∞, s

i, ξi) = {xi}
)
, (13)

where ψi(µi∞, si, ξi) ≡ arg maxxi∈Xi EQ̄i
µi∞

(·|si,xi) [πi(xi, Y i)] + ξi(xi).

To establish (13), fix i ∈ I and si ∈ Si. Then

lim
j→∞

σit(j)(h)(xi|si) = lim
j→∞

Pξ
(
ξi : φit(j)(µ

i
t(j), s

i, ξi) = xi
)

= Pξ
(
ξi : Φi(µi∞, s

i, ξi) = {xi}
)
,

where the second line follows by optimality of φi and Lemma 3. This implies that
σi(xi|si) = Pξ (ξi : Φi(µi∞, s

i, ξi) = {xi}). Thus, it remains to show that

Pξ
(
ξi : Φi(µi∞, s

i, ξi) = {xi}
)

= Pξ
(
ξi : ψi(µi∞, s

i, ξi) = {xi}
)

(14)

for all xi such that Pξ (ξi : Φi(µi∞, s
i, ξi) = {xi}) > 0. From now on, fix any such

xi. Since σi(xi | si) > 0, the assumption that the game is identifiable implies that
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Qi
θi1

(· | xi, si) = Qi
θi2

(· | xi, si) for all θi1, θi2 ∈ Θ(σ). The fact that µi∞ ∈ ∆(Θi(σ)) then
implies that

Bi(µi∞, s
i, xi, yi) = µi∞ (15)

for all yi ∈ Yi. Thus, Φi(µi∞, s
i, ξi) = {xi} is equivalent to

EQ̄
µi∞

(·|si,xi)

[
πi(xi, Y i) + ξi(xi) + δEpSi

[
V i(µi∞, S

i)
]]

> EQ̄
µi∞

(·|si,x̃i)
[
πi(x̃i, Y i) + ξi(x̃i) + δEpSi

[
V i(Bi(µi∞, s

i, x̃i, Y i), Si)
]]

≥ EQ̄
µi∞

(·|si,x̃i)
[
πi(x̃i, Y i) + ξi(x̃i)

]
+ δEpSi

[
V i(EQ̄

µi∞
(·|si,x̃i)

[
Bi(µi∞, s

i, x̃i, Y i)
]
, Si)

]
= EQ̄

µi∞
(·|si,x̃i)

[
πi(x̃i, Y i) + ξi(x̃i)

]
+ δEpSi

[
V i(µi∞, S

i)
]

for all x̃i ∈ Xi, where the first line follows by equation (15) and definition of Φi, the
second line follows by the convexity26 of V i as a function of µi and Jensen’s inequality,
and the last line by the fact that Bayesian beliefs have the martingale property. In
turn, the above expression is equivalent to ψ(µi∞, s

i, ξi) = {xi}.

Theorem 3 provides our main justification for focusing on equilibria of perturbed
games: any strategy profile that is not an equilibrium cannot represent the limiting
behavior of optimizing players. Theorem 3, however, does not imply that behavior
will stabilize in a perturbed and identifiable game. In fact, we know that there are
cases where optimal behavior will not converge to Nash equilibrium, which is a special
case of the equilibrium concept in this paper.27 Thus, some assumption needs to be
relaxed in order to prove convergence for general games.

In the remaining of this section, we adapt an idea due to Fudenberg and Kreps
(1993) and provide a sort of converse to Theorem 3. The following definition relaxes
optimality by allowing players to make optimization mistakes that nevertheless vanish
with time.

Definition 11. A policy profile φ is asymptotically optimal if there exists a positive
real-valued sequence (εt)t with limt→∞ εt = 0 such that, for all i ∈ I, all (µi, si, ξi) ∈
∆(Θi)× Si × Ξi, and all t,

26See, for example, Nyarko (1994), for a proof of convexity of the value function.
27Jordan (1993) shows that non-convergence is robust to the choice of initial conditions; Benaim

and Hirsch (1999) replicate this finding for the perturbed version of Jordan’s game. In the game-
theory literature, general global convergence results have only been obtained in special classes of
games—e.g. zero-sum, potential, and supermodular games (Hofbauer and Sandholm, 2002).
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U i(µi, si, ξi, φit(µ
i, si, ξi)) ≥ U i(µi, si, ξi, xi)− εt

for all xi ∈ Xi, where

U i(µi, si, ξi, xi) ≡ EQ̄µi (·|si,xi)
[
πi(xi, Y i) + ξi(xi) + δEpSi

[
V i(Bi(µi, si, xi, Y i), Si)

]]
.

Theorem 4. Suppose that σ is an equilibrium of a perturbed and identifiable game
and that Θi(σ) 6= Θi for all i. If δi = 0 for all i ∈ I, then there exists a profile of priors
with the property that µi0(Θi(σ)) < 1 and an asymptotically optimal policy profile φ
such that σ is strongly stable under φ.

Proof. See the Appendix.

Theorem 4 says that, for any equilibrium, we can always find policy profiles that
are asymptotically optimal, in the sense that players make vanishing optimization
mistakes, and myopic, in the sense that players maximize current payoffs, such that
behavior converges to that equilibrium with probability one.28

The main idea of the proof is due to Fudenberg and Kreps (1993). We construct a
strategy profile with the property that players play optimally except when their belief
is in a neighborhood of the belief supporting the equilibrium. In such neighborhood,
players play as if the belief were exactly the equilibrium belief. We choose (εt)t to
make sure that beliefs always remain in the neighborhood; thus, players always play
the equilibrium strategy. Then, by Lemma 4 and identifiability, players become in-
creasingly confident of the equilibrium belief as time goes by. We can then decrease
the size of the neighborhood and, therefore, we can take εt to zero and guarantee
that the region in which players are not optimizing vanishes. Intuitively, players are
somehow convinced early on about the right strategy to play, and they continue to
play this strategy unless they have strong enough evidence to think otherwise. But,
as they continue to play the strategy, they become increasingly convinced that it is
the right thing to do. Finally, the requirement of myopia is necessary to reach certain
equilibria that rely on incorrect beliefs due to lack of experimentation.

28The assumption that µi0(Θi(σ)) < 1 highlights that we are not picking the prior simply to match
the equilibrium belief, in which case the statement would hold trivially. Similarly, we consider the
arguably interesting case where Θi(σ) 6= Θi because, otherwise, there might be no learning and the
prior might never get updated.
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5 Additional examples

We illustrate the applicability of the framework by discussing several additional exam-
ples taken from different fields. In some examples, we take some liberties by restricting
attention to pure strategies and allowing the players to choose from a continuum of
actions because this is the standard way in which these examples are often described.

5.1 Non-linear pricing

Sobel (1984) considered the problem of a consumer who faces a possibly non-linear
pricing menu from a monopolist but acts as if she faces a linear price.29 A consumer
decides to purchase quantity x ∈ X = {x1, ..., xk} ⊂ R+ from a monopolist who offers
pricing menu (x, r(x))x∈X. If the consumer purchases quantity x, then her payoff is
π(x, y) = u(x) − yx, where y = f(x) = r(x)/x is the unit cost and yx is the total
cost from purchasing x. Thus, the objective distribution is Q(yj | xj) = 1 for all
yj = r(xj)/xj, j = 1, ..., k. The consumer, however, incorrectly believes that she faces
a (possibly random) linear price. Her misspecified subjective model is parameterized
by θ = (θ1, ..., θk), where Qθ(yj) = θj is the probability that the linear price is yj =

r(xj)/xj. A strategy is denoted by σ = (σ1, ..., σk) ∈ ∆(X), where σj is the probability
that the consumer chooses quantity xj.

We now characterize the set of equilibria in this environment. For a strategy σ,
the wKLD function is

K(σ, θ) =
k∑
j=1

EQ(·|xj)

[
ln
Q(Y | xj)
Qθ(Y )

]
σj

=
k∑
j=1

(
ln

1

θj

)
σj

and the unique minimizer is θ(σ) = (σ1, ..., σk). In other words, if behavior stabilizes
to σ, then the consumer eventually believes that the linear price is r(xj)/xj with
probability σj and, therefore, that the expected cost of purchasing any quantity x

is
(∑k

j=1 (r(xj)/xj)σj

)
x . Thus, σ is an equilibrium if and only if every x in the

29More recently, Ito (2012) provides evidence that households facing nonlinear electricity price
schedules respond to average price rather than marginal or expected marginal price.
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support of σ maximizes

u(x)−

(
k∑
j=1

(r(xj)/xj)σj

)
x. (16)

Sobel (1984) shows that, for a broad class of economies, the monopolist is worse off
and some consumers are better off when consumers follow the boundedly rational
equilibrium strategy.

5.2 Misspecified market structure

In complex environments, it is sometimes unrealistic or too hard for firms to take into
account the actions of every other firm.30 Alternatively, some firms might make the
opposite simplification and act as if they are in a perfectly competitive market, thus
failing to take into account their effect on the market price. Arrow and Green (1973)
and Kirman (1975) were among the first to formally study such settings.

Example. The following example of firms (incorrectly) believing to be in a per-
fectly competitive market was studied by Arrow and Green (1973). The inverse de-
mand function is

y = f(ω, x) = α− ω
I∑
j=1

xj ∈ Y ⊂ R, (17)

where y is the market price, α is the demand intercept, ω is the realization of a random
variable with exponential distribution with parameter 1/θ̄, and xj ∈ Xj ⊂ R is the
quantity chosen by firm j.

Each of I firms competes by simultaneously choosing quantity. Firms observe the
market price but do not observe the quantity choice of other firms. The profit of firm
i given quantity xi and market price y is πi(xi, y) = yxi− c(xi), where c(xi) = .5 (xi)

2

is the cost of producing quantity xi. Moreover, each firm i believes that the price is
not given by (17) but rather by

y = α− ω,

where ω is the realization of a random variable with exponential distribution with
parameter 1/θi, where θi ∈ Θ. Thus, firms believe that the market price is a ran-

30According to Phillips (2005), firms usually make pricing decisions by applying revenue manage-
ment models that often do not forecast the response of competitors.
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dom variable unaffected by their actions. As usual, we let Qi
θi denote the subjective

distribution of the consequence (i.e., the market price) given θi ∈ Θ.
If firm i believes that the parameter is θi, then its optimal quantity equates

marginal cost to the expected price, i.e.,

xi = α− θi, (18)

assuming that α ≥ θi.
A noteworthy property of this setting is that, for every x = (xi)i∈I and every firm

i, there exists θ̂i ∈ Θ such that the subjective distribution coincides with the objective
distribution, conditional on xi, i.e., Qi

θ̂i
(· | xi) = Qi

x(· | xi); note that this property
does not mean that the model is correctly specified because θ̂i depends on xi .31 To
see this property, note that, because the firms know α, it is sufficient to compare the
distributions over ω and ω

∑I
j=1 x

j. The former is an exponential distribution with
parameter 1/θi and the latter is exponential with parameter 1/θ̄(

∑I
j=1 x

j). Thus, the
claim follows by setting

θ̂i(x) = θ̄(
I∑
j=1

xj). (19)

One implication of this result is that, if firms play x, then firms will not only believe
that the true parameter is θ̂i, but their misspecified model will also provide a perfect
fit (i.e., the wKLD is zero at θ̂i). Despite the perfect fit in equilibrium, firms still have
incorrect beliefs about off-equilibrium actions, which explains why Nash equilibrium
need not be an equilibrium of the misspecified game.32

From (18) and (19), it follows that x is an equilibrium if and only if

xi = α− θ̄(
I∑
j=1

xj)

for all i = 1, ..., I. It follows from some algebra that there is a unique equilibrium
and it is given by the symmetric strategy xi = α/(1 + θ̄I). This equilibrium is
different from the Nash equilibrium, which is easily verified to be unique and given

31Arrow and Green (1973) impose this restriction on the subjective model. As we show in this
paper, this restriction is not required to carry out the analysis of misspecified learning.

32This situation is different than the situation in a self-confirming equilibrium, where players
might have incorrect beliefs about off-equilibrium actions, but where Nash equilibrium is a special
case because players can always hold the correct counterfactual beliefs.
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by xiNE = α/(1 + θ̄(I + 1)). Under both equilibrium concepts, profits go to zero as
the number of firms go to infinity. But profits per firm are always higher in a Nash
equilibrium compared to the equilibrium of the misspecified game. Thus, every firm
ends up worse off when all firms ignore their market power. �

Example. The next example considers the opposite extreme where firms, which
now compete in prices and not quantities, ignore the presence of other firms.33 The
example illustrates that beliefs can be biased when ignoring competition even if actions
are strategically independent. A vector of costs s = (s1, s2) ∈ S1 × S2 ⊂ R2

+ is drawn
according to a nondegenerate probability distribution pS ∈ ∆(S1 × S2). Each firm
i = 1, 2 privately observes its marginal cost si and then simultaneously chooses price
xi ∈ X ⊂ R+ to maximize expected profits. The quantity sold by firm i is given by
the demand system

ln yi = f i(ω, x) = α∗ + β∗ lnxj − γ∗ lnxi + εi,

where γ∗ > 1 is the demand elasticity (in absolute value), ω = (ε1, ε2) is the state, and
the error terms are independent (of each other and also of costs) and standard normal,
εi ∼ N(0, 1) for i = 1, 2. As a benchmark, it is straightforward to check that the best
response of a firm does not depend on the choice of the other firm. Thus, there is a
unique Nash equilibrium and it is in dominant strategies, σNE(si) = [γ∗/(γ∗ − 1)] si.

Suppose that each firm i = 1, 2 (incorrectly) believes that they are a monopolist
in this market and that the demand function they face is

ln yi = α− γ lnxi + εi, (20)

where εi ∼ N(0, 1). Formally, the subjective model is parameterized by θi = (αi, γi),
but the only parameter of interest is the demand elasticity γi, since, once elasticity is
known, it is optimal to set price xi = σi(si) = [γi/(γi − 1)] si when cost is si. Since
the error term is normally distributed, the minimizer of the wKLD function is given

33Arrow and Green (1973) and Kirman (1975) discuss similar examples where firms do not know
the slope of their demand functions and obtained multiple equilibria. This multiplicity, however,
simply arises because it is not possible to identify the slope without variation in actions. In our
example, variation in costs leads naturally to variation in actions.
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by the oridnary least squares estimand of (20). Thus, for all σ = (σ1, σ2),

γi(σ) = −Cov(lnσi(Si), α∗ + β∗ lnσj(Sj)− γ∗ lnσi(Si) + εi)

V ar(lnσi(Si))

= γ∗ − β∗Cov(lnσi(Si), lnσj(Sj))

V ar(lnσi(Si))
. (21)

It follows that a strategy profile σ is an equilibrium if and only if

σi(si) =
[
γi(σ)/(γi(σ)− 1)

]
si (22)

for all i = 1, 2. By replacing (22) into (21), we obtain that, in equilibrium, γi(σ) is
independent of σ and given by

γi = γ∗ − β∗Cov(lnSi, lnSj)

V ar(lnSi)
. (23)

Thus, there is a unique equilibrium and it is supported by belief γi for firm i.34

Moreover, (23) shows that firms estimate demand elasticity with a bias that depends
on the sign of β∗Cov(lnSi, lnSj). For example, suppose that β∗ > 0, so that the
products are substitutes, and that Cov(lnSi, lnSj) > 0. Then firms believe that
demand is less elastic compared to the true elasticity. The intuition is that, when a
firm chooses a higher price, it is because its costs are higher. But then the competitor’s
cost is also likely to be higher, so the other firm is also likely to choose a higher price.
Because products are substitutes, the increase in the price of the other firm mitigates
the fall in demand due to the increase in own price. This under-estimation of elasticity
leads firms to set higher prices compared to a Nash equilibrium. �

5.3 Regression towards the mean

Tversky and Kahneman (1973) argue that people often fail to understand the notion
of regression towards the mean. One of their examples is about experienced flight
instructors who note that praise for a good landing is usually followed by a poorer
landing on the next try, while criticism for a bad landing is usually followed by a
better landing. The instructors conclude that praise hurts performance while criticism
improves performance.

34This is true as long as we make an assumption on the primitives that makes γi > 1.
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We provide a simple model that formalizes the potential misspecification under-
lying the instructor’s reasoning. The instructor observes the initial performance s of
a student and decides whether to praise or criticize, x ∈ {C,P}. The student then
performs again and the instructor observes his final performance, s′. The truth is that
performances Y = (S, S ′) are independent, standard normal random variables. The
instructor believes, however, that

s′ = s+ θx + ε,

where ε has a standard normal distribution, i.e., the instructor believes that the final
performance depends on the initial performance, a constant that potentially depends
on the decision to criticize or praise the initial performance, and an error term. Let
θ = (θC , θP ) denote a parameter vector.

The instructor’s payoff is π(x, s, s′)) = s′−c(x, s), where c(x, s) = κ |s| > 0 if either
s > 0, x = C or s < 0, x = P , and, in all other cases, c(x, s) = 0.35 The interpretation
is that the instructor bears a (reputation) cost from lying that is increasing in the size
of the lie, where lying is defined as either criticizing an above-average performance or
praising a below-average performance.

We now characterize the equilibrium of this decision problem. A strategy maps
initial performances to actions and it is straightforward to check that optimal strategies
are characterized by a cutoff. Thus, we let σ ∈ R represent the strategy where the
instructor praises initial performances that are above σ and criticizes the remaining
performances.

The wKLD function is

K(σ, θ) =

ˆ σ

−∞
EQ(·|s1,C)

[
ln

Q(Y | s1, C)

Qθ(Y | s1, C)

]
ϕ(s1)ds1 +

ˆ ∞
σ

EQ(·|s1,P )

[
ln

Q(Y | s1, P )

Qθ(Y | s1, P )

]
ϕ(s1)ds1

=

ˆ σ

−∞
E

[
ln

ϕ(S2)

ϕ(S2 − (θC + s1))

]
ϕ(s1)ds1 +

ˆ ∞
σ

E

[
ln

ϕ(S2)

ϕ(S2 − (θP + s1))

]
ϕ(s1)ds1,

where ϕ is the density of the standard normal distribution and expectations are with
respect to the true distribution. It is straightforward to show that, for each σ, the

35Formally, a state is ω = (s, s′) and the feedback function is y = f(ω, x) = ω.
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unique parameter vector that minimizes K(σ, ·) is

θC(σ) = E [S2 − S1 | S1 < σ]

= 0− E [S1 | S1 < σ] > 0

and, similarly, θP (σ) = 0 − E [S1 | S1 > σ] < 0. The intuition is that instructors
are critical for performances below a threshold and, therefore, the mean performance
conditional on a student being criticized is lower than the unconditional mean per-
formance; thus, a student who is criticized delivers a better next performance in
expectation. Similarly, a student who is praised delivers a worse next performance in
expectation.

Therefore, if the instructor follows strategy cutoff σ, she believes that, after observ-
ing initial performance s1 > 0, her expected payoff is s1 + θC(σ)− κs1 if she criticizes
and s1 + θP (σ) if she praises. By optimality, the cutoff makes her indifferent between
praising and criticizing. Thus, σ∗ > 0 is an equilibrium cutoff if and only if

σ∗ =
1

κ
(θC(σ∗)− θP (σ∗)) > 0.

Similar steps establish that there is no equilibrium with σ∗ ≤ 0. Thus, instructors
are excessively critical in equilibrium because they incorrectly believe that criticizing
a student improves her performance and that praising a student worsens it.

5.4 Classical and Keynesian monetary policy

This example is based on Sargent (1999, Chapter 7). There are two players, the
government (G) and the public (P). The government chooses monetary policy xG ∈ R
and the public chooses inflation forecasts xP ∈ R. Inflation, e, and unemployment, U ,
are determined as follows:36

e = xG + εe

U = u∗ − (e− xP ) + εU ,
(24)

where εe and εU are independent and have standard normal distributions, and v2 > 0

is the variance of inflation. In other words, inflation is determined by the government’s
36Formally, a state is ω = (εe, εU ) and the feedback function y = (e, U) = f(ω, xG, xP ) is given by

the system of equations (24).
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action and a random term. And unemployment is determined by surprise inflation
according to a standard Phillips curve, where u∗ > 0 is the natural rate of unemploy-
ment. Realized inflation and unemployment, but not the error terms, are observed by
both the public and the government.

The government’s payoff is π(xG, e, U) = −(U2 + e2) and the public’s payoff is
π(xP , e) = −(e − xP )2. It is straightforward to check that there is a unique Nash
equilibrium given by

xGNE = xPNE = u∗. (25)

In a Nash equilibrium, the government inflates the economy because it cannot commit
to avoid inflation surprises. Of course, in equilibrium, there are no inflation surprises,
and, therefore, everyone is worse off compared to the situation where the government
could commit to xG = 0 (Kydland and Prescott, 1977).

Suppose that the public believes that e ∼ N(θP , 1), where the public’s model is
parameterized by θP . It is straightforward to see that, for each x = (xG, xP ), there is
a unique minimizer of the wKLD, θP (x) = xG. Thus, in any equilibrium where the
government chooses xG, the public simply plays a correct best response and chooses
xP = xG.

Our main focus is on the government’s problem. We consider two types of subjec-
tive models: a classical and a Keynesian model.

Classical model. The classical government believes (correctly) that its policy
xG affects inflation, but it does not realize that unemployment is affected by surprise
inflation, and not just by inflation:

e = xG + vCe εe

U = θC1 − θC2 e+ vCU εU .

The classical model is parameterized by θC = (θC1 , θ
C
2 , v

C
e , v

C
U ).

We now show that the classical game is correctly specified. Fix a strategy xP∗ for
the public. Then, for any xG, the objective distribution of Y = (e, U) is bivariate
normal with E[e] = xG, E[U ] = u∗ − (xG − xP∗ ), and covariance matrix

Cove,U =

[
1 −1

−1 2

]
.
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In contrast, the (classical) subjective distribution of Y = (e, U) is bivariate normal
with E[e] = xG, E[U ] = θC1 − θC2 xG, and covariance matrix

Cove,U =

[
(vCe )2 −θC2 (vCε )2

−θC2 (vCε )2 (θC2 v
C
e )2 + (vCU )2

]
.

The game is correctly specified because these distributions are identical when setting
θC1 = u∗ + xP∗ and setting all other parameters equal to 1.

We now evaluate the full feedback condition. The subjective joint distribution of
Y = (e, U) can be decomposed into the distribution of U conditional on e times the
distribution of e. The first terms does not depend on xG but the second term does,
which means that full feedback is not satisfied. But we can equivalently write the
relevant observable variable as e − xG and note that this random variable does not
depend on xG because the distribution of εU does not depend on xG. Therefore, it is
possible to show that the minimizers of wKLD do not depend on xG. This property,
the fact that the game is correctly specified, and the argument in Proposition 1 imply
that the classical game is identified. Because the classical game is both correctly
specified and identified, it follows from Proposition 2 that the unique equilibrium
of the classical model is given by the Nash equilibrium characterized by (25). In
particular, it is irrelevant whether or not the government realizes that unemployment
is driven by surprise, not actual, inflation.

Keynesian model.The Keynesian government believes that its monetary policy
affects unemployment, not inflation, and that unemployment in turn affects inflation:

U = θK0 − xG + vKU εU

e = θK1 − θK2 U + vKe εe.
(26)

The Keynesian model is parameterized by θK = (θK0 , θ
K
1 , θ

K
2 , v

K
e , v

K
U ) and it is

straightforward to check that it is not correctly specified. Thus, we proceed to directly
find equilibrium. We begin by finding the optimal government strategy given a fixed
parameter value. For the government, the optimal strategy given θK can be shown to
be

xG(θK) = − θK1 θ
K
2

(θK2 )
2

+ 1
+ θK0 .

Next, we minimize the wKLD function for every strategy profile. Because of (26) and
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the normality assumptions, this is equivalent to computing the estimands of a linear
regression model. Fix any strategy profile x = (xG, xP ). The unique minimizers of
the wKLD are given by the estimands37

θK0 (x) = E [U ] + xG =
(
u∗ −

(
xG − xP

))
+ xG,

θK1 (x) = E [e] + θK2 (x)E [U ] = xG + θK2 (x)
(
u∗ −

(
xG − xP

))
,

θK2 (x) = −Cov(e, U)/V ar(U) = 1/2.

It follows that x = (xG, xP ) is an equilibrium if and only if

xP = xG = − θK1 (x)θK2 (x)

(θK2 (x))
2

+ 1
+ θK0 (x),

or, equivalently,
xP = xG = 2u∗. (27)

A comparison of (25) and (27) reveals that the equilibrium policy—hence, expected
inflation—is always higher for a Keynesian government compared to the Nash or
classical equilibrium policy.

5.5 Trading under adverse selection

Several equilibrium concepts have been proposed to model people who fail to ac-
count for the information content of other people’s actions: cursed equilibrium (Eyster
and Rabin, 2005), analogy-based expectation equilibrium (Jehiel (2005); Jehiel and
Koessler (2008)), and behavioral equilibrium (Esponda, 2008).38 Applications include
auctions, elections, and games of strategic information transmission. We illustrate,
using a simple lemons problem, how these three equilibrium concepts fit into our
framework.39

A (risk-neutral) buyer and a seller simultaneously submit a (bid) price x ∈ X ⊂ R
and an ask price a ∈ A ⊂ R, respectively. If a ≤ x, then the buyer pays x to the seller
and receives the seller’s object, which the buyer values at v ∈ V ⊂ R. If a > x, then
no trade takes place and each player receives 0. At the time she makes an offer, the

37The estimands for the variances are irrelevant for computing the equilibrium.
38For experimental evidence, see the review by Kagel and Levin (2002) and the recent work by

Charness and Levin (2009), Ivanov et al. (2010), and Esponda and Vespa (2013).
39See Esponda (2008) and Spiegler (2011) for additional results and discussion.
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buyer does not know her value or the ask price of the seller. Suppose that the seller’s
ask price and the buyer’s value are drawn from the same probability distribution
p ∈ ∆(A× V).40

We consider two different feedback functions to illustrate the importance of making
explicit what players observe about the outcome of the game. Under full feedback, the
buyer observes the ask price and her own value at the end of each period. Under
partial feedback, the buyer observes the ask price, but she only observes her own value
if she trades in that period.

We also consider two types of misspecified models for the buyer. In the first
model, the buyer believes that her valuation V is independent of the seller’s ask
price: ΘI = ∆(A) × ∆(V). The second model generalizes the first model. Consider
a partition of the set V into k “analogy classes” (Vj)j=1,...,k, where ∪jVj = V and
Vi ∩Vj = 0 for all i 6= j. The buyer believes that (A, V ) are independent conditional
on V ∈ Vi, for each i = 1, ..., k. The parameter space is ΘA = ×j∆(A)×∆(V), where,
for a parameter θ = (θ1, ...., θk, θV) ∈ ΘA, θV parameterizes the marginal distribution
over V and, for each j = 1, ..., k, θj ∈ ∆(A) parameterizes the distribution over A
conditional on V ∈ Vj.

As a benchmark, the Nash equilibrium (NE) price maximizes

ΠNE(x) = Pr(A ≤ x) (E [V | A ≤ x]− x) .

In Online Appendix B, we show that x∗ is an equilibrium price if and only if x = x∗

maximizes an equilibrium belief function Π(x, x∗) which represents the belief about
expected profit from choosing any price x under a steady-state x∗. The function Π

depends on the feedback/misspecification assumptions. Combining the two feedback
functions and the two subjective models, there are a total of four possible models to
consider. Three of these models appear in the literature and constitute special cases
of our framework: fully cursed equilibrium (Eyster and Rabin, 2005), naive behav-
ioral equilibrium (Esponda, 2008), and analogy-based expectation equilibrium (Jehiel
(2005), Jehiel and Koessler (2008)). We discuss the fourth model, which combined
partial feedback with analogy classes, in Online Appendix B.

fully Cursed equilibrium. With full feedback and model ΘI , the buyer learns
40The typical story is that there is a population of sellers each of whom follows the weakly dominant

strategy of asking for her valuation; thus, the ask price is a function of the seller’s valuation and, if
buyer and seller valuations are correlated, then the ask price and buyer valuation are also correlated.
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the true marginal distributions of A and V and believes the joint distribution is given
by the product of the marginal distributions. Therefore, the buyer’s equilibrium belief
function is

ΠCE(x) = Pr(A ≤ x) (E [V ]− x) , (28)

and, in particular, does not depend on the equilibrium x∗.41

naive Behavioral equilibrium. With partial feedback and model ΘI , the price
offered by the buyer affects the sample of valuations that she observes. Also, the buyer
does not realize that this selected sample would change if she were to change her price.
Suppose that the buyer’s behavior has stabilized to some price x∗. Then, the buyer’s
equilibrium belief function is

ΠBE(x, x∗) = Pr(A ≤ x) (E [V | A ≤ x∗]− x) . (29)

Analogy-based expectation equilibrium. With full feedback and model ΘA,
beliefs are as in a cursed equilibrium conditional on each analogy class, and so the
equilibrium belief function is42

ΠABEE(x) =
k∑
j=1

Pr(V ∈ Vj) {Pr(A ≤ x | V ∈ Vj) (E [V | V ∈ Vj]− x)} . (30)

6 Conclusion

We propose and provide a foundation for an equilibrium framework that allows players
to have misspecified views of the game they are playing. By doing so, we highlight
an implicit assumption in the concept of Nash equilibrium and considerably extend
its domain of applicability. Our framework not only unifies an existing literature
on bounded rationality and misspecified learning, but it also provides a systematic
approach to studying certain aspects of bounded rationality, that, we hope, stimulates
further developments in this area.

Equilibrium refinements. Theorems 3 and 4 provide a justification for our
definition of equilibrium but leave open the possibility of refinements. One natural

41This misspecified game was first discussed in the lemons context by Kagel and Levin (1986).
42Note the well known fact that analogy-based expectation equilibrium with a single analogy class

is equivalent to (fully) cursed equilibrium; these two solution concepts were developed independently
of each other.
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refinement is to require exact, not asymptotic, optimality, and to ask whether certain
equilibria can be reached with positive probability. Another possible refinement is to
make assumptions on the discount factor: the higher the discount factor, the higher
the incentives to experiment. Thus, certain outcomes can be ruled out by considering
patient agents. A final possible refinement is to follow Harsanyi (1973) and rule out
those equilibria that are not regular in the sense that they might not be approachable
by sequences of perturbed games. All of these ideas have been extensively studied
in related contexts (e.g., Benaim and Hirsch (1999), Fudenberg and Levine (1993b),
Doraszelski and Escobar (2010)). Moreover, whether or not it is natural to pursue some
of these refinements likely depends on the specific application under consideration.

distance to true model. We showed that the assumption of Bayesian updat-
ing implies that the appropriate notion of “distance” in the definition of equilibrium
is the (weighted) Kullback-Leibler divergence. It would be interesting to explore how
other, non-Bayesian assumptions on the belief updating process yield other notions of
distance.

detecting misspecifications. In our setting, Bayesian agents have no reason
to discover that they are misspecified. But, in practice, people who are aware of the
possibility of misspecification might conduct tests to detect misspecification. These
tests, which impose additional restrictions on beliefs, might provide a way to endoge-
nize the types of misspecifications that agents can hold in equilibrium.43

extension to other environments. We focused on simultaneous-move games
where there is a single player in each player’s role, i.e., players have unitary beliefs
in the terminology of Fudenberg and Levine (1993a). It would be natural to extend
the equilibrium concept to population games with non-unitary beliefs.44 It would also
be interesting to consider other contexts such as dynamic environments and market
settings with price-taking agents.

43Such additional restrictions on beliefs are imposed, for example, by Arrow and Green (1973) and
Esponda, 2008.

44In correctly specified settings, Kalai and Lehrer (1993) study learning in the repeated game and
Fudenberg and Levine (1993b) and Fudenberg and Takahashi (2011) look at large populations where
the assumption that players do not try to influence future aggregate behavior is more natural.
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Appendix
Proof of Lemma 1. Part (i). Note that

Ki(σ, θi) = −
∑

(si,xi)∈Si×Xi
EQiσ(·|si,xi)

[
ln
Qi
θi(Y

i | si, xi)
Qi
σ(Y i | si, xi)

]
σi(x

i | si)pSi(si)

≥ −
∑

(si,xi)∈Si×Xi
ln

(
EQiσ(·|si,xi)

[
Qi
θi(Y

i | si, xi)
Qi
σ(Y i | si, xi)

])
σi(x

i | si)pSi(si) (31)

= 0,

where Jensen’s inequality and the strict concavity of ln(·) imply the inequality in (31)
as well as the fact that (31) holds with equality if and only if Qi

θi(· | si, xi) = Qi
θi(· |

si, xi) for all (si, xi) such that σi(xi | si)pSi(si), or, equivalently, by the assumption
that pSi(si) > 0, σi(xi | si) > 0.

Part (ii). Fix i ∈ I. By property (ii) in the definition of a subjective model,
there exists θi∗ such that Mσ ≡ Ki(σ, θi∗) < ∞. This implies that the set {θ ∈ Θi :

Ki(σ, θi) ≤ Mσ} is nonempty for all σ ∈ Σ. Thus, Θi(σ) can be equivalently defined
as the set of minimizers over this new constraint set. Moreover, continuity of Ki(σ, ·)
implies that this constraint set is closed, compactness of Θi further implies that it is
compact, and continuity of Ki(·, θ) implies that it is upper hemicontinuous in σ. The
result then follows by the Theorem of the Maximum.�

Proof of Lemma 2. Part (i). By the assumption that payoffs are bounded,
let π̄ and π denote the upper and lower bounds, respectively. Then σi(xi | si) ≥
Pξ (ξi : ξi(xi)− ξi(x̂i) ≥ π − π̄ ∀x̂i) > 0, where the strict inequality follows by the
assumption that the support of ξi is unbounded. Part (ii) follows trivially from the
assumption that the game is identifiable. �

Proof of Theorem 1. By Lemma 2(i) and finiteness of X, there exists c ∈ (0, 1)

such that the set Σ∗ = {σ ∈ Σ : σi(xi | si) ∈ [c, 1− c] ∀(si, xi) ∈ Si × Xi ,∀i ∈ I} con-
tains all strategy profiles that can be optimal. For all σ ∈ Σ∗, Lemma 2(ii) im-
plies that, for all i ∈ I, Q̄i

µi1
= Q̄i

µi2
for all µi1, µi2 ∈ ∆(Θi(σ)). Thus, we can define

Q̃i(σ) =
´

Θi
Qθiµ

i(dθ) (not to be confused with the objective distribution Qi
σ) where

µi is any belief that belongs to ∆(Θi(σ)) and σ ∈ Σ∗. Moreover, it is straightforward
to see that σ is an equilibrium of a fully-perturbed game if and only if it is a fixed
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point of the function g : Σ∗ → Σ∗ defined by

gi(x
i | si) = Pξ

(
ξi : xi ∈ arg max

x̄i∈Xi
EQ̃i(σ)(·|si,x̄i)

[
πi(x̄i, Y i)

]
+ ξi(x̄i)

)
.

The space Σ∗ is a compact and convex subset of an Euclidean space. By Brouwer’s
fixed point theorem, a fixed point exists if g is continuous. To show that g is contin-
uous, we first show that Q̃i is continuous for all σ ∈ Σ∗. Let σ∗ ∈ Σ∗ and suppose
that (σn)n is a sequence of strategies in Σ∗ that converges to σ∗. For each element
in the sequence, the fact that Θi(σn) is non-empty (by Lemma 1(ii)) and that Θi is
compact implies that we can pick a subsequence θink ∈ Θi(σnk) that converges to some
θi∗. Then θi∗ ∈ Θi(σ∗) by the upper hemicontinuity of Θi(·) established in Lemma 1(ii).
Thus, the facts that θink ∈ Θi(σnk) and θi∗ ∈ Θi(σ∗) imply that Q̃i(σnk) = Qθink

and
Q̃i(σ∗) = Qθi∗

. Continuity of Q̃i then follows because, by assumption, Qi
θi is continuous

as a function of θi. Together with the absolute continuity of Pξ, a standard argument
shows that g is continuous. �

Proof of Theorem 2. By assumption, there is a sequence (σν , µν)ν such that,
for all ν and all i ∈ I, (i) σiν is optimal for the perturbed game given µiν , (ii)
µiν ∈ ∆(Θi(σν)), and (iii) limν→∞ σν = σ. By compactness of ∆(Θ), we can fix a
subsequence µν(j) that converges to some µ. By Lemma 1(ii), Θi(·) is upper hemicon-
tinuous and compact valued; hence, by Theorem 17.13 of Aliprantis and Border (2006),
the correspondence ∆(Θi(·)) inherits the same properties. Therefore, µi ∈ ∆(Θi(σ))

for all i ∈ I. Thus, to show that σ is an equilibrium of the (unperturbed) game, it
remains to show that, for all i, σi is an optimal strategy for the (unperturbed) game
given µi. We proceed by contradiction. Suppose not, so that there exists i ∈ I and
(si, xi) ∈ Si × Xi such that σi(xi | si) = C > 0, but there exists x̂i such that

EQ̄i
µi

(·|si,x̂i)
[
πi(x̂i, Y i)

]
− EQ̄i

µi
(·|si,xi)

[
πi(xi, Y i)

]
= A > 0. (32)

Let J be such that, for all j ≥ J , the following two conditions are satisfied: (i)∣∣∣∑yi∈Yi π
i(x̄i, yi)

(
Q̄i
µi
ν(j)

(yi | si, x̄i)− Q̄i
µi(y

i | si, x̄i)
)∣∣∣ ≤ A/4 for all x̄i ∈ Xi and (ii)

PΞi
ν(j)

(ξi : maxxi∈Xi |ξi(xi)| < A/4) ≥ 1−C/2. Condition (i) is possible because payoffs
are bounded andQi

µi is continuous as a function of µi and limj→∞ µ
i
ν(j) = µi. Condition
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(ii) is possible by the assumption that perturbations vanish (equation 5). Let

N i
j(x

i, x̂i) ≡
{
ξi : ξi(xi)− ξi(x̂i) < EQ̄i

µi
ν(j)

(·|si,x̂i)
[
πi(x̂i, Y i)

]
− EQ̄i

µi
ν(j)

(·|si,xi)
[
πi(xi, Y i)

]}
.

Then, conditions (i) and (ii) and equation (32) imply that, for all j ≥ J ,

PΞi
ν(j)

(
N i
j(x

i, x̂i)
)
≥ PΞi

ν(j)

(
ξi : ξi(xi)− ξi(x̂i) < A/2

)
≥ PΞi

ν(j)

(
ξi : max

xi∈Xi

∣∣ξi(xi)∣∣ < A/4

)
≥ 1− C/2.

Finally, inspection of (4) reveals that the event that defines the optimal strategy
σiν(j)(x

i | si) is contained in the complement of the event N i
j(x

i, x̂i). Thus, for all
j ≥ J , σiν(j)(x

i | si) ≤ C/2, which contradicts the facts that σi(xi | si) = C and
limj→∞ σ

i
ν(j) = σi. �

Proof of Lemma 3. We first show that

ξi 7→ max
xi∈Xi

EQ̄i
µi

(·|si,xi)
[
πi(xi, Y i) + ξi(xi) + δEpSi

[
H i(Bi(µi, si, xi, Y i), Si)

]]
is measurable for anyH i ∈ L∞(∆(Θi)×Si) and any (µi, si). It suffices to check that set
of the form

{
ξi : maxxi∈Xi EQ̄i

µi
(·|si,xi)

[
πi(xi, Y i) + ξi(xi) + δEpSi [H i(Bi(µi, si, xi, Y i), Si)]

]
< a
}

is measurable for any a ∈ R. It is easy to see that this set is of the form

∩xi∈Xi
{
ξi : EQ̄i

µi
(·|si,xi)

[
πi(xi, Y i) + ξi(xi) + δEpSi

[
H i(Bi(µi, si, xi, Y i), Si)

]]
< a
}
.

Each set in the intersection is trivially (Borel) measurable, therefore the intersection
(of finitely many) of them is also measurable.

We now define the Bellman operator H i ∈ L∞(∆(Θi)× Si) 7→ T i[H i] where

T i[H i](µi, si) ≡
ˆ

Ξi

{
max
xi∈Xi

EQ̄i
µi

(·|si,xi)
[
πi(xi, Y i) + ξi(xi) + δEpSi

[
H i(Bi(µi, si, xi, Y i), Si)

]]}
Pξ(dξ

i).

By our first result, the operator is well-defined. Moreover, since
´
||ξi||Pξ(dξi) < ∞

and πi is uniformly bounded, it follows that T i maps L∞(∆(Θi)× Si) into itself. By
Blackwell’s sufficient conditions, there exists a unique V i ∈ L∞(∆(Θi)×Si) such that
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V i = T i[V i].
In order to establish continuity of V i, by standard arguments it suffices to show that

T i maps C(∆(Θi)×Si) into itself, where C(∆(Θi)×Si) ≡ {f ∈ L∞(∆(Θi)×Si) : µi 7→
f(µi,si) is continuous, for all si}. Suppose that H i ∈ C(∆(Θi) × Si). Since µi 7→
Bi(µi, si, xi, yi) is also continuous for all (si, xi, yi), by the Dominated convergence
theorem, it follows that µi 7→

´
Si H

i(Bi(µi, si, xi, yi), ŝi)pSi(dŝ
i) is continuous, for all

(si, xi, yi). This result and the fact that θi 7→ EQi
θi

(yi|si,xi)
[´

Si H
i(Bi(µ̃i, si, xi, yi), ŝi)pSi(dŝ

i)
]

is bounded and continuous (for a fixed µ̃i), readily implies that

µi 7→ EQ̄i
µi

(·|si,xi)
[
EpSi

[
H i(Bi(µi, si, xi, Y i), Si)

]]
is also continuous. This result and the fact that µi 7→ EQ̄i

µi
(·|si,xi) [πi(xi, Y i)] is contin-

uous (θi 7→
∑

yi∈Yi π
i(xi, yi)Qi

θi(y
i|si, xi) is continuous and bounded), imply that T i

maps C(∆(Θi)× Si) into itself.
The fact that Φi single-valued a.s.−Pξ, i.e., for all (µi, si), Pξ (ξi : #Φi(µi, si, ξi) > 1) =

0, follows because the set of ξi such that #Φi(µi, si, ξi) > 1 is of dimension lower than
#Xi and, by absolute continuity of Pξ, this set has measure zero.

To show continuity of µi 7→ Φi(µi, si, ξi), observe that, by the previous calculations,
(µi, xi) 7→ EQ̄i

µi
(·|si,xi)

[
πi(xi, Y i) + ξi(xi) + δEpSi [V i(µ̂i, Si)]

]
is continuous (under the

product topology) for all si and a.s.− Pξ. Also, Xi is compact. Thus by the theorem
of the maximum, µi 7→ Φi(µi, si, ξi) is continuous, a.s.− Pξ. �

Proof of Theorem 4. Let (µ̄i)i∈I be a belief profile that supports σ as an
equilibrium. Consider the following policy profile φ = (φit)i,t: For all i ∈ I and all t,

(µi, si, ξi) 7→ φit(µ
i, si, ξi) ≡

ϕi(µ̄i, si, ξi) if maxi∈I ||Q̄i
µi − Q̄i

µ̄i || ≤
1

2C
εt

ϕi(µi, si, ξi) otherwise,

where ϕi is an arbitrary selection from Φi, C ≡ maxI
{

#Yi × supXi×Yi |πi(xi, yi)|
}
<

∞, and the sequence (εt)t will be defined below. Fix any prior profile µ0 such that
0 < µi0(Θi(σ)) < 1 and µi0(·|Θi(σ)) = µ̄i for all i ∈ I (where for any A ⊂ Θ Borel,
µ(·|A) is the conditional probability given A). This is possible because Θi(σ) 6= Θi

for all i ∈ I.
We now show that if εt ≥ 0 for all t and limt→∞ εt = 0, then φ is asymptotically

optimal. Throughout this argument, we fix an arbitrary i ∈ I. Abusing notation, let
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U i(µi, si, ξi, xi) = EQ̄µi (·|si,xi) [πi(xi, Y i) + ξi(xi)]. Since δi = 0, it suffices to show that

U i(µi, si, ξi, φit(µ
i, si, ξi)) ≥ U i(µi, si, ξi, xi)− εt (33)

for all (i, t), all (µi, si, ξi), and all xi. By construction of φ, equation (33) is satisfied
if maxi∈I ||Q̄i

µi − Q̄i
µ̄i || >

1
2C
εt. If, instead, maxi∈I ||Q̄i

µi − Q̄i
µ̄i || ≤

1
2C
εt, then

U i(µ̄i, si, ξi, φit(µ
i, si, ξi)) = U i(µ̄i, si, ξi, ϕi(µ̄i, si, ξi)) ≥ U i(µ̄i, si, ξi, xi), (34)

for all xi ∈ Xi. Moreover, for all xi,

∣∣U i(µ̄i, si, ξi, xi)− U i(µi, si, ξi, xi)
∣∣ =

∣∣∣∣∣∣
∑
yi∈Yi

π(xi, yi)
{
Q̄i
µ̄i(y

i | si, xi)− Q̄i
µi(y

i | si, xi)
}∣∣∣∣∣∣

≤ sup
Xi×Yi

|πi(xi, yi)|
∑
yi∈Yi

∣∣{Q̄i
µ̄i(y

i | si, xi)− Q̄i
µi(y

i | si, xi)
}∣∣

≤ sup
Xi×Yi

|πi(xi, yi)| ×#Yi × max
yi,xi,si

∣∣Q̄i
µ̄i(y

i | si, xi)− Q̄i
µi(y

i | si, xi)
∣∣

so by our choice of C, |U i(µ̄i, si, ξi, xi)− U i(µi, si, ξi, xi)| ≤ 0.5εt for all xi. Therefore,
equation (34) implies equation (33); thus φ is asymptotically optimal if εt ≥ 0 for all
t and limt→∞ εt = 0.

We now construct a sequence (εt)t such that εt ≥ 0 for all t and limt→∞ εt = 0. Let
φ̄i = (φ̄it)t be such that φ̄it(µi, ·, ·) = ϕi(µ̄i, ·, ·) for all µi; i.e., φ̄i is a stationary policy
that maximizes discounted utility under the assumption that the belief is always µ̄i.
Let ζ i(µi) ≡ 2C||Q̄i

µi − Q̄i
µ̄i || and suppose (the proof is at the end) that

P µ0,φ̄( lim
t→∞

max
i∈I
|ζ i(µit(h))| = 0) = 1 (35)

(recall that P µ0,φ̄ is the probability measure over H induced by the policy profile φ̄; by
definition of φ̄, P µ0,φ̄ does not depend on µ0). Then by the 2nd Borel-Cantelli lemma
(Billingsley (1995), pages 59-60), for any γ > 0,

∑
tP

µ0,φ̄ (maxi∈I |ζ i(µit(h))| ≥ γ) <

∞. Hence, for any a > 0, there exists a sequence (τ(j))j such that

∑
t≥τ(j)

P µ0,φ̄

(
max
i∈I
|ζ i(µit(h))| ≥ 1/j

)
<

3

a
4−j (36)

50



and limj→∞ τ(j) =∞. For all t ≤ τ(1), we set εt = 3C, and, for any t > τ(1), we set
εt ≡ 1/N(t), where N(t) ≡

∑∞
j=1 1{τ(j) ≤ t}. Observe that, since limj→∞ τ(j) =∞,

N(t)→∞ as t→∞ and thus εt → 0.
Next, we show that

Pµ0,φ
(

lim
t→∞
‖σt(h∞)− σ‖ = 0

)
= 1,

where (σt)t is the sequence of intended strategies given φ, i.e.,

σit(h)(xi | si) = Pξ
(
ξi : φit(µ

i
t(h), si, ξi) = xi

)
.

Observe that, by definition,

σi(xi | si) = Pξ

(
ξi : xi ∈ arg max

x̂i∈Xi
EQ̄µ̄i (·|si,x̂i)

[
πi(x̂i, Y i)

]
+ ξi(x̂i)

)
.

Since ϕi ∈ Φi and δi = 0, it follows that σi(xi | si) = Pξ (ξi : ϕi(µ̄i, si, ξi) = xi).
Let H ≡ {h : ‖σt(h)− σ‖ = 0, for all t}. Note that it is sufficient to show that
Pµ0,φ (H) = 1. To show this, observe that

Pµ0,φ (H) ≥Pµ0,φ
(
∩t{max

i
ζ i(µt) ≤ εt}

)
=

∞∏
t=τ(1)+1

Pµ0,φ
(

max
i
ζ i(µt) ≤ εt | ∩l<t {max

i
ζ i(µl) ≤ εl}

)
=

∞∏
t=τ(1)+1

Pµ0,φ̄
(

max
i
ζ i(µt) ≤ εt | ∩l<t {max

i
ζ i(µl) ≤ εl}

)
=Pµ0,φ̄

(
∩t>τ(1){max

i
ζ i(µt) ≤ εt}

)
,

where the second line omits the term Pµ0,φ (maxi ζ
i(µt) < εt for all t ≤ τ(1)) because

it is equal to 1 (since εt ≥ 3C for all t ≤ τ(1)); the third line follows from the fact
that φit−1 = φ̄it−1 if ζ i(µt−1) ≤ εt−1, so the probability measure is equivalently given by
P µ0,φ̄; and where the last line also uses the fact that P µ0,φ̄ (maxi ζ

i(µt) < εt for all t ≤ τ(1)) =
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1. In addition, for all a > 0,

P µ0,φ̄
(
∩t>τ(1){max

i
ζ i(µt) ≤ εt}

)
=P µ0,φ̄

(
∩n∈{1,2,...} ∩{t>τ(1):N(t)=n} {max

i
ζ i(µt) ≤ n−1}

)
≥1−

∞∑
n=1

∑
{t:N(t)=n}

P µ0,φ̄
(

max
i
ζ i(µt) ≥ n−1

)
≥1−

∞∑
n=1

3

a
4−n = 1− 1

a
,

where the last line follows from (36). Thus, we have shown that Pµ0,φ (H) ≥ 1− 1/a

for all a > 0; hence, Pµ0,φ (H) = 1.
We conclude the proof by showing that equation (35) indeed holds. Observe that σ

is trivially stable under φ̄. Also, even though µi0 might not have full support, Lemma
4 still holds because µi0(Θi(σ)) > 0 and Θi(σ) 6= Θi—see footnote 24. Then, for all
i ∈ I and all open sets U i ⊇ Θi(σ),

lim
t→∞

µit
(
U i
)

= 1 (37)

a.s. − P µ0,φ̄ (over H). Let H denote the set of histories such that xit(h) = xi and
sit(h) = si implies that σi(xi | si) > 0. By definition of φ̄, P µ0,φ̄(H) = 1. Thus, it
suffices to show that limt→∞maxi∈I |ζ i(µit(h))| = 0 a.s.-P µ0,φ̄ over H. To do this, take
any A ⊆ Θ that is closed. By equation (37), for all i ∈ I, and almost all h ∈ H,

lim sup
t→∞

ˆ
1A(θ)µit+1(dθ) = lim sup

t→∞

ˆ
1A∩Θi(σ)(θ)µ

i
t+1(dθ).

Moreover,

ˆ
1A∩Θi(σ)(θ)µ

i
t+1(dθ) ≤

ˆ
1A∩Θi(σ)(θ)

{ ∏t
τ=1Q

i
θ(y

i
τ | siτ , xiτ )µi0(dθ)´

Θi(σ)

∏t
τ=1Q

i
θ(y

i
τ | siτ , xiτ )µi0(dθ)

}
=µi0(A | Θi(σ))

=µ̄i(A),

where the first line follows from the fact that Θi(σ) ⊆ Θ and
∏t

τ=1 Q
i
θ(y

i
τ | siτ , xiτ ) ≥ 0;

the second line follows from the fact that, since h ∈ H, the fact that the game is
identifiable implies that

∏t
τ=1Q

i
θ(y

i
τ | siτ , xiτ ) is constant with respect to θ for all θ ∈
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Θi(σ), and the last line follows from our choice of µi0. Therefore, we established that
a.s.-P µ0,φ̄ over H, lim supt→∞ µ

i
t+1(h)(A) ≤ µ̄i(A) for A closed. By the portmanteau

lemma, this implies that, a.s. -P µ0,φ̄ over H,

lim
t→∞

ˆ
Θ

f(θ)µit+1(h)(dθ) =

ˆ
Θ

f(θ)µ̄i(dθ)

for any f real-valued, bounded and continuous. Since, by assumption, θ 7→ Qi
θ(y

i |
si, xi) is bounded and continuous, the previous display applies to Qi

θ(y
i | si, xi), and

since y, s, x take a finite number of values, this result implies that limt→∞ ||Q̄i
µit(h)
−

Q̄i
µ̄i || = 0 for all i ∈ I a.s. -P µ0,φ̄ over H. �
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Online Appendix

A Technical results in the proof of Lemma 4

Here, we prove two results used in the proof of Lemma 4. To simplify notation, let
Zi = Si × Xi × Yi. For each zi = (si, xi, yi) ∈ Zi, define qiσ(zi) = Qi

σ(yi | si, xi)σi(xi |
si)pSi(s

i) and freqit(zi) = 1
t

∑t
τ=1 1zi(z

i
τ ). The claims made below hold almost surely

in H, but we omit this qualification for simplicity.

Proof of expression (9) in the text: By the strong law of large numbers and by
the assumption that limt→∞ σ

i
t = σi, it follows that, for all ζ > 0, there exists tζ such

that, for all t ≥ tζ ∥∥freqit − qiσ∥∥ < ζ. (38)

Also, doing some algebra,

Ki
t(h, θ

i) = κi1t(h) + κi2t(h) + κi3t(h, θ
i),

where

κi1t(h) = −1

t

t∑
τ=1

∑
zi∈Zi

(
1zi(z

i
τ )− qiστ (z

i)
)

lnQi
στ (y

i | si, xi),

κi2t(h) = −1

t

t∑
τ=1

∑
zi∈Zi

qiστ (z
i) lnQi

στ (y
i | si, xi),

and
κi3t(h, θ

i) =
∑
zi∈Zi

freqit(z
i) lnQi

θi(y
i | si, xi).

First, consider κi1t(h). Define, for all zi ∈ Zi,

lit(h, z
i) =

(
1zi(z

i
τ )− qiστ (z

i)
)

lnQi
στ (y

i | si, xi)

and Lit(h, z
i) =

∑t
τ=1 τ

−1liτ (h, z
i). Fix any zi ∈ Zi. We now show that Lit(h, zi)

converges a.s. to an integrable, and, therefore, finite Li∞(h, zi). In order to show this,
we use martingale convergence results. First, we show that (Lit(h, z

i))t is a martingale
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with respect to Pµ0,φ. Let ht denote the partial history until time t. Observe that

EPµ0,φ(·|ht)
[
Lit+1(h, zi)

]
=

t∑
τ=1

τ−1liτ (h, z
i) +

1

t+ 1
EPµ0,φ(·|ht)

[
lit+1(h, zi)

]
=

t∑
τ=1

τ−1liτ (h, z
i) +

1

t+ 1

(
lnQi

σt+1
(yi | si, xi)

)
EPµ0,φ(·|ht)

[
1zi(Z

i
t+1)− qiσt+1

(zi)
]

=Lit(h, z
i).

Second, we show that (Lit(·, zi))t is uniformly integrable, i.e.,

sup
t
EPµ0,φ

[
|Lit|1{|Lit| ≥M}

]
→ 0 (39)

as M →∞. By the Markov inequality,

EPµ0,φ

[
|Lit|1{|Lit| ≥M}

]
≤M−1EPµ0,φ

[(
Lit(h, z

i)
)2
]

=M−1EPµ0,φ

[
t∑

τ=1

τ−2
(
liτ (h, z

i)
)2

+ 2
∑
τ ′>τ

1

τ ′τ
liτ (h, z

i)liτ ′(h, z
i)

]

=M−1

{
t∑

τ=1

τ−2EPµ0,φ

[(
liτ (h, z

i)
)2
]

+
∑
τ ′>τ

2

τ ′τ
EPµ0,φ

[
liτ (h, z

i)liτ ′(h, z
i)
]}

=M−1

t∑
τ=1

τ−2EPµ0,φ

[(
liτ (h, z

i)
)2
]

≤M−1

t∑
τ=1

τ−2EPµ0,φ

[(
lnQi

στ (y
i | si, xi)

)2
Qi
στ (y

i | si, xi)
]

≤M−1

where the fourth line follows from the fact that, for τ ′ > τ , EPµ0,φ [liτ (h, z
i)liτ ′(h, z

i)] =

EPµ0,φ

[
liτ (h, z

i)EPµ0,φ(·|hτ ) [liτ ′(h, z
i)]
]

= 0 because (lit)t is a martingale difference se-
quence; the fifth line follows from the law of iterated expectations and the fact that

EPµ0,φ(·|hτ−1)

[(
liτ (h, z

i)
)2
]

=
(
lnQi

στ (y
i | si, xi)

)2
(
qiστ (z

i)−
(
qiστ (z

i)
)2
)

≤
(
lnQi

στ (y
i | si, xi)

)2
qiστ (z

i)

≤
(
lnQi

στ (y
i | si, xi)

)2
Qi
στ (y

i | si, xi);
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and the last inequality follows because (lnx)2x ≤ 1 for all x ∈ [0, 1], where we use
the convention that (ln 0)20 = 0. Therefore, (39) holds and, by theorem 36 in Pol-
lard (2001), page 154, Lit(h, zi) converges a.s.-Pµ0,φ to a finite Li∞(h, zi). Thus, by
Kronecker’s lemma (Pollard (2001), page 105)45, it follows that

lim
t→∞

∑
zi∈Zi

{
t−1

t∑
τ=1

lnQi
στ (y

i | si, xi)
(
1zi
(
Zi
τ

)
− qiστ (z

i)
)}

= 0

a.s.-Pµ0,φ. Therefore,

lim
t→∞

κi1t(h) = 0. (40)

a.s.-Pµ0,φ.
Second, consider κi2t(h). The assumption that limt→∞ σt = σ and continuity of

Qi
σ lnQi

σ in σ imply that

lim
t→∞

κi2t(h) = −
∑

(si,xi)∈Si×Xi
EQσ(·|si,xi)

[
lnQi

σ(Y i | si, xi)
]
σi(xi | si)pSi(si). (41)

Finally, (38) also implies that

lim
t→∞

κi3t(h, θ
i) =

∑
(si,xi)∈Si×Xi

EQσ(·|si,xi)
[
lnQi

θi(Y
i | si, xi)

]
σi(xi | si)pSi(si) (42)

Equations (40), (41), and (42) imply (9). �

Proof of expression (12) in the text: We show that, for all sufficiently small ε,
there exists t∗ such that, for all t ≥ t∗, Ki

t(h, θ
i) < −(Ki

0(σ) + αε) for all θi ∈ Θi
ε =

{θi : di(σ, θi) ≥ ε}. We divide the space Θi
ε into a set Θ̂i

ε and its complement, where
Θ̂i
ε is defined as follows: θi ∈ Θ̂i

ε if and only if θi ∈ Θi
ε and there exists ẑiθi such that

qiσ(ẑiθi) > 0 and Qi
θi(ŷ

i
θi | ŝiθi , x̂iθi) < ε; we call such ẑiθi a bad element given θi.

Equations (40) and (41) imply that, for all γ > 0, there exists t̂γ such that, for all

45This lemma implies that for a sequence (`t)t if
∑
τ `τ < ∞, then

∑t
τ=1

bτ
bt
`τ → 0 where (bt)t is

a non-decreasing positive real valued that diverges to ∞. We can apply the lemma with `t ≡ t−1lt
and bt = t.
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t ≥ t̂γ,∣∣∣∣∣∣κi1t(h) + κi2t(h) +
∑

(si,xi)∈Si×Xi
EQσ(·|si,xi)

[
lnQi

σ(Y i | si, xi)
]
σi(xi | si)pSi(si)

∣∣∣∣∣∣ ≤ γ.

(43)
Also, by (38), there exists tqiL/2 such for all t ≥ tqiL/2,

κi3t(h, θ
i) ≤ freqit(ẑ

i
θi) lnQi

θi(ŷ
i
θi | ŝiθi , x̂iθi)

≤
(
qiL/2

)
ln ε, (44)

for all θi ∈ Θ̂i
ε, where ẑiθi is a bad element given θi and where qiL = minZi{qiσ(zi) :

qiσ(zi) > 0}. Then (43) and (44) imply that, for all t ≥ t1 ≡ max{tqiL/2, t̂1},

Ki
t(h, θ

i) ≤ −
∑

(si,xi)∈Si×Xi
EQσ(·|si,xi)

[
lnQi

σ(Y i | si, xi)
]
σi(xi | si)pSi(si) + 1 +

(
qiL/2

)
ln ε

≤ #Zi + 1 +
(
qiL/2

)
ln ε (45)

for all θi ∈ Θ̂i
ε, where the second line follows from the facts that

−
∑

(si,xi)∈Si×Xi
EQσ(·|si,xi)

[
lnQi

σ(Y i | si, xi)
]
σi(xi | si)pSi(si) ≤

−
∑

(si,xi)∈Si×Xi

∑
yi∈Yi

(
lnQi

σ(yi | si, xi)
)
Qi
σ(yi | si, xi)

and x × ln(x) ∈ [−1, 0] for all x ∈ [0, 1]. In addition, the fact that αε ≤ ᾱ < ∞ for
all ε ≤ ε̄ implies that the RHS of (45) can be made lower than −(Ki

0(σ) + αε) for all
sufficiently small ε.

Finally, consider the complement of Θ̂i
ε in Θi

ε. By definition, θi ∈ Θi
ε\Θ̂i

ε if and
only if θi ∈ Θi

ε and Qi
θi(y

i | si, xi) ≥ ε for all zi such that qiσ(zi) > 0. Then, by (38),
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for all t ≥ tζ∗ ,

κi3t(h, θ
i) ≤

∑
{zi:qiσ(zi)>0}

freqit(z
i) lnQi

θi(y
i | si, xi)

≤
∑

{zi:qiσ(zi)>0}

(
qiσ(zi)− ζ∗

)
lnQi

θi(y
i | si, xi)

≤
∑

(si,xi)∈Si×Xi
EQσ(·|si,xi)

[
lnQi

θi(Y
i | si, xi)

]
σi(xi | si)pSi(si)−#Ziζ∗ ln ε,

=
∑

(si,xi)∈Si×Xi
EQσ(·|si,xi)

[
lnQi

θi(Y
i | si, xi)

]
σi(xi | si)pSi(si) + αε/4, (46)

for all θi ∈ Θi
ε\Θ̂i

ε, where ζ∗ = −αε/(4#Zi ln ε) > 0. Then (43) and (46) imply that,
for all t ≥ t2 ≡ max{tζ∗ , t̂αε/4},

Ki
t(h, θ

i) ≤ −Ki(σ, θi) + αε/2

for all θi ∈ Θi
ε\Θ̂i

ε, and the claim that Ki
t(h, θ

i) < −(Ki
0(σ) + αε) for all θi ∈ Θi

ε\Θ̂i
ε

follows from (10). The proof of the claim follows by setting t∗ = max{t1, t2}. �

B Example: Trading with adverse selection

In this section, we provide the formal details for the trading environment discussed
in Section 5.5. Let p ∈ ∆(A × V) be the true distribution; we use subscripts, such
as pA and pV |A, to denote the corresponding marginal and conditional distributions.
Let Y = A × V ∪ {�} denote the space of observable consequences, where � will be
a convenient way to represent the fact that there is no trade. We denote the random
variable taking values in V ∪ {�} by V̂ . Notice that the state space in this example
is Ω = A× V.

Partial feedback is represented by the function fP : X× A× V→ Y such that

fP (x, a, v) =

(a, v) if a ≤ x

(a,�) if a > x
,

and full feedback by the function fF (x, a, v) = (a, v). In all cases, payoffs are given
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by the function π : X× Y→ R, where

π(x, a, v) =

v − x if a ≤ x

0 otherwise
.

The objective distribution for the case of partial feedback, QP , is, for all x ∈ X,

QP (a, v | x) = p(a, v)1{x≥a}(x) (47)

for all (a, v) ∈ A× V and

QP (a,� | x) = pA(a)1{x<a}(x) (48)

for all a ∈ A.
The objective distribution for the case of full feedback, QF , is, for all x ∈ X,

QF (a, v | x) = p(a, v)

for all (a, v) ∈ A× V and QF (a,� | x) = 0 for all a ∈ A.
We suppose that the buyer knows the environment except for the distribution

p ∈ ∆(A × V). Then, for any distribution in the subjective model, Qθ, expected
profits from choosing x ∈ X are perceived to be

EQθ(·|x)[π(x,A, V̂ )] =
∑

(a,v)∈A×V

1{x≥a}(x) (v − x)Qθ(a, v | x). (49)

We suppose that the buyer has either one of two misspecifications over p captured
by the parameter spaces ΘI = ∆(A) × ∆(V) (i.e., independent beliefs) or ΘA =

×j∆(A)×∆(V) (i.e., analogy-based beliefs) defined in the main text. Thus, combining
feedback and parameter spaces, we have four cases to consider, and, for each case, we
write down the corresponding subjective model and the wKLD function.

Cursed equilibrium. Feedback is fF and the parameter space is ΘI . The subjective
model is, for all x ∈ X,

QC
θ (a, v | x) = θA(a)θV (v)
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for all (a, v) ∈ A × V and QC
θ (a,� | x) = 0 for all a ∈ A, where θ = (θA, θV ) ∈ ΘI .46

In particular, from (49), expected profits from choosing x ∈ X are perceived to be

PrθA (A ≤ x) (EθV [V ]− x) , (50)

where PrθA denotes probability with respect to θA and EθV denotes expectation with
respect to θV .

Also, for all (pure) strategies x ∈ X, the wKLD function is47

KC(x, θ) = EQF (·|x)

[
ln
QF (A, V̂ | x)

QC
θ (A, V̂ | x)

]

=
∑

(a,v)∈A×V

p(a, v) ln
p(a, v)

θA(a)θV (v)
.

For each x ∈ X, θ(x) = (θA(x), θV (x)), where θA(x) = pA and θV (x) = pV is the unique
parameter value that minimizes KC(x, ·). Together with (50), we obtain equation (28)
in the main text.

Behavioral equilibrium (naive version). Feedback is fP and the parameter space
is ΘI . The subjective model is, for all x ∈ X,

QBE
θ (a, v | x) = θA(a)θV (v)1{x≥a}(x)

for all (a, v) ∈ A× V and

QBE
θ (a,� | x) = θA(a)1{x<a}(x)

for all a ∈ A, where θ = (θA, θV ) ∈ ΘI . In particular, from (49), expected profits from
choosing x ∈ X are perceived to be exactly as in equation (50).

46In fact, the symbol � is not necessary for this example, but we keep it so that all feedback
functions are defined over the same space of consequences.

47In all cases, the extension to mixed strategies is straightforward.
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Also, for all (pure) strategies x ∈ X, the wKLD function is

KBE(x, θ) = EQP (·|x)

[
ln

QP (A, V̂ | x)

QBE
θ (A, V̂ | x)

]

=
∑

{a∈A:a>x}

pA(a) ln
pA(a)

θA(a)
+

∑
{(a,v)∈A×V:a≤x}

p(a, v) ln
p(a, v)

θA(a)θV (v)
.

For each x ∈ X, θ(x) = (θA(x), θV (x)), where θA(x) = pA and θV (x)(v) = pV |A(v | A ≤
x) for all v ∈ V is the unique parameter value that minimizes KBE(x, ·). Together
with (50), we obtain equation (29) in the main text.

Analogy-based expectations equilibrium. Feedback is fF and the parameter space
is ΘA. The subjective model is, for all x ∈ X,

QABEE
θ (a, v | x) = θj(a)θV (v)

for all (a, v) ∈ A × Vj, all j = 1, ..., k, and QABEE
θ (a,� | x) = 0 for all a ∈ A, where

θ = (θ1, θ2, ..., θk, θV ) ∈ ΘA. In particular, from (49), expected profits from choosing
x ∈ X are perceived to be

k∑
j=1

PrθV (V ∈ Vj)
{
Prθj(A ≤ x | V ∈ Vj) (EθV [V | V ∈ Vj]− x)

}
. (51)

Also, for all (pure) strategies x ∈ X, the wKLD function is

KABEE(x, θ) = EQF (·|x)

[
ln

QF (A, V̂ | x)

QABEE
θ (A, V̂ | x)

]

=
k∑
j=1

∑
(a,v)∈A×Vj

p(a, v) ln
p(a, v)

θj(a)θV (v)
.

For each x ∈ X, θ(x) = (θ1(x), ..., θk(x), θV (x)), where θj(x)(a) = pA|Vj(a | V ∈ Vj) for
all a ∈ A and θV (x) = pV is the unique parameter value that minimizes KABEE(x, ·).
Together with (51), we obtain equation (30) in the main text.

Behavioral equilibrium (naive version) with analogy classes. It is natural to also
consider a case, unexplored in the literature, where feedback fP is partial and the
subjective model is parameterized by ΘA. Suppose that the buyer’s behavior has
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stabilized to some price x∗. Due to the possible correlation across analogy classes,
the buyer might now believe that deviating to a different price x 6= x∗ affects her
valuation. In particular, the buyer might have multiple beliefs at x∗. To obtain a
natural equilibrium refinement, we assume that the buyer also observes the analogy
class that contains her realized valuation, whether she trades or not, and that Pr(V ∈
Vj, A ≤ x) > 0 for all j = 1, ..., k and x ∈ X.48 We denote this new feedback
assumption by a function fP ∗ : X× A× V→ Y∗ where Y∗ = A× V ∪ {1, ..., k} and

fP
∗
(x, a, v) =

(a, v) if a ≤ x

(a, j) if a > x and v ∈ Vj

.

The objective distribution given this feedback function is, for all x ∈ X,

QP ∗(a, v | x) = p(a, v)1{x≥a}(x) (52)

for all (a, v) ∈ A× V and

QP ∗(a, j | x) = pA|Vj(a | V ∈ Vj)pV (Vj)1{x<a}(x) (53)

for all a ∈ A and j = 1, ..., k.
The subjective model is, for all x ∈ X,

QBEA
θ (a, v | x) = θj(a)θV (v)1{x≥a}(x)

for all (a, v) ∈ A× Vj and j = 1, ..., k, and

QBEA
θ (a, j | x) = θj(a)

∑
v∈Vj

θV (v)

 1{x<a}(x)

for all a ∈ A and j = 1, ..., k, where θ = (θ1, θ2, ..., θk, θV ) ∈ ΘA. In particular, from
(49), expected profits from choosing x ∈ X are perceived to be exactly as in equation
(51).

48Alternatively, and more naturally, we could require the equilibrium to be the limit of a sequence
of mixed strategy equilibria with the property that all prices are chosen with positive probability.
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Also, for all (pure) strategies x ∈ X, the wKLD function is

KBEA(x, θ) =EQP∗ (·|x)

[
ln

QP ∗(A, V̂ | x)

QBEA
θ (A, V̂ | x)

]

=
∑

{(a,j)∈A×{1,...,k}:a>x}

pA|Vj(a | V ∈ Vj)pV (Vj) ln
pA|Vj(a | V ∈ Vj)pV (Vj)

θj(a)
(∑

v∈Vj θV (v)
)

+
k∑
j=1

∑
{(a,v)∈A×Vj :a≤x}

p(a, v) ln
p(a, v)

θj(a)θV (v)
.

For each x ∈ X, θ(x) = (θ1(x), ..., θk(x), θV (x)), where θj(x)(a) = pA|Vj(a | V ∈ Vj) for
all a ∈ A and θV (x)(v) = pV |A(v | V ∈ Vj, A ≤ x)pV (Vj) for all v ∈ Vj, j = 1, ..., k is
the unique parameter value that minimizes KBEA(x, ·). Together with (51), we obtain

ΠBEA(x, x∗) =
k∑
i=j

Pr(V ∈ Vj) {Pr(A ≤ x | V ∈ Vj) (E [V | V ∈ Vj, A ≤ x∗]− x)} .

(54)
A price x∗ is an equilibrium if and only if x = x∗ maximizes (54).
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