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1 Introduction

A game has strategic complementarities (Topkis, 1979; Vives, 1990) if, given an order on

players’ strategies, an increase in one player’s strategy makes the other players want to

increase their strategies. For example, the players could be firms in price competition; if

each firm’s optimal price is an increasing function of the prices set by their opponents, the

game has strategic complementarities. In games of strategic complementarities (GSC),

Nash equilibria have a certain order structure; in particular, there is a smallest and

largest equilibrium (Topkis, Vives, (Zhou, 1994)). Further, the set of all rationalizable

strategies, and the set of limits of adaptive learning, is bounded below by the smallest

equilibrium and above by the largest equilibrium (Vives, 1990; Milgrom and Roberts,

1990; Milgrom and Shannon, 1994). GSC are a well-behaved class of games, and a useful

tool for economists.

Consider the coordination game in Figure 1, is it a GSC? That is, is there an order on

players’ strategies so that best-responses are monotone increasing? Yes, let α be smaller

than β. Then, player 2’s best response to α is α and to β is β. So, when 1 increases her

strategy from α to β, 2’s best response increases from α to β. Similarly for 1. So, with

this order the coordination game is a GSC.

α β
α 2, 2 0, 0
β 0, 0 1, 1

Figure 1: A coordination game.

The question I address is: what does this depend on? That is, when can we find an

order on strategies so that a game is a GSC? Note that how strategies are ordered is not

part of the description of a game—it does not affect the available strategies or payoffs.

We as analysts use the order as a tool, therefore we are justified in choosing the order to

conform to our theory. Often, results on GSC are used by coming up with a clever order

on strategies that makes a situation into a GSC, this paper is concerned with how often

such orders exists.

We normally introduce strategic complementarities by assuming supermodular pay-

offs. The crucial feature for most results on GSC is that the game’s best-response corresp-

1



ondence is monotone increasing, and the assumption of supermodular payoffs is sufficient

for monotone increasing best-responses. 1 I shall argue that it is enough, for the purpose

of this paper, to define a GSC as a game for which there is a partial order on strategies

so that best-responses are monotone increasing (and such that strategies have a lattice

structure).

My results are:

1. With some qualifications, a game with a unique pure-strategy Nash equilibrium is

a GSC if and only if Cournot best-response dynamics has no cycles except for the

equilibrium.

2. A game with two or more pure-strategy Nash equilibria is always a GSC.

I illustrate my results with two applications: Generically, 2X2 games are either GSC

or have no pure-strategy equilibria. And, generically, a finite two-player ordinal potential

game is a GSC, but ordinal potential games with more than two players need not be GSC.

I now discuss my results.

1. With some qualifications, in games with a unique Nash equilibrium, strategic

complementarities is equivalent to the absence of cycles in Cournot best-response dynam-

ics. If b is the game’s best-response function (the product of the players’ best-response

functions) then Cournot best-response dynamics starting at x is defined by x0 = x,

xn = b(xn−1), n = 1, 2, . . .. Absence of cycles means that, if x is not an equilibrium,

Cournot best-response dynamics starting at x never returns to x, i.e. xn 6= x for all

n ≥ 1, or, equivalently, that x 6= bn(x) for all n ≥ 1. In finite games, absence of cycles is

equivalent to global stability, that is that bn(x) converges to the equilibrium for all x. In

infinite games, absence of cycles is a weaker condition than global stability—so I show

that a game with a unique, globally stable, equilibrium is a GSC.

2. A game with two or more pure-strategy equilibria is a GSC, so the vast majority

of games that we encounter in applied work are GSC. The order in the coordination

game of Figure 1 that makes its best-response function increasing involves making one

Nash equilibrium the smallest point in the joint strategy space, and the other equilib-

rium the largest point in the strategy space. I show that, if a game has at least two

equilibria, the same trick always works; we can order the strategies such that one equi-

librium is the largest strategy profile and the other equilibrium is the smallest, and such

1In fact the first paper on GSC in economics, (Vives, 1985), defined GSC like I do here.
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that best-responses are monotone increasing. This result has implications for the use of

complementarities to obtain predictions in games.

The literature on GSC has developed a set-valued prediction concept: the set of

strategies that are larger than the smallest Nash equilibrium and smaller than the largest

Nash equilibrium. This “interval prediction” contains all rationalizable strategies, and

all strategies that are limits of adaptive learning. Is the interval prediction in general a

sharp prediction? Milgrom and Roberts suggest that the answer may be negative:

Indeed, for some games, these bounds are so wide that our result is of little

help: it is even possible that these bounds are so wide that the minimum

and maximum elements of the strategy space are equilibria. (Milgrom and

Roberts, 1990, p. 1258)

Milgrom and Roberts go on to argue that, in some models, “the bounds are quite narrow.”

They present as examples an arms-race game, and a class of Bertrand oligopoly models,

where there is a unique equilibrium.

My results imply that this is generally the case: if a game does not have a unique

equilibrium, the interval prediction is essentially vacuous, as all games with multiple

equilibria are GSC where the smallest and largest equilibria are the smallest and largest

strategy profiles. This happens because games with multiple equilibria always involve a

kind of coordination problem—namely the problem of coordinating on one equilibrium—

and this coordination problem can be formalized through an order on strategies that

makes the game a GSC.

I show that, in some games, no order that makes the game a GSC avoids a trivial

interval prediction. In fact, the coordination game in Figure 1 is such a game. On

the other hand, in the coordination game, all strategy profiles are rationalizable, which

may suggest that the interval prediction coincides in general with rationalizability. I

present an example where no order that makes the game a GSC, avoids strictly dominated

strategies in the interval prediction—this is further evidence that the interval prediction

is problematic.

I wish to emphasize that GSC are still a very useful tool. In a given game, comple-

mentarities jointly with the rest of the structure of the game can provide sharp results.

In a sense, complementarities is like compactness—most spaces we work with can be

compactified, but compactness is still a very powerful tool. For example, Topkis’s (1979)

algorithm for finding the smallest and largest Nash equilibria in GSC is very useful on a
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given game with complementarities; and once Topkis’s algorithm has delivered an inter-

val prediction we can judge if it is sharp or not in that particular game. Other examples

are Amir’s (1996) elegant methods for analyzing Cournot oligopoly models using com-

plementarities, and the equilibrium uniqueness results in the literature on global games

(Morris and Shin, 2000). 2

The point of this paper is that complementarities alone do not possess important

predictive power, but that we can use complementarities to understand properties of a

particular game. My results are a contribution to the theory of GSC, delineating the

boundaries of the set of GSC, but I do not provide new positive results on GSC, and I

do not increase the scope of applicability of existing results on GSC.

(Lippman, Mamer, and McCardle, 1987), (Sobel, 1988), (Milgrom and Roberts, 1990),

(Milgrom and Shannon, 1994), (Milgrom and Roberts, 1994), (Echenique, 2002), and

(Echenique and Sabarwal, 2000) present comparative statics results for a parameterized

GSC. They prove that, if a parameter is complementary to players’ choices, some se-

lections of equilibria are monotone increasing in the parameter. My results prompt the

question: can all systematic comparative statics conclusion be rationalized as coming

from a parameterized GSC? The answer, it turns out, is no: there are parameterized

models (with multiple equilibria) such that no order delivers the comparative statics as

an application of results for GSC. In a sense, comparative statics acts as an “identifying

restriction,” we do not have enough degrees of freedom in selecting the order on strategies

so as to make the game a GSC and, at the same time, preserve monotone comparative

statics.

In Section 2 I give some preliminary definitions and present the model that the results

apply to. Section 3 presents my results for games with a unique equilibrium, and section 4

presents my results for games with multiple equilibria. Section 5 discusses the interval

prediction. Section 6 discusses comparative statics restrictions. In section 7 I present an

application to 2X2 games, and in section 8 an application to potential games. Section 9

contains the proof of Theorem 3.

2Amir’s analysis does not proceed by introducing a convenient order on strategy spaces like I do (see
also (Amir and Lambson, 2000)). My results—which, unlike Amir’s, require prior knowledge of some
equilibria of the game—imply that there are more Cournot oligopoly models that can be made into a
GSC than the ones identified by Amir. But the structure, in addition to complementarities, that Amir
uses in his paper enables him to obtain substantive results about Cournot oligopoly, and his results
cannot be generalized using my characterization.
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2 Definitions

2.1 Preliminaries

A detailed discussion of the concepts defined in this subsection can be found in (Topkis,

1998). A pair (X,≤), where X is a set and ≤ is a transitive, reflexive, antisymmetric

binary relation, is a partially ordered set; (X,≤) is totally ordered if, for all x, y ∈ X,

x ≤ y or y ≤ x (≤ is then a total order on X); (X,≤) is a lattice if whenever x, y ∈ X,

both x∧y = inf {x, y} and x∨y = sup {x, y} exist in X. Note that a totally ordered set is

a lattice. A nonempty subset A of X is a sublattice if for all x, y ∈ A, x∧X y, x∨X y ∈ A,

where x∧X y and x∨X y are obtained taking the infimum and supremum as elements of

X (as opposed to using the relative order on A).

A lattice (X,≤) is complete if for every nonempty subset A of X, inf A, sup A

exist in X. A nonempty subset A of X is subcomplete if B ⊆ A, B 6= ∅ implies

infX B, supX B ∈ A, again taking inf and sup of B as a subset of X. For two subsets

A,B of X, say that A is smaller than B in the strong set order if a ∈ A, b ∈ B implies

a ∧ b ∈ A, a ∨ b ∈ B.

Let (X,≤) be a lattice. Say that a correspondence φ : X � X is weakly increasing

over A ⊆ X if x, y ∈ A and x ≤ y implies that there is z ∈ φ(x) and z ′ ∈ φ(y) with z ≤ z′.

Also, say that φ is increasing in the strong set order if x < y implies that φ(x)

is smaller in the strong set order than φ(y). Note that when φ is a function, i.e. single

valued, both concepts coincide with the usual notion of “monotone weakly increasing.”

A correspondence φ : X � X takes finite values if φ(x) is a finite set for all x ∈ X.

2.2 The Model

All results in the paper are results about functions, or correspondences, on a set X.

The reader should think of the results as dealing with the best-response function, or

correspondence, of a game.

Let Γ =
{

I, {ui}i∈I {Si}i∈I

}

be a normal-form game. That is, I is a set of players,

and each player i ∈ I is endowed with a strategy space Si and a payoff function ui :

X = ×j∈ISj → R. If βi : X � Si is player i’s best-response correspondence, βi(s) =

argmaxs̃i
ui(s̃i, s−i), then φ : X � X defined by φ = ×i∈Iβi is the game’s best-response

correspondence. If best-responses are always unique, then βi is a function, and f = ×i∈Iβi

is the game’s best-response function. The set of fixed points of φ—or, if best-responses
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are unique, of f—coincides with the set of pure-strategy Nash equilibria of Γ.

I shall only deal with pure strategies and pure-strategy equilibria, but one can apply

my results to the best-response correspondence of the mixed extension of a game. The

interpretation of my results for the mixed extension of a game is straightforward. 3

A game Γ =
{

I, {ui}i∈I {Si}i∈I

}

is a game of strategic complementarities

(GSC) if there is an order ≤ on X such that (X,≤) is a lattice and φ is weakly in-

creasing. If Γ has unique best-responses, Γ is a GSC if there is an order ≤ on X such

that (X,≤) is a lattice and f is a monotone increasing function.

It will be useful to interpret some assumptions in terms of Cournot best-response

dynamics: If players meet to play Γ over and over again, and if they, in each round of

play n, choose a best response to their opponents’ play in n− 1, we say that they follow

Cournot best-response dynamics. If φ is Γ’s best-response correspondence, all Cournot

best-response dynamics are generated by xn ∈ φ(xn−1) (for some initial x0).

Definition 1. Let X be a set and φ : X � X be a correspondence. A point x ∈ X is

a cycle of φ if there is n ∈ N such that x ∈ φn(x). Let X be a topological space. A

fixed point e is globally stable for φ if, for every x ∈ X and every sequence {xk} with

x0 = x and xk ∈ φ(xk−1), xk → e. By interpreting f : X → X as a correspondence with

singleton values, these definitions extended to functions.

Absence of cycles means that no Cournot best-response dynamics will get caught in

a cycle. 4 And global stability means that players that engage in Cournot best-response

dynamics will eventually approach Nash equilibrium play.

3 Unique Equilibrium

Let X be a set, f : X → X a function and φ : X � X a correspondence. First, I

consider the problem of when there is an an order ≤ such that (X,≤) is a lattice and f

is monotone increasing. Second, I consider the problem of when there is an an order ≤

3I focus on pure strategies because the GSC literature considers usually orders on pure strategies. It
may be desirable to order both pure and mixed strategies in a way that is consistent (for example by
using the first-order stochastic dominance order on mixed strategies) but unless all strategy spaces are
chains, this is incompatible with strategic complementarities, see (Echenique, 2000).

4Cournot best-response dynamics is a very naive learning model, my results do not depend of any
virtues of Cournot dynamics as a learning model. The absence of cycles should be viewed as a technical
condition. It is true, though, that Cournot dynamics is easy to implement on a computer, and therefore
the condition of absence of cycles is easy to verify computationally.
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such that (X,≤) is a lattice and φ is weakly increasing. Third, I discuss some technical

issues.

Theorem 2. Let f : X → X have a unique fixed point e ∈ X. There is a total order ≤

on X such that f is monotone increasing if and only if f has no cycles besides e.

The proof of Theorem 2 follows from Theorem 3 below. Let me say here that: a)

It is immediate that the absence of cycles is necessary for the existence of a total order

such that f is increasing. For example, if x = f(f(x)) = f 2(x) and x 6= f(x) then f

cannot be monotone increasing, as one and only one of x < f(x) and f(x) < x must

hold. Similarly for x = fn(x), n ≥ 2. b) When X is finite it is easy to prove sufficiency,

the idea is as follows. Absence of cycles implies that for each x there is an n such that

e = fn(x); now let x < y whenever the smallest n such that e = fn(x) is larger than the

smallest n such that e = fn(y), this gives f(x) < f(y). It remains to order the elements

that are the same number of iterates away from e, which is slightly cumbersome but easy

(see the proof of Theorem 3 for the details, and for the proof when X is infinite).

Theorem 2 may have some mathematical interest, independently of the application

to game theory that I emphasize.

Absence of cycles is a non-topological condition that is weaker than global stability:

global stability implies the absence of cycles other than e, but absence of cycles does not

imply global stability—for example, let X be the unit disk in R2 and f be a rotation of

X by an irrational number, then f has a unique fixed point, (0, 0), and no cycles, but

(0, 0) is clearly not globally stable. The existence of an order such that f is increasing is

a non-topological statement, so it cannot depend on global stability.

3.1 Examples

Let Γ =
{

I, {ui}i∈I {Si}i∈I

}

be a normal-form game with a unique Nash equilibrium. If

all players have unique best-responses—which, as these are pure-strategy best-responses,

is generically the case when Γ is a finite game—then, by Theorem 2, Γ is a GSC if and

only if Cournot best-response dynamics has no cycles except for e. 5 In particular, if e is

globally stable under Cournot best-response dynamics, then Γ is a GSC. One implication

of these results is that a game that satisfies the dominant diagonal condition in (Gabay

and Moulin, 1980), and has thus a unique, globally stable, equilibrium, is a GSC.

5See section 3.3 for the difference between lattice and totally ordered strategy spaces.
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α β γ
α 2, 2 0, 0 0, 0
β 0, 0 1,−1 −1, 1
γ 0, 0 −1, 1 1,−1

Γ1

α β
α 1,−1 2,−2
β 0, 0 1,−1

Γ2

Figure 2: A non-GSC, and a GSC that is zero-sum.

As an illustration of Theorem 2, consider Γ1, the 3X3 game on the left in Figure 2.

This game has a unique pure-strategy equilibrium, and best-response dynamics has the

cycles (α, α) → (α, α), (β, α) → (α, γ) → (γ, α) → (α, β) → (β, α), and (β, β) →

(β, γ) → (γ, γ) → (γ, β) → (β, β). Therefore there is no order on strategies such that

the game in Figure 2 is a GSC.

Consider Γ2, the zero-sum game on the right in Figure 2 as a second illustration of

Theorem 2. This is a GSC because it has a unique equilibrium and no cycles. The

intuitive idea that zero-sum games and GSC are different is therefore false.

3.2 Non-unique best-responses

Theorem 2 for functions can be generalized to correspondences with finite values, but

the characterization is not completely tight. Absence of cycles implies the existence of

a total order that makes the correspondence weakly monotone, but a weakly monotone

correspondence may have cycles, as weak monotonicity does not control all selections

from the correspondence.

Theorem 3. Let φ : X � X have a unique fixed point e ∈ X. If φ takes finite values and

has no cycles besides e, there is a total order ≤ on X such that φ is weakly increasing.

Further, if {e} = φ(e) and there is a total order ≤ on X such that φ is increasing in the

strong set order, then φ has no cycles besides e.

The proof of Theorem 3 is in section 9.

I need the hypothesis of a correspondence with finite values to use non-standard

analysis the way I do. If Γ is a game with unique best-responses, of course the best-

responses have finite values, and both weakly increasing and increasing in the strong set

order coincide with monotone increasing, so Theorem 3 implies Theorem 2. Also, if Γ

is a finite game, then best-responses take finite values. I have not been able to extend

the characterization in Theorem 3 to arbitrary games with infinite strategy spaces and

non-unique best-responses.
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e

x

y

z

.

.
.

x2

x3

x4

x1

Figure 3: Arrows show action of f : {e, x, y, z, x1, x2, . . .} → {e, x, y, z, x1, x2, . . .}

Global stability implies absence of cycles, thus we obtain

Corollary 4. Let X be a topological space and φ : X � X a correspondence with finite

values and a unique fixed point e ∈ X. If e is globally stable then there is a total order ≤

on X such that φ is weakly increasing.

3.3 Totally ordered strategy space vs. a lattice strategy space,

and completeness.

Theorems 2 and 3 give necessary and sufficient conditions for a game to be a GSC with

a totally ordered strategy space. I defined GSC as games with lattice strategy spaces,

is there some loss in focusing on totally ordered strategies? Yes, but it is essentially a

technical problem: Consider Theorem 2. If a game’s best-response function does not

have cycles, then the game is a GSC because there is a total order on strategies such

that best responses are monotone increasing, and a totally ordered set is a lattice. On

the other hand, if Γ is a GSC where each Si is a complete lattice, and best-responses f

are continuous, then a unique Nash equilibrium is globally stable (Vives, 1990; Milgrom

and Roberts, 1990) so f has no cycles and there is a total order on strategies such that

f is increasing. In particular this implies that, in finite games, a game with a unique

equilibrium is a GSC if and only if best responses have no cycles.
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In GSC where strategy spaces are non-complete lattices, best-responses may have

cycles. Consider the example in Figure 3. The arrows in the figure show the action

of a function f : {e, x, y, z, x1, x2, . . .} → {e, x, y, z, x1, x2, . . .}. Let the infinite set

{e, x, y, z, x1, x2, . . .} be ordered as a subset of R2. The function f has a unique fixed

point, e, a cycle z → y → x → z, and it is monotone increasing. The example works

because Cournot best-response dynamics starting at x1 (or any other point larger than

x, y and z) is a monotone increasing sequence x1, x2, . . . that does not converge to a fixed

point different from e. So the characterization in Theorem 2 is not completely tight. As

I remarked earlier, complementarities is a non-topological condition, so the characteri-

zation must be independent of completeness of strategy spaces. In a sense, then, it is

impossible to avoid problems like the one in Figure 3.

In the usual definition of GSC—supermodular games—there is a link between the

order and the topology on the strategy spaces that, among other things, ensures the

existence of equilibria (by Tarski’s Theorem), and that if equilibrium is unique it must

be globally stable. This link is (order) completeness. Here I construct orders that make

best-responses monotone increasing, but that do not have any relation to the topology on

the strategy spaces. In finite games this does not matter: a finite game without equilibria

cannot be a GSC, and a game with a unique equilibrium is a GSC if and only if this

equilibrium is globally stable. In infinite games, though, there may be GSC without

equilibria, and GSC with a unique equilibrium that is not globally stable. I wish to

emphasize that, despite this technical problem, for games with multiple equilibria, all of

Vives’s, Topkis’s and Milgrom and Roberts’s results hold trivially with the order that I

construct in section 4.

4 Multiple Equilibria

A game with two or more Nash equilibria is (almost trivially) a GSC: set one equilibrium

e as the smallest strategy profile, another equilibrium e as the largest, and let all other

strategy profiles x be unordered, except for satisfying e ≤ x ≤ e. I work out the details

in Theorem 5, and then Theorem 8 presents a more interesting and non-trivial order.

Theorem 5. Let φ : X � X have at least two different fixed points. There is an order

≤ on X such that (X,≤) is a complete lattice, φ is weakly increasing, and the set of fixed

points of φ is a complete sublattice of X.
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Proof. Let e, e be different fixed points of φ. Define ≤ on X by x ≤ y if and only if one

of the following is true: x = y, x = e, or y = e. Then, for any non-singleton A ⊆ X, e

is the unique lower bound on A, hence inf A = e; similarly sup A = e as e is the unique

upper bound on A. Thus, for all x, y ∈ X, x∨y, x∧y ∈ X, and for all non-empty A ⊆ X,

inf A, sup A ∈ X, so X is a complete lattice.

Now, let x ≤ y and x 6= y; if x = e then e ∈ φ(x), so e ≤ z for all z ∈ φ(y), and

similarly if y = e. If x = y then any z = z ′ ∈ φ(x) = φ(y) satisfies z ≤ z′. Thus if x ≤ y

there is z ∈ φ(x) and z′ ∈ φ(y) with z ≤ z′, so φ is weakly increasing.

Finally, if A is a non-singleton set of fixed points, then e is the unique lower bound,

and e is the unique upper bound, on A. So, inf A = e and sup A = e. But e and e are

fixed points, so the set of fixed points is a complete sublattice of X.

Remarks:

1. The usual definitions of GSC ensure that best-responses are increasing in the strong

set order, and that φ takes subcomplete- sublattice-values. The order that I con-

struct in Theorem 5 does not guarantee that φ has these properties (unless, of

course, φ is a function), but Topkis’s, Vives’s, Milgrom and Roberts’s, and Mil-

grom and Shannon’s results are (trivially) true with the constructed order.

2. By Zhou’s version of Tarski’s Fixed Point Theorem the equilibrium set of a GSC

is a complete lattice. Topkis, Vives and Zhou present examples where it is not a

sublattice (see (Echenique, 2001), though). By Theorem 5 there is a partial order

on X such that this equilibrium set is a complete sublattice, without eliminating

complementarities.

For clarity, I include the statement of Theorem 5 when φ is a function as:

Corollary 6. Let f : X → X have at least two different fixed points. There is an order

≤ on X such that (X,≤) is a complete lattice, f is monotone increasing, and the set of

fixed points of f is a complete sublattice of X.

For a class of finite games, it is possible to improve on the trivial order of Theorem 5.

In particular, certain elements in X can be excluded from the interval prediction [ e, e ].

Let X be a finite set, and f : X → X be a function. Denote by C the set of cycles

of f , so

C = {x ∈ X : ∃n ∈ N s.t. fn(x) = x} .
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Note that e, e ∈ C.

A path in X is a sequence π = {x1, . . . xL} such that, xl /∈ C for 1 ≤ l ≤ L,

f(x1) ∈ C\ {e, e}, and f−1(xL) = ∅. Let Π be the set of all paths.

If π = {x1, . . . xL} is a path, let Hπ = L denote the length of π. For each xl ∈ π, let

hπ(xl) = l. Let A = ∪{π : π ∈ Π}.

If e ∈ X is a fixed point of f , the basin of e, denoted Be, is the set of points z ∈ X

such that e = fn(z) for some n. For each z ∈ Be, let ge(z) = inf {n ∈ N : fn(z) = e}.

Define f 0(z) = z, so ge(e) = 0. Let He = sup {ge(z) : z ∈ Be}, and let

He = sup {inf {n ∈ N : fn(z) = e} : z ∈ Be} .

Suppose, without loss of generality, that He ≥ He (if He < He just relabel e and e).

For each z ∈ A, let

g(z) = inf {He − [Hπ − hπ(z)] : π ∈ Π, z ∈ π} .

I claim that X = C ∪ A ∪ Be ∪ Be : Let z ∈ X. Since X is finite, for large enough

n, either fn(z) is a fixed point or it is a cycle. If fn(z) is eventually e or e, then

x ∈ (Be ∪ Be). If fn(z) is eventually some other x ∈ C, then either z ∈ C in the first

place, or z ∈ A. In any case, x ∈ C∪A∪Be ∪Be, which establishes the claim. Also, note

that by definition of C, A, Be and Be, A ∩ C = ∅, A ∩ Be = ∅, A ∩ Be = ∅, Be ∩ Be = ∅,

Be ∩ C = {e} and Be ∩ C = {e}.

Before I define ≤ I need two auxiliary orders. I’ll define ≤e on Be and ≤e on Be such

that f restricted to either Be or Be is monotone increasing, and such that e is the largest

element of Be, and e is the largest element of Be. I claim that f(Be) ⊆ Be, and that

f(Be) ⊆ Be. To see this, let x ∈ Be. If f(e) = e, then f(x) ∈ Be. Suppose that f(e) 6= e,

then there is n ∈ N such that fn(x) = e. But f(x) 6= e implies n ≥ 2, so fn−1(f(x)) = e,

and f(x) ∈ Be. The proof that f(Be) ⊆ Be is similar.

Now I can obtain ≤e and ≤e from Theorem 2. First, f |Be
, the restriction of f to Be,

maps Be into Be, has exactly one fixed point, and no cycles. By Theorem 2, there is a

total order—say ≤e—on Be such that f |Be
is monotone increasing and e is the largest

element of Be. Second, by a similar argument, there is a total order ≤e on Be such that

f |Be
is monotone increasing and e is the smallest element of Be—simply reverse the order

that Theorem 2 delivers on Be.

Let x = inf≤e
Be and x = sup≤e

Be.
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Definition 7. Define the order ≤ on X by: z ≤ z ′ if and only if one (or more) of the

following is true :

1. z = z′,

2. z, z′ ∈ Be and z ≤e z′ or z, z′ ∈ Be and z ≤e z′,

3. z ∈ Be and z′ ∈ C,

4. z′ ∈ Be and z /∈ Be,

5. z ∈ Be, z′ ∈ A, and ge(z) ≥ g(z′).

Remarks:

1. Note that ≤ coincides with ≤e on Be and with ≤e on Be. So, ge is monotone

decreasing—that is, z < z′ implies ge(z) ≥ ge(z
′). Also, by construction of ≤e,

ge(z) > ge(z
′) implies that z < z′. Further, if z ∈ Be and z < e, then ge(f(z)) =

ge(z) − 1. See the proof of Theorem 2, or the heuristic following the statement of

Theorem 2 in Section 3.

2. For all x ∈ X, x ≤ x, so x is the smallest element in X.

I now prove that (X,≤) is a lattice (steps 1 and 2), that f is monotone increasing

(step 3), and that any other lattice order that makes f monotone increasing must have

a larger interval prediction (step 4).

Step 1: I prove that ≤ is a partial order. By definition of ≤ (item 1), ≤ is reflexive. I

need to prove that it is antisymmetric and transitive.

To prove that ≤ is antisymmetric, let z ≤ z ′ and z 6= z′, I shall prove that z′ � z.

First, z ≤ z′ cannot be due to item 1 of the definition of ≤. Second, if z ≤ z ′ because of

item 2, then z′ � z, as ≤e and ≤e are antisymmetric. Third, if z ∈ Be then z′ ≤ z only

if z′ ∈ Be as well. So, if z ≤ z′ by item 3 or item 5 we get immediately z ′ � z. Fourth,

if z′ ∈ Be then z′ ≤ z only if z ∈ Be as well. So, if z ≤ z′ by item 4 we get immediately

z′ � z.

Now I shall prove that ≤ is transitive: let z ≤ z ′ and z′ ≤ z′′, I shall prove that

z ≤ z′′. If either z ≤ z′ or z′ ≤ z′′ is due to item 1, it is immediate that z ≤ z ′′. So,

suppose that z 6= z′ and z′ 6= z′′.

First, let z ≤ z′ be due to item 2. If z, z′ ∈ Be then it must be that z′′ ∈ Be, but then

z ≤ z′′, as ≤e is transitive. Now let z, z ′ ∈ Be. Assume z′′ ∈ Be ∪ Be. Either z′′ ∈ Be

13



so z ≤ z′′ by item 4 or z′′ ∈ Be and z ≤ z′′ because ≤e is transitive. Now assume that

z′′ /∈ Be ∪ Be. Either z′′ ∈ C and we get z ≤ z′′ by item 3; or z′′ ∈ A, but then z′ ≤ z′′ is

due to item 5, so z ≤e z′ implies that ge(z) ≥ ge(z
′) ≥ g(z′′). Thus z ≤ z′′ by item 5.

Second, let z ≤ z′ be due to item 3; z′ ≤ z′′ can then only be due to item 4. So

z′′ ∈ Be, and we have z ≤ z′′ by item 4.

Third, if z ≤ z′ is due to item 4, then z′ ∈ Be, so z′ ≤ z′′ implies that z′′ ∈ Be, and

we have z ≤ z′′ by item 4.

Fourth, if z ≤ z′ is due to item 5, then z′ ∈ A. But then z′ ≤ z′′ implies that z′′ ∈ Be,

so we get z ≤ z′′ by item 4.

Step 2: I prove that (X,≤) is a lattice. Since X is finite, (X,≤) is then a complete

lattice.

Let z, z′ ∈ X. If z ≤ z′ or z′ ≤ z, then z ∨ z′ and z ∧ z′ are trivial. So let z and z′ be

unordered, and note that, when z and z ′ are unordered, z ∨ z′ is the smallest element of

{z̃ ∈ X : z < z̃}∩{z̃ ∈ X : z ′ < z̃}, and z∧ z′ is the largest element of {z̃ ∈ X : z̃ < z}∩

{z̃ ∈ X : z̃ < z′}.

I shall need the following two facts, the facts are immediate from the definition of ≤.

Fact 1: If z ∈ (C ∪ A) \ {e}, then x ∈ {z̃ ∈ X : z̃ < z} ⊆ Be.

Fact 2: If z ∈ (C ∪ A) \ {e}, then {z̃ ∈ X : z < z̃} = Be.

First, let z ∈ Be. Since z and z′ are unordered, we must have z′ ∈ A. Also, z 6= x, as

x is the smallest element in X, so z = x would imply that z and z ′ are ordered. Note that

z ∈ Be\ {x} implies that x ∈ {z̃ ∈ X : z̃ < z} ⊆ Be, and {z̃ ∈ X : z < z̃} = Be. Hence,

by facts 1 and 2,

x ∈ {z̃ ∈ X : z̃ < z} ∩ {z̃ ∈ X : z̃ < z ′} ⊆ Be,

and

{z̃ ∈ X : z < z̃} ∩ {z̃ ∈ X : z ′ < z̃} = Be.

But ≤ is a total order on Be, and Be is finite, so any non-empty subset of Be has a largest

element. Thus z ∧ z′ exists. Similarly, Be is finite and totally ordered by ≤. So Be has a

smallest element (namely e), and z ∨ z ′ exists.

Second, let z ∈ A. Since z and z′ are unordered we must have z′ /∈ Be. Further, if

z′ ∈ Be then we already proved above that z ∧ z ′ and z ∨ z′ exist. Let z′ ∈ (C ∪ A) \ {e}.

Using facts 1 and 2 in as above, we know that {z̃ ∈ X : z̃ < z} ∩ {z̃ ∈ X : z̃ < z ′} is a

non-empty subset of Be, and that {z̃ ∈ X : z < z̃}∩{z̃ ∈ X : z ′ < z̃} = Be. Since Be and

Be are finite, totally ordered sets, z ∧ z ′ and z ∨ z′ exist in X.

14



Third, let z ∈ C\ {e, e}. Since z and z ′ are unordered, we must have z′ ∈ (C ∪ A) \ {e, e}.

If z′ ∈ A, then we know that z∧z′ and z∨z′ exist in X from the argument in the previous

paragraph. If, z′ ∈ C, then

x ∈ {z̃ ∈ X : z̃ < z} = {z̃ ∈ X : z̃ < z ′} ⊆ Be

and

{z̃ ∈ X : z < z̃} = {z̃ ∈ X : z′ < z̃} = Be.

Again Be and Be are finite and totally ordered by ≤, so z ∧ z ′ and z ∨ z′ exist in X.

Finally, if z ∈ Be, z and z′ cannot be unordered, as z′ /∈ Be implies z′ ≤ z, and Be is

totally orderd by ≤.

Step 3: Now I prove that f is monotone increasing.

Let z ≤ z′. I need to prove that f(z) ≤ f(z ′). First, if z ≤ z′ is due to item 1, then

f(z) ≤ f(z′) because f(z) = f(z′). And if z ≤ z′ is due to item 2 it is immediate that

f(z) ≤ f(z′) by the definitions of ≤e and ≤e.

Second, let z ≤ z′ be due to item 3. z ∈ Be implies that f(z) ∈ Be, and z′ ∈ C implies

that f(z′) ∈ C. So, we get f(z) ≤ f(z ′) by item 3.

Third, let z ≤ z′ be due to item 4. z′ ∈ Be implies that f(z′) ∈ Be. Also, z /∈ Be

implies f(z) /∈ Be, as, for any z̃ ∈ X, f(z̃) ∈ Be implies z̃ ∈ Be by the definition of Ae.

Hence f(z) ≤ f(z′) due to item 4.

Fourth, let z ≤ z′ be due to item 5. So, z ∈ Be and z′ ∈ A. If f(z′) ∈ C, then

f(z) ≤ f(z′) by item 3, as f(z) ∈ Be. Assume f(z′) /∈ C. Since z ≤ z′, ge(z) ≥ g(z′).

Now there must be a path π̂ such that g(z ′) = He −
[

Hπ̂ − hπ̂(z′)

]

. Since f(z′) /∈ C, we

must have f(z′) ∈ π̂, and hπ̂(f(z′)) = hπ̂(z′) − 1. So,

g(f(z′)) ≤ He − [Hπ̂ − hπ̂(f(z′))]

= He − [Hπ̂ − hπ̂(z′)] − 1

= g(z′) − 1

On the other hand, z ∈ Be, so either z = e or z < e. First, if z = e, then f(z) = e, so

ge(z) = ge(f(z)). Then ge(z) ≥ g(z′) and g(f(z′)) ≤ g(z′) − 1 implies that ge(f(z)) ≥

g(f(z′)), so f(z) ≤ f(z′) by item 5.

Second, if z < e, then ge(f(z)) = ge(z) − 1. So, ge(z) ≥ g(z′) implies that ge(f(z)) =

ge(z) − 1 ≥ g(z′) − 1 ≥ g(f(z′)). Thus f(z) ≤ f(z′) by item 5.

Step 4: Let � be a partial order on X, such that (X,�) is a complete lattice, f is

monotone increasing, e is the smallest fixed point of f , and e is the largest fixed point of

f . Let z ∈ X be such that e ≤ z ≤ e. I prove that e � z � e.
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Let x∗ = inf� X. By Theorem 4.3.4 in (Topkis, 1998), there is a k ∈ N such that

e = fk(x∗). Let K be the smallest such k, and note that e = f k(x∗) for all k ≥ K, as e

is a fixed point of f . Note also that the existence of K implies that x∗ ∈ Be, and note

that He ≥ K.

Now, by the definition of ≤, e ≤ z ≤ e implies that either z ∈ C or z ∈ A. Suppose,

first, that z ∈ C. Let n ∈ N be such that z = fn(z), at least one such n exists because

z ∈ C. Let M ∈ N be such that K ≤ nM . Now, x∗ � z, because x∗ = inf� X. So,

f monotone increasing implies that fnM(x∗) � fnM(z). But K ≤ nM implies that

fnM(x∗) = e, so we have that e ≤ z. Repeat the argument with sup� X in the place of

x∗ and we get z � e.

Suppose now that z ∈ A. Then e ≤ z implies that ge(e) ≥ g(z). But ge(e) = 0, so

0 ≥ g(z). There is π̂ ∈ Π such that z ∈ π̂ and g(z) = He − [Hπ̂ − hπ̂(z)].Thus we have

Hπ̂ − hπ̂(z) ≥ He ≥ K.

Let z′ = zHπ̂
. Then z′ ∈ π, and

fHπ̂−hπ̂(z)(z′) = z.

Since x∗ = inf� X, we have x∗ � z′, so f monotone increasing and Hπ̂ − hπ̂(z) ≥ K

implies that

e = fHπ̂−hπ̂(z)(x∗) � fHπ̂−hπ̂(z)(z′) = z.

This proves that e � z. Now for e: Recall that He ≥ He, so Hπ̂ − hπ̂(z) ≥ He. By

definition of He, then,

fHπ̂−hπ̂(z)(sup
�

X) = e.

But z′ � sup� X so

z = fHπ̂−hπ̂(z)(z′) � fHπ̂−hπ̂(z)(sup
�

X) = e.

This proves that e � z � e.

Theorem 8. Let X be a finite set, and f : X → X be a function. Let e, e ∈ X be two

fixed points of f . There is an order ≤ on X such that (X,≤) is a complete lattice, f is

monotone increasing, and, for all z ∈ Be and z′ ∈ Be, z < e and e < z′. Further, the

interval prediction is

[ e, e ] = X\(Be ∪ Be) ∪ {e, e} .
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Proof. Let g be the restriction of f to Be. The range of g is in Be, so g : Be → Be. Since

gn(x) = e for some n for all x in Be, g has exactly one fixed point, e, and no cycles but e.

Then, by Theorem 2 there is a total order � on Be such that g is monotone increasing.

Also, the proof of Theorem 3 (step 2) shows that e is the largest element in Be. Similarly

there is a total order �′ on Be such that the restriction of f to Be is monotone increasing

and e is the smallest element in Be.

Now, let h : X\(Be ∪ Be) ∪ {e, e} → X\(Be ∪ Be) ∪ {e, e} be the restriction of f to

X\(Be∪Be)∪{e, e}. By Theorem 5 there is an order �′′ on X̂ = X\(Be∪Be)∪{e, e} such

that (X̂,�′′) is a complete lattice, h is monotone increasing, e is the smallest element,

and e is the largest element.

Finally, define the order ≤ on X by x ≤ y if and only if one of the following is true,

a) x ∈ Be, y /∈ Be b) x /∈ Be ∪ Be, y ∈ Be c) x, y ∈ Be and x � y d) x, y ∈ Be and x �′ y,

or e) x, y /∈ Be ∪ Be and x �′′ y. It is routine to check that (X,≤) is a complete lattice,

and that f is monotone increasing.

The next section discusses how Theorem 8 improves on the order in Theorem 5.

5 Discussion of the interval prediction.

I show that there are games for which the interval prediction is unavoidably vacuous, and

that there are games for which the interval prediction must contain strictly dominated

strategies.

1. Consider the coordination game in Figure 1. I shall show that there is no order on

strategies that preserves complementarities, and where the interval prediction is sharper

than the whole strategy space. Let

b = b1 × b2 : {α, β}2 → {α, β}2

be the game’s best-response function, and ≤ be an order on {α, β}2 such that b is mono-

tone increasing. Now, it must be that (α, β) and (β, α) are incomparable under ≤. To

see this, let (α, β) < (β, α), then b(β, α) = (α, β) < b(α, β) = (β, α), and b is not in-

creasing. Similarly if (β, α) < (α, β). Then, for ({α, β}2 ,≤) to be a lattice, it must be

that (α, β) ∨ (β, α) and (α, β) ∧ (β, α) equals either (α, α) and (β, β) or, respectively,

(β, β) and (α, α). But (α, β)∨ (β, α) 6= (α, β)∧ (β, α), hence either (α, α) is the smallest

strategy profile and (β, β) is the largest, or vice versa.
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α β γ δ
α 2, 2 0, 0 0, 0 0, 0
β 0, 0 0, 1 1, 0 0, 0
γ 0, 0 1, 0 0, 1 0, 0
δ 0, 0 0, 0 0, 0 1, 1

Γ3

α′ β′

α −1, 0 −1, 1
β 2, 2 0, 0
γ 0, 0 2, 2

Γ4

Figure 4:

2. I show that this does not depend on the coordination game being 2X2, it depends

on the cycles in best-responses between the non-equilibrium strategy profiles (α, β) and

(β, α). 6 In fact, consider the 4X4 coordination game Γ3 in Figure 4. In this game,

best-responses have three cyclical orbits (besides the fixed-point cycles (α, α) → (α, α)

and (δ, δ) → (δ, δ)):

(β, α) → (α, β) → (γ, α) → (α, γ) → (β, α),

(δ, γ) → (β, δ) → (δ, β) → (γ, δ) → (δ, γ),

and (β, β) → (γ, β) → (γ, γ) → (β, γ) → (β, β).

Then, if a partial order ≤ makes the 4X4 coordination game into a GSC, no strategy

that belongs to a cyclical orbit can be the smallest, or the largest, strategy profile of the

game. To see this, suppose, for example, that (β, α) is the smallest strategy profile. Then

(β, α) < (α, β), so if b is monotone increasing, b3(β, α) ≤ b3(α, β). But (β, α) = b3(α, β)

and (α, β) = b3(β, α). So it must be that the smallest and largest element in the strategy

space is (α, α) and (δ, δ), as a finite lattice has a smallest and a largest element.

3. The coordination game shows that it is in general impossible to sharpen the

Milgrom-Roberts interval prediction. Theorem 8 does not improve on the order from

Theorem 5 in the 2X2 and 4X4 coordination games discussed above. The reason is that

the basins of both extremal equilibria in these examples are singletons, and all Theorem 8

guarantees is that non-equilibrium elements in the basins of the two extremal equilibria

are not in the interval prediction.

On the other hand, all strategies in the coordination games are rationalizable. The-

orem 8 may suggest that the interval prediction coincides with the set of rationalizable

strategies. In fact, Theorem 8 leaves the non-equilibrium elements in the basins of two

6In both coordination games, all strategy profiles are rationalizable. So, it follows from Milgrom and
Roberts’s results that all strategy profiles are in the interval prediction. I show this directly here and in
item 1 to make explicit the role of cycles.
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equilibria out of the interval prediction, and the non-equilibrium element in the basin of

an equilibrium are not rationalizable. I present an example where no order that makes

the game a GSC, avoids strictly dominated strategies in the interval prediction.

Consider Γ4, the example on the right in Figure 4. In Γ4, player 1 has a strictly dom-

inated strategy, α, but there is no order on strategies that preserves complementarities,

and such that the interval prediction rules out 1 playing α.

There are two pure-strategy equilibria in Γ4, (γ, β ′) and (β, α′). Let us set e = (γ, β ′)

and e = (β, α′). It is easy to check that the basins of e and e are, respectively, Be =

{(α, β ′), e} and Be = {e}. Then, Theorem 8 implies that there is an order such that

best-responses in Γ4 are monotone increasing, and the interval prediction is

[ e, e ] = {(γ, β ′), (α, α′), (β, β ′), (γ, α′), (β, α′)} .

Note that the strategy pair (α, α′), where 1 selects a strictly dominated strategy, is in

the interval prediction.

In fact, it is unavoidable that (α, α′) is in the interval prediction. Let ≤ be an order

on {α, β, γ} × {α′, β′} such that ({α, β, γ} × {α′, β′} ,≤) is a complete lattice, and the

best-response function, f , is monotone increasing. Say that e = (γ, β ′) < (β, α′) = e.

Suppose we want (α, α′) /∈ [ e, e ]. Then, as (β, β ′) and (γ, α′) are pairs of rationalizable

strategies, we must have (β, β ′), (γ, α′) ∈ [ e, e ] (one can prove this directly, as in items

1 and 2 above). If (α, α′) < e then (β, β ′) = f(α, α′) ≤ e = f(e), impossible since

(β, β ′) ∈ [ e, e ]. Similarly, we cannot have e < (α, α′), so (α, α′) must be incomparable

to either e or e. Say it is incomparable to e, then we must have (α, β ′) = (α, α′) ∧ e.

But then there are only two candidates for (α, α′) ∨ e: (β, β ′) and (γ, α′). But (β, β ′)

and (γ, α′) are cycles, as (γ, α′) = f(β, β ′) and (β, β ′) = f(γ, α′). Then they cannot be

ordered, and we cannot have a smallest upper bound on (α, α′) and e. Similarly, (α, α′)

and e cannot be unordered. So, it must be that (α, α′) ∈ [ e, e ].

6 Comparative Statics

In a parameterized GSC, if a parameter t is complementary to players’ choices, there are

selections of equilibria that are monotone increasing in t (Lippman, Mamer, and McCar-

dle, 1987; Sobel, 1988; Villas-Boas, 1997; Milgrom and Roberts, 1990, 1994; Milgrom and

Shannon, 1994; Echenique, 2002; Echenique and Sabarwal, 2000). By theorems 3 and 5,

most games can be rationalized as GSC. A natural question is: can any comparative
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α β
α a, b c, d
β e, f g, h

Γ4

α β
α 1, 1 0, 1
β 0, 1 1, 0

Γ5

Figure 5: Γ3 used in the proof of, and Γ4 illustrates, Proposition 9

statics conclusion be rationalized as coming from a parameterized GSC? The answer is

no, comparative statics conclusions act as an “identifying condition” that restricts the

choice of an order on strategy spaces.

Using the framework in (Milgrom and Roberts, 1994), the question can be phrased

as follows. Let ft, ft′ : X → X, let e be a fixed point of ft, and e′ a fixed point of ft′ . Is

there an order on X such that e < e′ and such that ft(x) ≤ ft′(x) for all x?

In general the answer is no. Consider the following example, let x, e, e′ ∈ X with

e = ft(e), e′ = ft′(e
′) and e 6= e′. Suppose that e′ = ft(x) and e = ft′(x). If there is an

order ≤ such that ft(z) ≤ ft′(z) for all z ∈ X, then e = ft(e) ≤ ft′(e) = e′ and e < e′

because e 6= e′. But e′ = ft(x) ≤ ft′(x) = e, a contradiction.

The example above shows that we cannot rationalize comparative statics conclusions

by a model where the parameter is complementary to players’ choices. Alternatively, is

there an order on X such that e < e′ and such that ft and ft′ are monotone increas-

ing functions? That is, can we rationalize a comparative statics conclusion as coming

from parameterized GSC, even though the parameter may not be complementary to the

strategies? The following example shows that this need not be the case. Let x, e, e′ ∈ X

with e = ft(e), e′ = ft′(e
′) and e 6= e′. Suppose that x = ft(e

′), e = ft′(x) and e′ = ft′(e).

Then e < e′ implies that ft(e) ≤ ft(e
′), so e < x. Then ft′(e) ≤ ft′(x) implies that e′ < e,

a contradiction.

7 Application 1: 2X2 Games

As an application of Theorems 3 and 5 I show that, generically, 2X2 games either have no

equilibria or have complementarities. Essentially, then, 2X2 games are either isomorphic

to “Matching Pennies”, or they are GSC.

Proposition 9. Generically, a 2X2 game either has no pure-strategy Nash equilibrium,

or it is a GSC.
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Proof. Consider the game in Figure 5 on the left. Suppose that a, b, c, etc. are such

that (β, β) is the unique Nash equilibrium, and (β, β) is a strict equilibrium, so c < g

and f < h. I will rule out all possible cycles in best-response dynamics, except for the

cycle involving (β, β). Then Theorem 2 implies that the game is a GSC.

Since c < g and f < h, (α, α) is not a best response to (α, β) or to (β, α). This

rules out the cycles (α, α) → (α, β) → (α, α), (α, β) → (α, α) → (α, β), (α, α) →

(β, α) → (α, α), (β, α) → (α, α) → (β, α), (α, α) → (β, α) → (α, β) → (α, α), and

(α, α) → (α, β) → (β, α) → (α, α).

Finally, the cycle (β, α) → (α, β) → (β, α) requires that a ≥ e and b ≥ d. But then

(α, α) would be an equilibrium, contradicting that (β, β) is the unique Nash equilibrium.

Similarly for (α, β) → (β, α) → (α, β). These are all possible cycles.

We have shown that all 2X2 games with a unique, strict Nash equilibrium are GSC.

All games with more than one equilibrium are GSC by Theorem 5. The property that a

unique equilibrium is strict is generic in the class of 2X2 games.

Proposition 9 does not extend to more complex games than 2X2, see the example in

Figure 2 on the left. The “genericity” qualification in Proposition 9 is necessary. Consider

the game on the right in Figure 5. This game has a unique Nash equilibrium (α, α) in

pure strategies, and a cycle, (α, α) → (α, β) → (β, α) → (α, α). The cycle is produced

by player 2’s indifference when 1 chooses α, which is non-generic.

8 Application 2: Ordinal Potential Games

A game Γ =
{

I, {ui}i∈I {Si}i∈I

}

is an ordinal potential game if there is a function

P : S = ×i∈ISi → R such that

ui(si, s−i) < ui(s
′
i, s−i) if and only if P (si, s−i) < P (s′i, s−i),

for all si, s
′
i ∈ Si, s−i ∈ S−i, and i ∈ I. Potential games were studied in detail by

(Monderer and Shapley, 1996) (see their paper for references to earlier work on potential

games).

My results shed some light on the relation between GSC and ordinal potential games.

I show that, generically, a finite two-player ordinal potential game is a GSC; and that

ordinal potential games with more than two players need not be GSC. 7

7Further, it is easy to see that GSC need not be ordinal potential games. I do not discuss this here,
the counterexamples are very simple.
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α β
α −1,−1,−1 −1,−1,−1
β 1, 1, 0 0, 0, 1
γ 0, 0, 1 1, 1, 0

α

α β
α 1, 1, 1 1, 0, 1
β 0, 1, 1 0, 0, 0
γ 0, 0, 0 0, 1, 1

β

Figure 6: A three-player ordinal potential game that is not a GSC.

Proposition 10. Let Γ be a finite two-player game with unique best responses. If Γ is

an ordinal potential game, then it is a GSC.

Proposition 10 does not extend to games with more than two players. For a coun-

terexample, consider the three-player game in Figure 6. Here, player 1 chooses a strategy

in S1 = {α, β, γ} (rows), player 2 chooses a strategy in S2 = {α, β} (columns), and player

3 a strategy in S3 = {α, β} (matrices). The payoffs are indicated in the figure.

The game in Figure 6 has a unique equilibrium, (α, α, β), and the best-response cycle

(β, β, α) → (γ, α, α) → (β, β, α) By Theorem 2, then, there is no order on strategies

so that his game is a GSC. But by Monderer and Shapley’s results, the game has a

generalized ordinal potential, as it has the finite improvement property (this is a bit

cumbersome to check). Now just perturb the game a bit, it still will not be a GSC

because the best-response cycle will persist, and it will be an ordinal potential game by

Monderer and Shapley’s Corollary 2.6.

Proof of Proposition 10 To prove Proposition 10, I need two definitions and two

lemmas. Let Γ = {S1, S2, u1, u2} be a two-player game with unique best-responses, and

let β(s1, s2) = (β1(s2), β2(s1)) be Γ’s best-response function—note the minor change in

notation. A best-response cycle of Γ is a sequence (s0, s1, . . . sn) in S = S1 × S2, where

sk = β(sk−1), 1 ≤ k ≤ n, s0 = sn, and sk−1 6= sk, 1 ≤ k ≤ n. The use of the term “cycle”

here is inconsistent with the rest of the paper, but no confusion should arise because it

will be clear, at all times in this section, that a cycle is the whole path (s0, s1, . . . sn), not

a point in the range of the path.

An infinite improvement path in S is a sequence (w0, w1, . . .) such that:

• (w0, w1, . . .) is not eventually constant (i.e. there is no K such that the sequence

(wK , wK+1, . . .) is constant).

• wk−1 and wk differ in at most one component,
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• if wk−1 and wk differ, and i is the player that changes strategy between wk−1 and

wk, then ui(w
k−1) < ui(w

k).

The definition of an infinite improvement path differs from the one in Monderer and

Shapley. However, it is immediate to modify their Lemma 2.3 to show:

Lemma 11. ((Monderer and Shapley, 1996)) An ordinal potential game cannot have an

infinite improvement path.

I do not include a proof of Lemma 11 in this paper.

Lemma 12. Let Γ be a two-player game with unique best responses and a unique Nash

equilibrium. If Γ has a best-response cycle, then it has an infinite improvement path.

Proof. Let (s0, s1, . . . sn) be a best-response cycle. We must have n ≥ 2, or

(s0, s1, . . . sn) is a constant sequence.

I claim that either s0
1 6= s2

1, s0
2 6= s2

2, or both hold. Suppose, by way of contradiction,

that s0
1 = s2

1 and s0
2 = s2

2. Then s0
1 = β1(s

1
2) and s0

2 = β2(s
1
1). Now s1

1 = β1(s
0
2) and

s1
2 = β2(s

0
1) imply that (s0

1, s
1
2) and (s1

1, s
0
2) are Nash equilibria. But there is a unique

Nash equilibrium, so (s0
1, s

1
2) = (s1

1, s
0
2); impossible, as (s0

1, s
0
2) = s0 6= s1 = (s1

1, s
1
2).

Suppose, without loss of generality, that s0
2 6= s2

2.

Extend the sequence (s0, s1, . . . sn) to the infinite sequence

(s0, s1, . . . sn−1, s0, s1, . . .).

So, sn+1
1 refers to s1

1, s2n+3
2 to s3

2, and so on. Construct the sequence

w = (w0, w1, w2, . . .) = ((s1
1, s

0
2), (s

1
1, s

2
2), (s

3
1, s

2
2), (s

3
1, s

4
2), (s

5
1, s

4
2), (s

5
1, s

6
2), . . .).

I shall show that w is an infinite improvement path.

If n is odd, we can construct the following finite sequences:

y0 = (s1
1, s

0
2) z0 = (s0

1, s
1
2)

y1 = (s1
1, s

2
2) z1 = (s2

1, s
1
2)

y2 = (s3
1, s

2
2) z2 = (s2

1, s
3
2)

y3 = (s3
1, s

4
2) z3 = (s4

1, s
3
2)

...
...

yn−1 = (sn
1 , s

n−1
2 ) = (s0

1, s
n−1
2 ) zn−1 = (sn−1

1 , sn
2 ) = (sn−1

1 , s0
2)

.
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If n is even, we shall only need the y sequence as constructed, with the modification that

we get yn−1 = (sn−1
1 , sn

2 ) = (sn−1
1 , s0

2).

It is easy, if somewhat cumbersome, to show that: If n is odd, then

w = (y0, y1, . . . yn−1, z0, z1, . . . zn−1, y0, y1, . . .).

And that, if n is even, then

w = (y0, y1, . . . yn−1, y0, y1, . . .).

In both cases, w is not eventually constant, as y0 6= y1 because s0
2 6= s2

2.

Let wk−1 6= wk. If wk−1 = (sk
1, s

k−1
2 ), and wk = (sk

1, s
k+1
2 ), then sk−1

2 6= sk+1
2 = β2(s

k
1).

Best-responses are unique, then u2(s
k
1, s

k−1
2 ) < u2(s

k
1, s

k+1
2 ). Similarly if wk = (sk+1

1 , sk
2),

and wk−1 = (sk−1
1 , sk

2). So, w is an infinite improvement path.

By Monderer and Shapley’s (1996) Corollary 2.2, Γ has at least one equilibrium. If it

has two or more equilibria, it is a GSC by Theorem 5. Let Γ have a unique equilibrium.

Lemma 11 implies that Γ cannot have an infinite improvement path, so Lemma 12 implies

that it cannot have a best-response cycle; by Theorem 2, then, Γ is a GSC.

9 Proof of Theorem 3

I prove the second statement in Step 1. Steps 2 and 3 prove the first statement when X

is finite—Step 2 constructs an order such that φ is weakly increasing, and Step 3 checks

that this is a total order. Steps 4 and 5 prove the first statement for arbitrary X by

non-standard analysis methods. The idea is to embed X in a hyperfinite set, apply the

result for finite sets to get an order that works in the hyperfinite set, and then restrict

the order to X.

Step 1. Let ≤ be a total order on X such that φ is increasing in the strong set order,

and let x 6= e. Suppose, by way of contradiction, that there is {xm}
K

m=0 ⊆ X such that

x = x0 = xK and xm ∈ φ(xm−1), 1 ≤ m ≤ K − 1. Note that we must have xm 6= e for all

m because φ(e) = {e} would imply that x = e.

Since X is totally ordered by ≤, either x < xK−1 or xK−1 < x, as x = xK−1 is ruled

out because x is not a fixed point. Suppose that x < xK−1, I will show by induction that

xK < xK−1 < . . . < x0 = x, a contradiction. First, x < xK−1 implies that φ(x) 3 x1 is

smaller than φ(xK−1) 3 x in the strong set order, so x1∧x ∈ φ(x). Now, x1∧x ∈ {x1, x}

because ≤ is a total order, and x /∈ φ(x) because x is not a fixed point. So we must have
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x1 < x. Now for the inductive step, I want to show that, if xm < xm−1, then xm+1 < xm

(1 ≤ m ≤ K−1). If xm < xm−1, then φ(xm) 3 xm+1 is smaller than φ(xm−1) 3 xm in the

strong set order. Then {xm+1, xm} 3 xm+1 ∧ xm ∈ φ(xm), but xm /∈ φ(xm) as xm 6= e, so

xm+1 < xm.

If, instead, x > xK−1 we can apply an analogous argument to reach a contradiction.

So there cannot be a K with x ∈ φK(x).

Step 2. Let X be finite. Let φ : X � X be a correspondence with a unique fixed

point e ∈ X, and no cycles besides e. For all x ∈ X there is at least one sequence {xm}
K

m=0

with x0 = x, xm ∈ φ(xm−1), m = 1, 2, . . . K, and xK = e; that is a path connecting x and

e, K is the length of the path. To see that such a path must exist, note that, by absence

of cycles, if xm 6= e for m = 1, 2, . . . K, then {xm}
K

m=0 are all distinct, so X has at least

K + 1 elements. X is finite, so we must have, for K large enough, that xK = e. For each

x ∈ X, let Kx be the smallest K such that there is a path of length K connecting x and

e. Clearly, Ke = 0. Fix, for each x, a path of minimal length {xm}
Kx

m=0 connecting x and

e. Note that Kx1
= Kx − 1, as the K’s are minimal.

Define Xm = {x ∈ X : Kx = m}, m = 0, 1, . . . M , where M is such that X =

∪M
m=0Xm. The collection {Xm}

M

m=0 is a partition of X because it covers X and has

disjoint elements, as the Kxs are minimal.

I shall define recursively an order ≤m on Xm, m = 0, 1, . . . M . Let � be a total order

on X such that e is the largest element of X (for example, embed X in N such that e

is mapped to a number larger than any other element in X, and take the relative order

on X). Let ≤0 on X0, be the restriction of � to X0. Given a total order ≤m on Xm, let

≤m+1 on Xm+1 be defined by, x ≤m+1 y if x1 <m y1 or if x1 = y1 and x � y, where x1

and y1 are the first elements in the paths connecting x and y, respectively, to e. Note

that ≤m is in fact a total order because it is a lexicographic order.

Finally, define a total order ≤ on X by x ≤ y if either ky < kx or if ky = kx and

x ≤kx
y. Note that e is the largest element in X.

Step 3. I shall check that φ is weakly increasing. Let x, y ∈ X and {xm}
Kx

m=0,

{ym}
Ky

m=0 be the paths of minimal length connecting x and y to e from step 2.

Let x ≤ y. If Ky < Kx then there is x1 ∈ φ(x) and y1 ∈ φ(y), x1 ∈ {xm}
Kx

m=0,

y1 ∈ {ym}
Ky

m=0, with Ky1
= Ky − 1 < Kx − 1 = Kx1

because the K’s are minimal. Then,

x1 ≤ y1. If Ky = Kx then there is x1 ∈ φ(x) and y1 ∈ φ(y), x1 ∈ {xm}
Kx

m=0, y1 ∈ {ym}
Ky

m=0

with x1 ≤Kx+1 y1. Then Ky1
= Ky − 1 = Kx − 1 = Kx1

, because the K’s are minimal.

Then, x1 ≤ y1. In both cases there is x1 ∈ φ(x) and y1 ∈ φ(y) with x1 ≤ y1, thus proving
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that φ is weakly increasing

To prove that ≤ is a total order, note first that x ≤ x because x is in some Xm, and

x ≤m x, as ≤m is an order; thus ≤ is reflexive. If x ≤ y and y ≤ x then we must have

Kx = Ky, and then x = y because ≤Kx
is an order. So, ≤ is antisymmetric. Let x ≤ y

and y ≤ z. If Ky < Kx or Kz < Ky then Kz < Kx and x ≤ z. If Kx = Ky = Kz then

x ≤ z follows from transitivity of ≤Kx
. Thus ≤ is transitive. Finally, ≤ is total because

if x, y ∈ X then there is m, n such that x ∈ Xm and y ∈ Xn. If m < n or n < m, x and

y are ordered. If n = m, x and y are ordered because ≤m is a total order.

Step 4. Suppose first that φ(e) = {e}. Let H be a hyperfinite set with X ⊆ H ⊆ ∗X.

For all x ∈ X, φ(x) is finite, then ∗φ takes hyperfinite values, and therefore ∗φ(H) is

hyperfinite, as it is the hyperfinite union of hyperfinite sets. Let H̃ = H ∪ ∗φ(H), H̃ is

hyperfinite.

By the Transfer Principle, h ∈ H implies (h ∈ ∗φ(h) ⇒ h = e). Define φ̃ : H̃ → H̃

by

φ̃(h) =

{

∗φ(h) if h ∈ H

{e} if h ∈ H̃\H.

φ̃ is internal, and φ̃(e) = ∗φ(e) = {e}. I show that e is the only fixed point of φ̃.

Suppose x ∈ φ̃(x). First, if x ∈ H, then φ̃(x) = ∗φ(x), so x ∈ ∗φ(x) implies that x = e

by Transfer. Second, if x ∈ H̃\H then φ̃(x) = {e}, so x = e ∈ H, a contradiction.

To show that φ̃ has no cycles except for e, suppose that x ∈ φ̃K(x) for some x ∈ H̃

and K ∈ ∗N. Note that x ∈ H because x ∈ H̃\H implies that φ̃m(x) = {e} for all

m, and e ∈ H. There is a sequence {xm}
K

m=0 with x0 = xK = x and xm ∈ φ̃(xm−1),

m = 1, 2, . . . K. If there is m such that xm ∈ H̃\H then e = xl, m ≤ l ≤ K, so x = e.

On the other hand, if xm−1 ∈ H for all m, then xm ∈ φ̃(xm−1) = ∗φ(xm−1) for all m.

Then x is a cycle of ∗φ, so x = e by Transfer.

Then, H̃ is hyperfinite, φ̃ : H̃ � H̃ has a unique fixed point e, and no cycles but e.

By steps 2 and 3 above and the Transfer Principle, there is a total order � on H such

that x � e for all x ∈ H, and such that x � y implies that there is z ∈ φ̃(x) and z′ ∈ φ̃(y)

with z � z′. Let ≤ be the restriction of � to X ⊆ H̃, ≤ is a total order on X, and e is

its largest element.

To verify that φ is weakly increasing, let x ≤ y. Then, x � y implies that there is

z ∈ φ̃(x) and z′ ∈ φ̃(y) with z � z′. But φ̃(x) = ∗φ(x) = φ(x) and φ̃(y) = ∗φ(y) = φ(y),

as x, y ∈ X ⊆ H. Then z ∈ φ(x), z′ ∈ φ(y), and z ≤ z′ because z � z′.

Step 5. Finally, let φ(e) 6= {e}, and let φ′ : X � X coincide with φ on X\ {e}, and
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take the value {e} on e. By step 4 there is an order ≤ on X such that e is its largest

element and such that φ′ is weakly increasing. Now we check that φ is weakly increasing

in this order as well. We only need to prove that if x ∈ X then there is z ∈ φ(x) and

z′ ∈ φ(e) with z ≤ z′. But, since e ∈ φ(e) and e is the largest element in X, we can set

z′ = e and be done.
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