
Published in Theoretical Economics
Volume 9, Number 1 (January 2014), pp 137-162.

ON THE CONSISTENCY OF DATA WITH
BARGAINING THEORIES

CHRISTOPHER P. CHAMBERS AND FEDERICO ECHENIQUE

Abstract. We develop observable restrictions of well-known the-

ories of bargaining over money. We suppose that we observe a finite

data set of bargaining outcomes, including data on allocations and

disagreement points, but no information on utility functions. We

ask when a given theory could generate the data. We show that

if the disagreement point is fixed and symmetric, the Nash, utili-

tarian, and egalitarian max-min bargaining solutions are all obser-

vationally equivalent. Data compatible with these theories are in

turn characterized by the property of comonotonicity of bargaining

outcomes.

We establish different tests for each of the theories under consid-

eration in the case in which the disagreement point can be variable.

Our results are readily applicable, outside of the bargaining frame-

work, to testing the tax code for compliance with the principle of

equal loss.

1. Introduction

This paper is an inquiry into the testable implications of bargaining

theory. We have in mind the allocation of a single-dimensional resource:

we can essentially focus on the allocation of money amongst a set of

agents. We suppose that we have available certain data on how money

was divided amongst a fixed number of agents. The data describe final
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allocations of money, and the agents’ disagreement points, but include

no information on agents’ preferences, or on the method (or protocol, or

extensive-form game) that led to the division. We want to know when

observed allocations are consistent with standard bargaining theory.

Several well-known theories could explain a given collection of data.

We focus on the utilitarian, Nash, and egalitarian models. The utili-

tarian model divides the resource so as to maximize the sum of agents’

utilities. The Nash bargaining model (after Nash (1950)) seeks to max-

imize the product of the gains from splitting the resource. Finally, the

egalitarian solution (commonly identified with Rawls (1971)) chooses

a division to maximize the utility of the worst off agent. Our goal here

is to investigate the implications of these theories for certain kinds of

data sets.

Data sets consist of observations of how a resource is divided amongst

a set of agents, and of the relevant “disagreement point.” That is, we

observe how much money was at stake, how it was divided among the

agents, and which outcome would have prevailed if the agents had failed

to agree on a division. We do not, however, have any data on agents’

preferences, or on the protocol (or underlying strategic interactions)

that produced the observed allocations.

Such data is used by Hamermesh (1973), for example. He uses data

on union wage bargaining. More generally, the data could be the out-

come of bankruptcy liquidation proceedings, or government subsidies.

We investigate the restrictions that each of the three models, utili-

tarian, Nash, and egalitarian, place on the allocations of money. Es-

sentially, we want to test the hypotheses that resources are allocated

according to these bargaining theories when utility functions are as-

sumed to be increasing and concave, but otherwise can differ across

individuals.

We present two sets of results.

First, in Section 4, we assume that the disagreement points are fixed

across observations, and the same for all agents. A case in point is

the wage bargaining data mentioned above. We provide a joint test

of the hypotheses that a particular bargaining protocol is used and
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that the disagreement outcome is zero for all agents. We discover that

the empirical content of the three models is identical: No data set of

the kind we assume allows us to distinguish between them. A data set

either refutes all three or is consistent with all three.

Furthermore, the theories have very weak predictive power. The only

empirical prediction of any of these theories is that data should be per-

fectly strictly ordinally correlated, or comonotonic, and that each agent

should get at least a positive amount of consumption if any other agent

does. This means that when the total amount of resource increases, all

agents must receive a higher amount of resource.

In fact, we show more. We show that with our assumption on

data sets, comonotonicity characterizes the empirical content of the-

ories based a large class of social welfare functions, namely, any that

takes a generalized utilitarian form: that is
∑

i∈N g(ui(xi)). The utili-

tarian and Nash models are special cases. Our result implies a rather

strong form of observational equivalence. Whenever the data are con-

sistent with one of these theories (say Nash bargaining), then the same

rationalizing utility functions serve to rationalize the observed data as

generated by any of the other theories. As far as we know, our result

is the first to document this strong form of observational equivalence

in the revealed preference literature. We are considering three “non-

nested” models, and given a rationalizable data set, we can find utility

functions that serve to rationalize the data using any of the three mod-

els.

Second, in Section 5, we turn to data in which the disagreement

point can vary. We observe here that the result from Section 4 readily

extends to the utilitarian model, and we present a simple result on

the testable implications of the Nash bargaining solution. The most

interesting case, though, deals with the egalitarian model of bargaining.

Under the additional assumption that utility functions are the same,

the egalitarian model embodies the principle of “equal gain.” The

increase in utility between the final outcome and the disagreement point

should be equal across agents.
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An interesting empirical application is to taxation. Our formal model

is characterized by the similar primitives as axiomatic models of tax-

ation (for example, Young (1988, 1990)). There is a natural relation

between the equal gains bargaining solution and a classical egalitarian

principle of taxation. We can interpret data on taxation (specifically,

the tax code) as bargaining data: the disagreement point represents

agents’ post-tax incomes, and the division of money represents the

amount they earn before taxes. Data of this kind can be readily in-

ferred from the tax code.

The egalitarian theory we discuss is the “equal loss” principle Young

(1988). A tax code is consistent with this principle if there is a utility

function for which the “loss” to all agents (as measured by the dif-

ference in utility between pre and post-tax income) is equalized. The

principle of equal loss has a long history in the economics of taxation.1

We are concerned with the empirical problem of testing a tax code for

compliance with the principle of equal loss. The tax code is not (nec-

essarily) a bargaining outcome, but our model can be reinterpreted to

fit tax data instead of bargaining. Formally, the test coincides with

our test for the equal gains bargaining solution by reinterpreting the

primitives appropriately.

We present a test of this theory in the case when utility is unknown.

Young (1990) studies the same problem, but using a parametric esti-

mation approach to find the best-fitting utility index to the tax code

in the United States. We present instead a non-parametric test, which

can be applied to the data used by Young.

Section 5 discusses the case when utilities may differ among agents,

and presents an extension to when utility is required to be concave, as it

is in the rest of the paper. The results of Section 5 have an interesting

byproduct: the testable implications of Hotelling’s model of spatial

competition Hotelling (1929). Subsection 5.8 demonstrates how this

problem is a special case of the environment studied in Section 5.

1As Young (1990) notes, it was championed by John Stuart Mill, and spawned a
large literature on the normative virtues of equal sacrifice.
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1.1. Related literature. The closest papers to ours may be Cherchye

et al. (2011) and Carvajal and González (2011). These are indepen-

dently conducted investigations into the testable implications of Nash

bargaining.

Cherchye, Demuynck, and De Rock consider a model where a pair

of agents bargain over consumption decisions; so the framework is dif-

ferent from our focus on bargaining over money. They assume that

the disagreement points vary endogenously because individual agents

have the option of making consumption purchases on their own, and

they characterize the rationalizable data as those that satisfy a system

of quadratic inequalities. Recognizing that such a system is hard to

solve, they provide a sufficient condition, and a necessary condition,

which can be operationalized computationally. Finally, they carry out

a laboratory experiment and show how one can use their tests.

Carvajal and González suppose that consumption is over monetary

units (as we do), and develop polynomial tests of the Nash bargaining

model under various hypotheses about the behavior of the disagreement

point. Most of their tests characterize rationalizable data as those

that satisfy a system of quadratic inequalities. They use the Tarski-

Seidenberg algorithm to construct direct tests of rationalizability in

terms of data alone. A version of our Proposition 10 appears already

in Carvajal and González.

The setup and methodology in both Cherchye et al. (2011) and Car-

vajal and González (2011) are distinct from ours, and perhaps closest

to our discussion in Section 5.2. In fact, probably the method we sug-

gest there can be applied in their frameworks, and vice versa. The

boundary of the problems we can solve in revealed preference analysis

is given by polynomial problems, such as the ones they analyze. It is

interesting to see complementary approaches emerge.

The recent contribution of Chiappori et al. (2012) investigates the

empirical content of Nash bargaining. There are several important dif-

ferences between that work and ours. The main difference is that their

framework assumes disagreement points are unobserved. Instead, they
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suppose that some vector of underlying, observable Euclidean charac-

teristics uniquely determines both the utility functions of agents and

the disagreement point. Without assuming any kind of structure on

the joint dependence of disagreement point and utility on these under-

lying characteristics, their model obviously has no testable implications

(this is their Proposition 2). To have any empirical content, they must

assume some structure on the dependence of the utility function and

disagreement point on these characteristics. They assume that this

dependence is known to satisfy certain properties (differentiability and

“exclusion restrictions”) both within and across characteristics. By

contrast, in our model, disagreement point observations are part of the

observed data, and this leads to the falsifiability of the model.

The other main distinction between their work and ours is that

they are concerned with understanding the testable implications of

the model in a continuous sense—the implications of the model if we

could observe the division across all possible problems. Our work, on

the other hand, assumes only that a finite number of possible division

problems are observed (with their solutions). The distinction in the

two approaches can be best understood by considering the classical

demand model: their approach is analogous to characterizing rational-

izability by conditions on the Slutsky matrix, while our approach is

analogous to Afriat’s Afriat (1967) discussion of finite data sets that

are rationalizable. Their work also notes that the testable implications

of the Nash, utilitarian, and maxmin model are identical in certain

frameworks.

De Clippel and Eliaz (2011) also provide an interesting study of the

empirical content of a particular bargaining solution, which they call

the fallback solution (which shares some ideas with the maxmin solu-

tion). Their framework is a general (“Arrovian”) choice environment,

where two agents decide from a finite choice set. The paper by Kıbrıs

(2011) also studies bargaining solutions (albeit in a claims framework)

and derives a revealed preference relation from the choices made by the

solutions. Kıbrıs finds conditions on the solutions so that the implied

revealed preference relation is rational.
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Earlier works discussing the empirical content of Nash bargaining,

usually assuming all individuals are identical and risk neutral, include

Hamermesh (1973) and Bowlby and Schriver (1978). Svejnar (1980)

provides a critique of these ideas.

As earlier noted, Young (1990) constructs a test of the maxmin hy-

pothesis, using empirical data on US income taxes from 1957-1987. His

approach is estimation-based, and he finds that tax data are reasonably

close to predicted data from the maxmin model in most years (there

are exceptions). He assumes specific parametric forms for the utility

function. By contrast, we provide an exact test of the maxmin model,

assuming no parametric functional form. Young (1988) provides a kind

of exact empirical test of the maxmin model, assuming the solutions to

all possible problems are observed, and further assuming observations

across different populations.

2. The Theories

We consider the most commonly used (cooperative) theories of bar-

gaining. We assume an environment where some quantity m ∈ < of a

single-dimensional resource (e.g. money) is available, and a group of n

agents needs to decide on an allocation of m. Each problem possesses a

disagreement point, which is the vector of outcomes received by agents

if negotiations break down. For each agent, di is the monetary value

of this outcome, and the vector d = (d1, . . . , dn) is the disagreement

point. The set

B(m, d) = {(x1, . . . , xn) ∈ <n+ :
n∑
i=1

xi ≤ m and, for all i, xi ≥ di}

represents all the allocations of m in which each agent gets at least their

disagreement points. The disagreement point is observed and known.

A bargaining theory uses information on agents’ preferences to pre-

dict an outcome in B(m, d). Suppose that each agent i is described by

a strictly increasing and concave utility function ui : <+ → <.

The utilitarian theory says that m is divided so as to maximize the

sum
∑n

i=1 ui(xi) over B(m, d). We consider a generalization of the
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utilitarian theory, where for some function g : A ⊂ < → <, the sum∑n
i=1 g(ui(xi)− ui(di)) is maximized over B(m, d).2

The Nash bargaining theory predicts a choice in B(m, d) that maxi-

mizes the so-called Nash product,

n∏
i=1

[ui(xi)− ui(di)] .

Note that the Nash bargaining theory is a special case of our general-

ization of the utilitarian theory, letting g = log.

Finally, the egalitarian (or maxmin) theory says that x ∈ B(m, d)

should be chosen to maximize

min
i∈N

[ui(xi)− ui(di)]

These three theories have both positive and normative interpreta-

tions. Under the positive interpretation, it is evident that we may

want to understand the empirical content of the theory. The theo-

ries are commonly assumed to predict an outcome in applied economic

models. Probably the most commonly used is the utilitarian model,

but the Nash solution also finds applications. From macroeconomics

to contract theory and applied mechanism design, authors often use

the Nash solution as a “reduced form” model to capture the outcome

of some bargaining stage.3

From the normative viewpoint, our three theories have know axioma-

tizations that relate them to basic principles of justice or social welfare

(see, for example, Thomson (1981), Thomson (2010), Lensberg (1987),

Thomson and Lensberg (1989), Kalai (1977)).

3. The Data

We assume a finite collection of observations of bargaining outcomes.

A data set is a set D =
{(
dk, xk

)}K
k=1

. Each observation k specifies

a pair (dk, xk) ∈ <2n, where xki ≥ dki for all i and k. For each k, dk

2Note that this is indeed a generalization, as the problems of optimizing
∑n
i=1 ui(xi)

and of optimizing
∑n
i=1[ui(xi)− ui(di)] have the same solutions over B(m, d).

3See, for example, Hart (1995) for the use of Nash bargaining in the literature on
incomplete contracts; and Rogerson et al. (2005) for macroeconomic search models.
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represents a disagreement point and xk an outcome of bargaining. Let

the set N = {1, . . . , n}.
Any study of the empirical content of a theory depends crucially

on what one assumes is observable. If we observe m, d, and agents’

utility functions, then the theories we described in Section 2 are all

testable, and each one of them makes predictions that are not made by

the others.

In contrast, we assume that utility functions are not observable. Our

assumption follows the mainstream revealed preference view of prefer-

ence and utility: utilities are purely theoretical constructs and do not

have any meaning beyond what they predict about agents’ behavior—

in this case joint behavior. Utilities are not observable, or even meant

to be observable.

The revealed preference view is rooted in the use of field data in

economics. Most data sets in economics consist of field data, and they

do not normally contain information on utility functions. In the par-

ticular case of bargaining theory, the econometric studies of bargaining

use data with no information on utility functions (see, for example,

Hamermesh (1973)).

Experimental researchers can, and often do, collect partial informa-

tion on utility functions by the design of the experiment or by using

supplementary surveys. Many experimentalists are, however, skeptical

about the idea that one can control utility effectively in the labora-

tory. In experiments specifically designed to test bargaining theory,

attempts have been made to assume as little as possible about agents’

preferences. Roth, in a survey of the experimental literature on bar-

gaining (see pages 41–43 in Roth (1995)), argues that experiments that

assume a specific utility function are problematic, and describes designs

that attempt to assume as little as possible about subjects’ preferences

(typically only that the subjects are expected utility maximizers, but

nothing about the form of the utility function). Our assumptions about

data are obviously in line with such experimental designs.
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4. Fixed and symmetric disagreement point

In this section, we suppose that the disagreement point is fixed and

symmetric. Our result is that the only aspect of bargaining theory

that can be tested is a basic solidarity principle. A discussion of this

solidarity principle in different economic environments is presented in

Sprumont (2008).

The punchline is twofold. First, the three models of Section 2 have

identical testable implications. Thus, for the kinds of data described

in Section 3, if the disagreement point is fixed and symmetric, then the

three most popular models of cooperative bargaining are observation-

ally equivalent.

Second, the empirical predictions of these models are relatively weak:

if one agent’s consumption increases, then so does the consumption of

all remaining agents.

With a fixed disagreement point, we assume that the disagreement

point is normalized to 0. A data set (Section 3) then takes the special

form {xk}Kk=1, where xk ∈ <n+. Importantly, the disagreement point

must be the same for all observations.

Our assumption of a common disagreement can be justified when

disagreement points are observed to be fixed across observations, of

course, but also when they are unobserved. In the latter case, we may

choose a disagreement point as part of the exercise of constructing a

rationalizing instance of the model: we are free to choose disagreements

just as we are free to construct rationalizing utility functions. Now,

the assumption that disagreement points can vary in arbitrary ways

leads to an untestable theory; one can choose disagreement points (and

utilities) to rationalize any data using, for example, Nash bargaining

(Chiappori et al., 2012). So a researcher may want to assume that the

variability of the disagreement point is limited: the most natural such

assumption is that it is fixed (and can then be normalized to be zero;

Hamermesh (1973) is a case in point). Our test then becomes a joint
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test for the particular bargaining solution together with the assumption

of a fixed disagreement point at zero.4

We consider the general model described in Section 2. Let g :

[0,∞) → < ∪ {−∞} be a strictly increasing, smooth, and concave

function. We say that data {xk}Kk=1 are g-rationalizable if there ex-

ist strictly increasing, smooth, and strictly concave functions ui for

which ui(0) = 0 and u′i(0) = ∞ (Inada conditions), and for which∑
i∈N g(ui(x

k
i )) ≥

∑
i∈N g(ui(yi)) for all allocations (y1, . . . , yn) ∈

B(
∑

i x
k
i , 0) and k = 1, . . . , K. As we remarked in Section 2, the utili-

tarian and Nash models are special cases of g-rationalizability.

Finally, data {xk}Kk=1 are maxmin rationalizable if there exist strictly

increasing and strictly concave ui, normalized so that ui(0) = 0, for

which mini∈N ui(x
k
i ) ≥ mini∈N ui(yi) for all (y1, . . . , yn) ∈ B(

∑
i x

k
i , 0)

and k = 1, . . . , K.

Our result establishes a property of the data that is equivalent to ra-

tionalizability by these theories: this property yields a non-parametric

test for bargaining theory. We say that data {xk}Kk=1 are comonotonic if

for all i, j ∈ N and all k, l, xki < xli implies xkj < xlj, and for all i, j ∈ N ,

xki = 0 if and only if xkj = 0. Comonotonicity requires that outcomes

are perfectly strictly ordinally correlated (when 0 is also considered an

outcome).

Theorem 1. Given data {xk}Kk=1 and a strictly increasing concave g,

the following are equivalent.

(1) The data are comonotonic.

(2) The data are g-rationalizable.

(3) The data are maxmin rationalizable.

Remark 2. Our original proof of this theorem established only the

equivalence of the utilitarian model, the Nash model, and the maxmin

model. An anonymous referee (at the American Economic Review)

showed us how to generalize the result to the one stated above.

4Of course, other assumptions on the disagreement point are possible, but they fall
outside the scope of our paper.
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Remark 3. We fix g, thereby fixing a theory, and ask if there are utility

functions that rationalize the observations. In principle the rational-

izing utility functions could depend on the particular g under consid-

eration. For example, the utilities that rationalize some data set as

coming from Nash bargaining may differ from the utilities which give

a utilitarian rationalization. Surprisingly, it turns out that the utilities

we construct in the proof serve to rationalize the data for any g. (This

was shown to us by the anonymous referee mentioned in Remark 2.)

In fact, it is evident from our proof that the constructed utilities

also allow rationalization by any symmetric, increasing, and quasicon-

cave (even quasiconcavity can be weakened) function ϕ : <n → <,

independently of whether or not ϕ is additively separable.5

Thus the models we consider are observationally equivalent in a par-

ticularly strong sense. Rationalizable data allow us to fix the unob-

servable utility functions in a way that is consistent with any of the

models under consideration. We cannot differentiate one model from

another in terms of their implied behavior about rationalizing utility

functions.

Remark 4. Dropping the hypothesis of smoothness of the ui functions

and of g results in a weaker notion of comonotonicity. Dropping the hy-

pothesis that u is strictly concave can result in models with no testable

implications on our class of data. For example the utilitarian model

with linear utility functions is not testable, as the theory allows for any

individually-rational division of surplus.

Remark 5. Note that our notion of rationalizability requires utility

functions to satisfy an Inada condition. Without the Inada condition,

the theories in Section 2 may possess non-interior solutions, and the

5The converse statement, that any symmetric, increasing, and quasiconcave social
welfare function generates comonotonic data, is not true. It seems that the additive
welfare functions we consider are the most general ones with this property.
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resulting data may not be comonotonic as we have defined comono-

tonicity (we would have a notion of comonotonicity with weak inequal-

ities instead of strict). The equivalence between g-rationalizability and

maxmin rationalizability also fails without Inada conditions.

Remark 6. Suppose that our data {xk}Kk=1 are such that xk ∈ <n++ for

all k. Then the condition in the theorem is equivalent to the statement

that for all i, j ∈ N and all k, l, xki < xli implies xkj < xlj. Section 5.1

below exploits this idea further.

Remark 7. We could suppose that for each i ∈ N , there is di, poten-

tially different from zero, which serves as a fixed disagreement point,

and then test our theories with the corresponding di. Our rationaliza-

tions would be required to satisfy u′i(di) = +∞, and comonotonicity

would be redefined as xki = di for some i ∈ N implies that xkj = dj for

all j ∈ N . In particular, if we are given data which satisfy xki > xli if

and only if xkj > xlj for all i, j ∈ N and k, l, then we can always ra-

tionalize such data by fixing, for all i, some di < minKk=1 x
k
i , and using

any of the models previously discussed.

Remark 8. We could also ask about rationalization by “weighted” ver-

sions of the rules. For example, with weights α ∈ <n++, a weighted g

rule might be one that is chosen to maximize
∑

i∈N g(αiui(xi)) over

B(m, 0), subject to the constraint that
∑

i∈N xi = m. By Theorem 1,

the only implication of the maximization of such rules is comonotonic-

ity. This can be seen by finding ui functions that g-rationalize the data,

and then rescaling. A similar statement holds for maxmin rationaliz-

ability.

Proof. It follows from the first order conditions that if the data are ei-

ther g-rationalizable or maxmin rationalizable, then they are comono-

tonic.6

6 The argument for the utilitarian model is: Suppose that all agents’ marginal
utilities are equalized at x ∈ B(m, 0) and at x′ ∈ B(m′, 0) with m =

∑
i xi and m′ =∑

i x
′
i. (Note that this uses the Inada conditions assumed on utilities.) Suppose that

m < m′. Some agent i must have x′i > xi; then all agents’ marginal utilities must
be smaller at the allocation x′ than at x and the concavity of utility implies that all
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For the other direction, we show something slightly stronger: If

the data are comonotonic, then there exist strictly concave, con-

tinuous, and increasing functions ui such that, if ϕ : [0,∞) →
< ∪ {−∞} is a increasing, symmetric and quasiconcave function,

then ϕ(u1(x
k
1), . . . , un(xkn)) ≥ ϕ(u1(y1), . . . , un(yn)) for all allocations

(y1, . . . , yn) satisfying
∑

i∈N x
k
i =

∑
i∈N yi.

7 As a special case, we

have ϕ(z1, . . . , zn) =
∑n

i=1 g(zi). Note the order of the quantifiers used

above: the same profile of utility functions u1, . . . , un works across all

ϕ.

To this end, we suppose the data are comonotonic, and ignore repli-

cations as well as points where every agent consumes 0. Without loss

of generality, let us suppose that x1i < x2i < . . . < xKi for all i ∈ N

(that this is possible follows from comonotonicity). Below we construct

a profile of utility functions u1, . . . , un with the property that for all

k = 1, . . . , K,
∑

i∈N ui(x
k
i ) is maximal across all allocations y1, . . . , yn

for which
∑

i∈N x
k
i =

∑
i∈N yi, and mini∈N ui(x

k
i ) is also maximal across

all such allocations; it follows that, since each ui is strictly increasing,

ui(x
k
i ) = uj(x

k
j ) for all i, j ∈ N .

We first argue that such a construction suffices to establish the

result: Let ϕ be as above, and suppose by way of contradiction

that there is a k and a feasible allocation (y1, . . . , yn) for which

ϕ(u1(y1), . . . , un(yn)) > ϕ(u1(x
k
1), . . . , un(xkn)). Note then, by sym-

metry of ϕ, that for any permutation of the agents σ : N → N ,

ϕ(uσ(1)(yσ(1)), . . . , uσ(n)(yσ(n))) = ϕ(u1(y1), . . . , un(yn)). Quasiconcav-

ity of ϕ then implies that

ϕ

(∑
i∈N

ui(yi)

n
, . . . ,

∑
i∈N

ui(yi)

n

)
> ϕ(u1(x

k
1), . . . , un(xkn)).

x′i > xi for all i. The argument is almost identical for generalized g-utilitarianism.
For the maxmin model, it is clear that all agents must have equal utility at a given
allocation. Thus, if one agent’s utility goes up, so must all others.
7Symmetry means that if σ is a permutation on {1, . . . , n} then
ϕ(xσ(1), . . . , xσ(n)) = ϕ(x1, . . . , xn). Increasing here means that if xi > yi
for all i, then ϕ(x1, . . . , xn) > ϕ(y1, . . . , yn).
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By strict increasingness of ϕ, and using the fact that ui(x
k
i ) = uj(x

k
j )

for all i, j ∈ N , this implies that∑
i∈N

ui(yi)

n
>
∑
i∈N

ui(x
k
i )

n
,

contradicting ∑
i∈N

ui(x
k
i ) ≥

∑
i∈N

ui(yi)

for all feasible allocations y1, . . . , yn.

We finish the proof by constructing, for each i, a strictly decreasing,

continuous, and positive function fi, with the property that if we set ui

to be the integral of fi, then the profile of utility functions (u1, . . . , un)

works as required by the first part of the proof.

We proceed by induction. We ensure that, for each i ∈ N and each

k, the following are true:

(1)
∫ xki
0
fi(x)dx =

∫ xkj
0 fj(x)dx

(2) fi(x
k
i ) = fj(x

k
j ).

In the first place, for k = 1, we define for each agent j, fj(0) = +∞.

The construction is done in a series of steps, labeled (1) to (6).

(1) For K, define fi(x
K
i ) = 1 for all i ∈ N ;

(2) for x > xKi , we define fi(x) to be any strictly decreasing func-

tion, taking value everywhere less than 1 and rendering fi con-

tinuous.

(3) We proceed by induction. Let k > 1 be arbitrary, and suppose

that fi(x) has been defined for all x ≥ xki . We assume that for

all k′ ≥ k, fi(x
k′
i ) = fj(x

k′
j ) and∫ xKi

xki

fi(x)dx =

∫ xKj

xkj

fj(x)dx for all i, j ∈ N.

Recall that we have x1i < x2i < . . . < xKi . We choose a finite

fj(x
k−1
j ) but we must choose it to be sufficiently large. Specif-

ically, let z be large enough so that there is ε > 0 for which

z(xkj − xk−1j ) − ε > maxi∈N fi(x
k
i )(x

k
i − xk−1i ) + ε for all j. We

can then set fj(x
k−1
j ) = z for all j.
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(4) Observe that, given fj(x
k−1
j ) and fj(x

k
j ), for any ε > 0 and any

y ∈
(
fj(x

k
j )(x

k
j − xk−1j ) + ε, fj(x

k−1
j )(xkj − xk−1j )− ε

)
,

we may define fj continuous and decreasing on x ∈ (xk−1j , xkj )

so that ∫ xkj

xk−1
j

fj(x)dx = y.

This follows as we may approximate the constant functions

h(x) = fj(x
k−1
j )(xkj −xk−1j ) and h∗(x) = fj(x

k
j )(x

k
j −xk−1j ) arbi-

trarily closely pointwise by strictly decreasing and continuous

functions.

(5) Complete fj(x) on x ∈ (xk−1j , xkj ) so that∫ xkj

xk−1
j

fj(x)dx

is equalized across all agents, by picking

y ∈
⋂
i∈N

(
fi(x

k
i )(x

k
i − xk−1i ) + ε, fi(x

k−1
i )(xki − xk−1i )− ε

)
and choosing fj(x) on x ∈ (xk−1j , xkj ) so that∫ xkj

xk−1
j

fj(x)dx = y.

(6) In the case of k = 1, we must also maintain that∫ x1j

0

fj(x)dx < +∞.

The functions fj so constructed satisfy the conditions we ask for:

that for all k, fj(x
k
j ) is equalized across j, and∫ xkj

0

fj(x)dx

is equalized across j. By setting

uj(x) =

∫ x

0

fj(x)dx,

we have the required uj. �
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Remark 9. An anonymous referee suggested to us the following ex-

plicit construction which works if we want to find rationalizations not

necessarily satisfying the Inada conditions.

(1) Set fi(x
K
i ) = 1 for all i ∈ N .

(2) Complete fi above xKi with any continuous, strictly decreasing

function.

(3) Pick any

zK−1 >

(
2

maxj∈N
(
xKj − xK−1j

)
minj∈N

(
xKj − xK−1j

) − 1

)
,

and set fi(x
K−1
i ) = zK−1 for every i.

(4) Complete fi on (xiK−1, x
i
K) such that each fi is continuous and

strictly decreasing and
∫ xKi
xK−1
i

fi(x)dx is the same for every i.

One way to do this is to pick i∗ ∈ arg minj∈N
(
xKj − xK−1j

)
, and

set

fi(x) = zK−1 −
(
x− xK−1i

xKi − xK−1i

)αi

(zK−1 − zK)

with αi∗ = 1 and the other αi ≤ 1 chosen to equalize integrals

(zK−1 was chosen high enough so such an αi exists for every i).

(5) Repeat steps 3 and 4 for k = K − 1, K − 3, and so on. Once

each fi has been defined down to x1i , let x0i = 0, define z0 as

above, and complete f on [0, x1i ] in the same way.

This results in a set of functions {fi} with fi(x
k
i ) = fj(x

k
j ) and∫ xki

0
fi(x)dx =

∫ xkj
0 fj(x)dx for every (i, j, k); setting ui(x) =

∫ x
0
fi(x)

dx completes the construction.

5. Variable disagreement point

We now turn to data as defined in Section 3, where the disagreement

point is allowed to vary from one observation to another.

5.1. The utilitarian model. Suppose that our data set satisfies

xki > dki for all k and i. Then comonotonicity of the x variables is all

that is required for utilitarian rationalizability. This is because there
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exist utility functions that rationalize the data in the fictitious environ-

ment in which each dki = 0; it is easily checked that these same utility

functions therefore rationalize the given data. Therefore the equiva-

lence between comonotonicity and rationalizability by the utilitarian

theory extends to the case of a variable disagreement point.8,9

5.2. The Nash model. A data set D =
{(
dk, xk

)}K
k=1

, with variable

disagreement point, is Nash rationalizable if there are strictly increas-

ing, and concave ui for which∏
i∈N

[
ui(x

k
i )− ui(dki )

]
≥
∏
i∈N

[
ui(y

k
i )− ui(dki )

]
,

for all (y1, . . . , yn) ∈ B(
∑

i∈N x
k
i , d

k). A version of the following result

appears in Carvajal and González (2011).

Proposition 10. A data set D is Nash rationalizable if and only if

for all i ∈ N , there are numbers Ui(d
k
i ), Ui(x

k
i ),Mi(d

k
i ),Mi(x

k
i ), for

k = 1, . . . , K that solve the following equations: for all i, j and k,

Mi(x
k
i )

Ui(xki )− Ui(dki )
=

Mj(x
k
j )

Uj(xkj )− Uj(dkj )

and for all z, z′ ∈
⋃N
i=1{dki , xki }Ui(z)− Ui(z′) > 0 if z < z′

Mi(z
′)(z − z′) ≥ Ui(z)− Ui(z′).

Proposition 10 is straightforward. It says simply that we need num-

bers Ui(z) to signify levels of utility, and Mi(z) for supergradients, or

marginal utilities. The first system of equalities ensures that the first-

order conditions for the maximization of the Nash product holds. The

8An alternative model with variable disagreement would be one that seeks to maxi-
mize the sum of utilities ui(xi−di), but this problem is the same as the one studied
in Section 4.
9One may also be interested in data for which we may have xki = dki , basically
allowing for corner solutions in the maximization of utilitarian welfare. One can
set up a result like the one in Proposition 10 for this case, based off writing the
corresponding Kuhn-Tucker conditions.
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second set of inequalities makes sure that utility is increasing and that

marginal utilities are supergradients of the utilities.

Proof. We first show that if we are given increasing and con-

cave utility functions ui, then (xk1, . . . , x
k
n) is a solution to

max∑
i∈N xi=M

∏
i∈N [ui(xi) − ui(d

k
i )] if and only if for each i, there is

a supergradient µi of ui at xki for which

µi
Ui(xki )− Ui(dki )

=
µj

Uj(xkj )− Uj(dkj )
.

To this end, define U = {
(
u1(x1)− u1(dk1), . . . , un(xn)− un(dkn)

)
:∑

i∈N xi = xki , xi ≥ dki for all i}. Consider maximizing the function

f(y) =
∏

i∈N yi subject to y ∈ U . A point u ∈ U maximizes f if and

only if
(∏

i 6=1 ui, . . . ,
∏

i 6=n ui

)
supports U at u (by definition). Because

f is strictly convex, and since U is convex and compact, there is a

unique such maximizer u∗. It is clear that u∗i > 0 for all i ∈ N .

This states that there is a unique solution (xk1, . . . , x
k
n) to the Nash

problem for which ui(x
k
i ) − ui(d

k
i ) = u∗i for all i ∈ N . We define

λj =
∏

i 6=j[ui(x
k
i )− ui(dki )]. We know that

∑
i∈N λiui(xi) is maximized

at xk1, . . . , x
k
n across all xi for which

∑
i∈N xi = m. Our next step is to

show that this can happen if and only if the vector (1/λ1, . . . , 1/λn) is

proportional to a vector of supergradients.

Since the constraints xi ≥ dki are not binding, we can set up the

Lagrangean for the problem, say L(x, µ) =
∑

i∈N λiui(xi) + µ(m −∑
i∈N xi), and note that it is equal to L(x, µ) =

∑
i∈N [λiui(xi)−µxi]+

µm. We know the constraint
∑

i∈N xi = m is binding so that the

solution to the maxmin problem features µ∗ > 0. For µ∗, we know that

maxx L(x, µ∗) is equal to the maximum Nash product subject to the

constraint, and has the same solution. This is equivalent to saying that

(λi/µ
∗)ui(x

k
i )− xki ≥ (λi/µ

∗)ui(xi)− xi for all xi, or, rewriting:

ui(xi) + (µ∗/λi)(x
k
i − xi) ≤ ui(x

k
i ).

This is equivalent to saying that (µ∗/λ1, . . . , µ
∗/λn) is a supergradient,

or that the vector (1/λ1, . . . , 1/λn) is proportional to a supergradient.



20 CHAMBERS AND ECHENIQUE

Another way of saying that (1/λ1, . . . , 1/λn) is proportional to a

supergradient is to say that for all i ∈ N , there is a supergradient

Mi(x
k
i ) of ui at xki for which for all i, j,

λi
λj

=
Mj(x

k
j )

Mi(xki )
.

Writing out the explicit form of λ and eliminating terms, this is equiv-

alent to saying that

Mi(x
k
i )

ui(xki )− ui(dki )
=

Mj(x
k
j )

uj(xkj )− uj(dkj )
,

which is precisely the condition in the theorem. The other conditions

simply say that Mi is a supergradient, and that ui is strictly increasing.

Conversely, the details of how to construct a utility function

from these numbers essentially follow from Afriat, defining ui(x) =

infz∈⋃K
k=1{xki ,dki }

Ui(z) + Mi(z)(x − z), where the infimum is taken over

all data points. It is then simple to verify by construction that for all

z ∈
⋃K
k=1{xki , dki }, Mi(z) is a supergradient of ui at z. From this, the

fact that the equality in the statement of the theorem is solved im-

plies that the Nash product is maximized for this collection of utility

functions (by the previous argument). �

For Proposition 10 to be useful, it must be accompanied by a pro-

cedure that one can perform on a data set and decide if the data are

Nash rationalizable or not. Such a procedure is discussed in Cham-

bers and Echenique (2011); suffice it to say here that it is based on a

computational version of results in real algebraic geometry. There is a

sort of “theorem of the alternative” applying to systems of polynomial

inequalities. In Chambers and Echenique (2011) we explain how these

results can be used to operationalize the test in Proposition 10.

5.3. The egalitarian model. Finally, we turn to the egalitarian, or

max-min, model. A data set D is egalitarian rationalizable if there are

continuous and strictly increasing utility functions ui : <+ → < such
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that, for all k, i and j,

ui(x
k
i )− ui(dki ) = uj(x

k
j )− uj(dkj ).

We first discuss a strong version of the theory, called the equal gains

theory, where we require that all agents share the same utility function

u.

We have emphasized that observations (xk, dk) should be interpreted

as bargaining outcomes, where dk is a disagreement point, but there

are other interpretations. We can, instead, think of xki as agent i’s

pre-tax income and dki as his income after taxes. This interpretation is

completely unrelated to bargaining, but leads to the same mathemati-

cal formalism. Then, to require that there be some increasing function

u for which for all i, j,

u(xki )− u(dki ) = u(xkj )− u(dkj ),

says that the tax-code is compatible with all agents sharing equally

in the loss of utility derived from taxation. Young (1990) studies the

equal gains (or equal loss) model, under the taxation interpretation.

Young’s empirical results are of a parametric nature. In contrast, we

present a non-parametric test for the compliance of the tax code with

the principle of equal gains.

Our first result assumes only that u is increasing. Our second result

requires that u is also concave (as in the results of Section 4). Below

we also discuss the (easy) extension to when utility is allowed to differ

across agents.

To begin to understand the empirical content of the equal gains

model, let us suppose we have two agents, so that N = {1, 2}, and

that we observe the two data points:

d1 = (0, 7), x1 = (5, 8) and d2 = (1, 3), x2 = (2, 8).

We claim that this data set cannot be rationalized. To see why, suppose

that u were a utility function rationalizing these data using the equal

gains model. Then we would have u(5) − u(0) = u(8) − u(7), and

u(2)−u(1) = u(8)−u(3). Therefore, since u(5)−u(0)+u(7)−u(8) = 0
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and u(8)− u(3) + u(1)− u(2) = 0 we must have

(1) [u(7)− u(8)] + [u(8)− u(3)] + [u(5)− u(0)] + [u(1)− u(2)] = 0.

But we can regroup terms in this expression, obtaining the following:

(2) [−u(2)+u(7)]+[−u(8)+u(8)]+[−u(3)+u(5)]+[−u(0)+u(1)] = 0.

The contradiction arises because the increasingness of u implies that

each term in brackets in equation (2) is nonnegative, and at least one

of them is strictly positive (in fact, each of the terms [−u(2) + u(7)],

[−u(3) + u(5)], and [−u(0) + u(1)] is strictly positive). Therefore, the

terms cannot add up to zero.

To develop a feeling for what kinds of data are rationalizable, con-

sider a somewhat more involved example. The example helps to moti-

vate the condition that we shall arrive at in the next result. Consider

the data:

d1 = (1, 8), x1 = (3, 9),

d2 = (2, 8), x2 = (5, 9),

d3 = (2, 9), x3 = (4, 10),

d4 = (0, 9), x4 = (4, 10).

A rationalizing utility u must satisfy u(3)− u(1) = u(9)− u(8), u(5)−
u(2) = u(9) − u(8), u(4) − u(2) = u(10) − u(9), and u(4) − u(0) =

u(10)− u(9). By adding and subtracting, we obtain:

([u(1)− u(3)] + [u(5)− u(2)] + [u(2)− u(4)] + [u(4)− u(0)])+

([u(8)− u(9)] + [u(9)− u(10)] + [u(10)− u(9)] + [u(9)− u(8)]) = 0.

But note again, by regrouping, we obtain:

([−u(0) + u(1)] + [−u(3) + u(5)] + [−u(2) + u(2)] + [−u(4) + u(4)])+

([−u(8) + u(8)] + [−u(9) + u(9)] + [−u(10) + u(10)] + [−u(9) + u(9)] = 0.

And again, using the increasingness of u, each of the terms inside the

brackets is nonnegative, and some are strictly positive. This results in

a contradiction.
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(7, 8)

(8, 3)

(5, 0)

(1, 2)

8
≤
8

3 ≤
5

1
≥
0

7 ≥
2

Figure 1. A cycle.

In each of the two examples, what we have done is the following. We

have taken data points that, if rationalizable, should force a certain

expression to add to zero. By regrouping the terms, the increasingness

of u forces a contradiction; the expression could not possibly add to zero

if utility is increasing. It turns out that the inability to regroup data in

this sense is necessary and sufficient for the data to be rationalizable.

The inability to regroup data in the appropriate way is a condition (or

a nonparametric test) that is equivalent to rationalization by the equal

gains model.

In order to formalize our condition, we have to be more specific in

what we mean by “regrouping data.” It is easiest to think of this in

graph theoretic terms. In equation (1), we can think of edges pointing

from 7 to 8, from 8 to 3, from 5 to 0, and from 1 to 2. Note that these

edges come in “pairs,” for example, the edge pointing up from 7 to 8

comes from the data point (d1, x1) = ((0, 7), (5, 8)), and is naturally

paired with the edge pointing down from 5 to 0. Likewise, the edge

pointing up from 1 to 2 is naturally paired with the edge pointing down

from 8 to 3.

The interesting point is that when we put these edges together in

the appropriate sequence, they form a cycle: see Figure 1. Consider

the “edges” (7, 8), (8, 3), (5, 0), (1, 2). The endpoints of adjacent edges

here are ordered, where we treat (1, 2) and (7, 8) to be adjacent. That

is, the second number (number 8) of the node (7, 8) is less than or

equal (in fact, equal) to the first number in (8, 3). And so forth, for

each pair of adjacent edges. In fact, the second number (3) of the
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node (8, 3) is strictly less than the first number (5) in (5, 0). And,

returning to equation (2), we see that when we regroup the data, the

term −u(3) + u(5) appears.

We proceed to define our condition formally. First, we define a cycle

to be a finite sequence of ordered pairs of real numbers, {(z1l , z2l )}
L
l=1,

for which for all l = 1, . . . , L−1, z2l ≤ z1l+1 and z2L ≤ z11 . A strict cycle is

a cycle {(z1l , z2l )}Ll=1, for which for some l, z2l < z1l+1 or z2L < z11 . A finite

sequence {(z1l , z2l )}
L
l=1 defines a (strict) cycle if there exists a bijection

σ : L → L for which {(z1σ(l), z2σ(l))}Ll=1 is a (strict) cycle. Then the

ordered pairs {(7, 8), (8, 3), (5, 0), (1, 2)} from our first example form a

strict cycle.

We might conjecture that for data not to be rationalizable, we should

be able to pair “up” edges with “down” edges in a way that forms a

strict cycle. But this is not quite enough. If we look at the regrouping

in the second example, we again pair up edges with down edges. But

we do not end up with a single cycle. In fact, we end up with two

cycles, only one of which is strict. Namely, the edges

{(1, 3), (5, 2), (2, 4), (4, 0), (8, 9), (9, 10), (10, 9), (9, 8)}

do not themselves form a cycle, but the two sets of edges

{(1, 3), (5, 2), (2, 4), (4, 0)}, {(8, 9), (9, 10), (10, 9), (9, 8)} each form a

cycle. Only the first cycle here is strict, but that is all we need.

In general, we can see there is no reason that a sequence of paired

edges need correspond to one, two, or even k cycles. All that we need

to obtain a contradiction is that data can be grouped into paired edges

that can be partitioned into cycles, at least one of which is strict. These

observations motivate the following definitions.

Let L be a natural number, and let {(al, bl)}Ll=1 and {(a′l, b′l)}
L
l=1 be

two sequences of L ordered pairs. Say that {(al, bl)}Ll=1 and {(a′l, b′l)}
L
l=1

can be partitioned into cycles if there exists a natural number T , and

for each t ≤ T , a collection of finite sequences {(z1tl, z2tl)}
Lt
l=1 that define

cycles (at least one cycle of which is strict), for which there exists a



BARGAINING 25

bijection

f : {(t, l) : t ≤ T, l ≤ Lt} → {(l, i) : l ≤ L, i = {1, 2}}

such that

(z1tl, z
2
tl) =

(af1(t,l), bf1(t,l)) if f2(t, l) = 1

(a′f1(t,l), b
′
f1(t,l)

) if f2(t, l) = 2.

The inability to partition paired data points into cycles is exactly

the necessary and sufficient condition needed to guarantee that data

are rationalizable.

Proposition 11. The data set D =
{

(dk, xk) : k = 1, . . . , K
}

is ra-

tionalizable if and only if there are no sequences (dl, xl)Ll=1 in D, and

agents il 6= jl for all l, such that (dlil , x
l
il
)Ll=1 and (xljl , d

l
jl

)Ll=1 can be

partitioned into cycles, at least one of which is strict.

Two points are worth mentioning. The definition of cycle does not

preclude repetition of elements; nor does the notion of “sequence of

data points” referred to in the statement of the proposition. As a

result, it may not be obvious how to operationalize the test.

An alternative, computationally viable, test to the condition in

Proposition 11 is the following. There is a rationalizing utility if and

only if the following linear program has a solution (u, e) with e > 0:

max(e,u)∈<×<|X| e

s.t.

(∀i, j, k) ((1xki − 1dki ) + (1dkj − 1xkj )) · u ≥ 0

(∀z, z′ ∈ X) z < z′ ⇒ (1z′ − 1z) · u ≥ e.

Here, X ⊆ <n is a finite set such that dk, xk ∈ X for all k. For any

z ∈ X, 1z denotes the vector in <|X| with a 0 in all its entries, except

that corresponding to z. A vector u ∈ <|X| is simply a utility function:

it assigns a real number to each z ∈ X. With this interpretation in

mind, the constraints

((1xki − 1dki ) + (1dkj − 1xkj )) · u ≥ 0
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in the program above simply recast the conditions of the egalitarian

model (we have expressed the equality in the egalitarian model as two

weak inequalities). The constraints that

(1z′ − 1z) · u > 0

when z < z′ express the fact that u is monotonically increasing. The

scalar e is simply an artifact to capture the existence of a solution: it is

a (standard) way of writing the problem of the existence of a solution

to a system of inequalities as an optimization problem.10

The relation between Proposition 11 and the linear program above is

obvious from the proof. In fact, the proof of Proposition 11 follows from

using the following version of a result in linear programming (Farkas’s

Lemma).

Lemma 12. (Integer-Real Farkas) Let {Ai}Ki=1 be a finite collection of

vectors in Qn. Let L be an integer with 1 ≤ L ≤ K. Then one and

only one of the following statements is true.

i) There exists y ∈ <n such that for all i = 1, ..., L, Ai · y ≥ 0 and

for all i = L+ 1, ..., K, Ai · y > 0.

ii) There exists z ∈ ZK
+ , with

∑K
i=L+1 zi > 0, such that

∑K
i=1 ziAi =

0.

Proof. Statements i) and ii) cannot simultaneously hold. To see why,

suppose that there exist y and z as stated. Then Ai · y ≥ 0 for all i =

1, . . . , L and Ai · y > 0 for all i = L+ 1, . . . , K. Consider
∑K

i=1 ziAi · y.

Since
∑K

i=1 ziAi = 0, we know that
∑K

i=1 ziAi · y = 0. Furthermore,

since there is some j ∈ {L + 1, . . . , K} for which zjAj · y > 0, and for

all i, ziAi · y ≥ 0, we conclude that
∑K

i=1 ziAi · y > 0, a contradiction.

We now establish that if ii) does not hold, i) holds. By Theorem 3.2

of Fishburn (1973), if ii) does not hold, there exists y ∈ Qn such that

for all i = 1, ..., L, Ai · y ≥ 0 and for all i = L + 1, ..., K, Ai · q > 0.

Since Qn ⊂ <n, y ∈ <n. �

10We thank an anonymous referee for suggesting this formulation of the argument.
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5.4. Proof of Proposition 11. Let X ⊆ <n be a finite set such that

dk, xk ∈ X for all k.

The notation 1x refers to a vector of zeroes and ones, with a one in

the x coordinate and zero elsewhere (an indicator function).

There is a rationalizing u if and only if there is a solution to the

system of linear inequalities:

(∀i, j, k) ((1xki − 1dki ) + (1dkj − 1xkj )) · u ≥ 0(3)

(∀z, z′ ∈ X) z < z′ ⇒ (1z′ − 1z) · u > 0.(4)

Statement (3) defines a collection of inequalities, one for each i, j and k.

Statement (4) defines another set of inequalities, one for each z′, z ∈ X
with z < z′.

Once a solution to the linear inequalities has been obtained, the

function u can be completed by linear interpolation.

By Lemma 12, there is no solution to system (3)–(4) if and only if

there are vectors λ ∈ ZKN2

+ and θ ∈ Z
|X|2
+ with∑

k,i,j

λk,i,j((1xki − 1dki ) + (1dkj − 1xkj )) +
∑

(z,z′):z′>z

θz,z′(1z′ − 1z) = 0

and ∑
(z,z′):z′>z

θz,z′ > 0.

Without loss of generality, we can assume that dki 6= dkj and xki 6=
xkj for all k and all i 6= j. To see this note that, if dki = dkj then

xki < xkj implies that there is no rationalizing increasing u; but then the

intervals
[
dki , x

k
i

]
and

[
dkj , x

k
j

]
define a strict cycle: {(dki , xki )} {(xkj , dkj )}.

Similarly if xkj < xki . On the other hand, xki = xkj implies that the

inequalities corresponding to k, i, j in (3) are always satisfied. So these

inequalities are irrelevant to the existence of a rationalizing u. The

argument is analogous when dki 6= dkj and xki = xkj .

Let the vectors (λk,i,j) and (θz,z′) be as above. Consider the following

collections of vectors in {−1, 0, 1}X : Let AD be the collection of vectors

with λk,i,j copies of (1dkj −1xkj ); let AU be the collection with λk,i,j copies

of (1xki − 1dki ). Let f : AD → AU be the bijection that associates each
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(1dkj − 1xkj ) with a different copy of (1xki − 1dki ). Such a bijection exists

given the way that AD and AU were constructed.

Let AM be the collection with θz,z′ copies of 1z′−1z for each z, z′ ∈ X
with z′ > z. By definition of λ and θ, we know that the sum of the

elements of AD, AU , and AM equals the null vector. We also have

AM 6= ∅.
Let G = (X,E) be the graph obtained by letting there be an edge

pointing from x to x′ if and only if there is a vector 1x′−1x in one of the

collections AD, AU or AM . By the Poincaré-Veblen-Alexander Theorem

(see Berge (2001), p. 148, Theorem 5), since the sum of the elements

of the vectors in AD, AU , and AM equals the null vector, G can be

partitioned into circuits C1, . . . , CT . Note that, if e = (v, v′) ∈ AU∪AM
then v ≤ v′. If e = (v, v′) ∈ AD, then v ≥ v′.

Consider the edges in circuit Ct: Let
[
dlil , x

l
il

]
, l = 1, . . . , LUt be

the set of intervals defined by edges (dlil , x
l
il
) ∈ AU and

[
dljl , x

l
jl

]
l =

1, . . . , LDt be the set of intervals defined by edges (xljl , d
l
jl

) ∈ AD. For

any edge e = (v, v′) ∈ AU ∪ AD in Ct, let (v′′, v′′′) be the first edge

in Ct after e that is in AU ∪ AD. Then either v′ = v′′ or there are

edges in AM between e and (v′′, v′′′) in Ct; so v′ ≤ v′′. Hence, for any

e = (v, v′) ∈ AU ∪ AD in Ct, the successor edge (v′′, v′′′) ∈ AU ∪ AD
satisfies that v′ ≤ v′′. Hence the intervals (dlil , x

l
il
) l = 1, . . . , LUt and

(xljl , d
l
jl

) l = 1, . . . , LDt define a cycle.

In addition, since AM 6= ∅, at least one of the sets of intervals defined

by a circuit Ct defines a strict cycle.

Finally, since there is a bijection between the edges in AU and in

AD, we have
∑

t L
U
t =

∑
t L

D
t = L. So if we let (

[
dlil , x

l
il

]
)Ll=1 collect

the sequences
[
dlil , x

l
il

]
, l = 1, . . . , LUt , and (

[
xljl , d

l
jl

]
)Ll=1 collect the

sequences
[
dljl , x

l
jl

]
l = 1, . . . , LDt , then we have a sequence of intervals

in the condition in the statement of the proposition.

5.5. Strengthening. The condition in Proposition 11 is necessary and

sufficient for rationalizability by some increasing utility function. In

axiomatic bargaining, however, we often assume that utility functions

are concave; this was our motivation in Theorem 1 of Section 4. We
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now turn to ask for the additional testable implications of requiring

the rationalizing u to be concave in the egalitarian model.

The answer is not so difficult and is closely related to work of Afriat

(1967), Richter and Wong (2004), and Kalandrakis (2010). To simplify

matters, we suppose in this section that all observed data points are

rational. Thus, say that a data set D is rational-valued if all dki and all

xki are elements of Q.

We say that a data set D is concave rationalizable if there is a strictly

increasing, continuous, concave u : <+ → < for which for all k, i and

j,

u(xki )− u(dki ) = u(xkj )− u(dkj ).

Our first task is to describe an example whereby concave rationaliz-

ability fails. It is easy to construct such an example: consider the two

agent case, and the one point data set

d1 = (0, 2), x1 = (2, 3).

How can we see that there is no concave u that concave-rationalizes

this data set? Clearly, if a concave u exists, it must be that u(2) ≥
(2/3)u(3) + (1/3)u(0), or 3u(2) ≥ 2u(3) + u(0). This expression is

obviously equivalent to 2[u(2)− u(3)] + [u(2)− u(0)] ≥ 0. Finally, we

know that [u(3)−u(2)]+[u(0)−u(2)] = 0, so by adding the two terms,

we obtain [u(2) − u(3)] ≥ 0, which we know to be a contradiction to

increasingness.

If we think in the context of the previous section, what we are doing

is adding new types of “edges” to our graph. In the previous section, we

could add an edge from dki to xki so long as we added a corresponding

edge from some xkj to dkj . Now, we are also allowed to add certain

“collections” of edges; namely, any collection {(a1, b), ..., (an, b)} for

which nb =
∑n

l=1 al; that is, b is a rational convex combination of the

al terms. This is precisely what we did in the previous example. We

have the collection of edges (3, 2), (3, 2), (0, 2), which comes from the

fact that 2 = (2/3)3 + (1/3)0. To this, we add the edges (2, 3) and

(2, 0), which comes from the fact that we have equal gains. Combining
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these together results in the cycles

((3, 2), (2, 3)),

((0, 2), (2, 0)),

and

(3, 2).

Note that the singleton element (3, 2) is by itself a strict cycle.

To this end, we discuss the following generalization of the con-

cept from the previous section. We say a collection of ordered pairs

{(a1, b), ..., (am, b)} is a convex collection if
∑m

o=1 ao = mb. That is, b

is a convex combination of the ao terms. Note that we do not preclude

the possibility of several ao terms being equal.

Let P be a natural number. For each p ≤ P , let Lp be a natural

number, and let {(apl , b
p
l )}

Lp

l=1 be a sequence of ordered pairs. Say the

sequences {(apl , b
p
l )}

Lp

l=1 can be partitioned into cycles if there exists a

natural number T and for each t ≤ T , a collection of finite sequences

{(z1tl, z2tl)}
Lt
l=1 that define cycles (at least one cycle of which is strict), for

which there exists a bijection f : {(t, l) : t ≤ T, l ≤ Lt} → {(l, i) : l ≤
Li, i ∈ {1, . . . , P}} for which (z1tl, z

2
tl) = (apf1(t,l), b

p
f1(t,l)

) if f2(t, l) = p.

Proposition 13. The data D =
{

(dk, xk) : k = 1, . . . , K
}

are ratio-

nalizable if and only if there are no sequences of data points (dl, xl)Ll=1

in D, agents il 6= jl for all l, and Q convex collections {(aqo, bqo)}
mq

o=1,

q = 1, . . . , Q, with

aqo, b
q
o ∈ ∪i ∪k {xki , dki },

such that {(dlil , x
l
il
)}Ll=1, {(xljl , d

l
jl

)}Ll=1, and {(aqo, bqo)}
mq

o=1 can be parti-

tioned into cycles, at least one of which is strict.

Remark 14. The assumption in this section that the data are ratio-

nal is not without loss of generality. The reason has to do with our

notion of “convex collection,” which only allows for b to be a rational

convex combination of the ao terms. However, a counterpart of Propo-

sition 13 that allows for irrational data could be presented in terms of

graphs with weighted edges (which would allow edges to have irrational
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weights), requiring conservation of flow, and precluding strict cycles.

The case in Proposition 13 corresponds to the case in which the weights

of all edges are rational valued.

5.6. Proof of Proposition 13. Let X ⊆ <n be a finite set such that

dk, xk ∈ X for all k. We introduce two copies of X, one whose indicator

functions are written in the standard way (1x). The indicator functions

for the second copy are written 1′x.

There is a rationalizing u if and only if there is a solution to the

system of linear inequalities in the X dimensional variables u and α,

((1xki − 1dki ) + (1dkj − 1xkj )) · (u, α) ≥ 0(5)

(1z′ − 1z) · (u, α) > 0(6)

(1z′ − 1z) + (z − z′)1′z′ · (u, α) ≥ 0(7)

where equation (6) is required for z and z′ with z′ > z.

To see why, suppose there is a rationalizing u. Without loss, we may

suppose that u is piecewise linear (if u concave rationalizes the data,

then so does the piecewise linear function that takes the same values

as u for every xki and dki ). Then u has a supergradient α at every xki
and dki . This is the content of equation (7). The other two inequalities

are obviously satisfied.

Conversely, suppose the three equations are satisfied. First, we claim

that without loss, each α term is greater than zero. For example, if

we consider αx where x < y for some y ∈ X, then by equation (7), it

follows that αx(y − x) + ux − uy > 0, or αx > (uy − ux)/(y − x) (since

uy > ux by equation (6)). Further, if there is no y ∈ X for which y > x,

then we can always redefine αx = miny∈X,x 6=y(uy − ux)/(y − x) > 0,

which results in another system of consistent weights.

Then it is a standard trick, due to Afriat (1967), to define

u(y) = min
x∈X

ux + αx(y − x),

and note that this function is concave, strictly increasing, and ratio-

nalizes the data.
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Now, we can sketch the argument as to why the satisfaction of the

system of inequalities is equivalent to the absence of cycles as stated in

Proposition 13. It is again an application of Lemma 12. Equations (5)

through (7) have no solution if and only if there are there are vectors

λ ∈ ZKN2

+ , θ ∈ Z
|X|2
+ , and η ∈ Z

|X|2
+ , with∑

k,i,j

λk,i,j((1xki − 1dki ) + (1dkj − 1xkj ))

+
∑

(z,z′):z′>z

θz,z′(1z′ − 1z) +
∑
(z,z′)

ηz,z′(1z′ − 1z) + (z − z′)1′z′ = 0

and
∑

(z,z′):z′>z θz,z′ > 0. Importantly, from this equation we can infer

that the two equations∑
k,i,j

λk,i,j((1xki−1dki )+(1dkj−1xkj ))+
∑

(z,z′):z′>z

θz,z′(1z′−1z)+
∑
(z,z′)

ηz,z′(1z′−1z) = 0

and

(8)
∑
(z,z′)

ηz,z′(z − z′)1′z′ = 0

are jointly satisfied.

The proof now proceeds in the same way as the proof of Proposi-

tion 11. There is only one change. Now, we also consider a collection of

X dimensional vectors {−1, 0, 1}, which we call AC , which consists of

ηz,z′ copies of each 1z − 1z′ . The graph G = (X,E) is now constructed

in the same way as in the proof of Proposition 11, letting there be one

edge from x to x′ for each copy of 1x′ − 1x in AD, AU , AM or AC . Now,

consider equation (8). This equation implies in particular that for all

z′,
∑

z ηz,z′(z− z′) = 0, in other words, the collection of edges pointing

to z′ in AC form a concave collection.

5.7. Generalization. We have asked for data to be rationalized by a

single utility function, common to all i ∈ N . If, instead, we ask that

for each i, there exists ui : < → < for which for all i, j ∈ N

ui(x
k
i )− ui(dki ) = uj(x

k
j )− uj(dkj ),
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we obviously get a weaker condition. The weakening required here is

simply that when partitioning data into cycles, each cycle can only

contain edges corresponding to a single agent. The proof is similar to

the proceeding and is hence omitted.

5.8. An application to spatial competition. The result in Propo-

sition 11 has a simple application to the testable implications of

Hotelling’s model of spatial competition (Hotelling (1929)). Hotelling’s

model concerns the location of two vendors on a unidimensional space,

and a distribution of consumers. Consumers always buy from the ven-

dor closest to them (in the case of equidistant vendors, half of the

consumers go to one vendor, and the other half to the other), and each

vendor’s profit consists of how many consumers buy from him. The

unique Nash equilibrium of this game has both vendors locating at the

median of the distribution of consumers. Hotelling’s model is not about

bargaining, but it seems potentially useful to point out the application

of our results.

In our version of Hotelling’s model, we observe a finite collection of

closed intervals {[ak, bk]}Kk=1, and for each observed interval, a location

mk ∈ (ak, bk). We want to know, when does there exist a full-support

distribution µ of agents on [0, 1] such that for each k, mk is the me-

dian of µ conditional on [ak, bk]? This provides us with the testable

implications of the Hotelling model when the distribution of agents is

unobserved, but when the boundaries of spatial competition can vary.

The relation to Section 5 is as follows. A distribution µ satisfying the

properties exists if and only if there is a strictly increasing F : [0, 1]→
< (a cdf) for which for all k, F (bk)− F (mk) = F (mk)− F (ak). Now,

imagine that in the previous section we had only two agents (|N | = 2),

and dk = (mk, ak), xk = (bk,mk).

This leads us directly to the following corollary.

Corollary 15. A finite list of intervals [ak, bk] and locations mk is

consistent with the Hotelling model if and only if there are no sequences

of intervals [al, bl]Ll=1, [al, bl]L
′

l=L+1 for which {(al,ml)}Ll=1, {(bl,ml)}Ll=1,

{(ml, al)}L′l=L+1,{(ml, bl)}L′l=L+1 can be partitioned into cycles.
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6. Conclusion

We consider finite sets of observations of bargaining outcomes. As-

suming that utility function are unobservable, we develop testable im-

plications of some of the best-known models in bargaining theory.

We consider two basic frameworks. Our results are sharpest for the

case where we assume that disagreement points are fixed across obser-

vations. We show that the utilitarian, Nash bargaining, and egalitarian

max-min models are all observationally equivalent. Further, we show

that a simple test for these models consists in checking that the ob-

served allocations are comonotonic.

When disagreement points can vary, we present a characterization of

the data that are consistent with a form of egalitarianism, namely the

model of equal gains/losses. By appropriately interpreting the model,

we can apply our results to data on the tax code: we can check for

consistency of the tax code with the principle of equal loss, when the

utility function is unknown.

References

Afriat, Sydney N., “The construction of utility functions from ex-

penditure data,” International Economic Review, 1967, 8 (1), 67–77.

Berge, Claude, The theory of graphs, Dover Publications, 2001.

Bowlby, Roger L. and William R. Schriver, “Bluffing and the

“split-the-difference” theory of wage bargaining,” Industrial and La-

bor Relations Review, 1978, 31 (2), 161–171.

Carvajal, Andrés and Natalia González, “On refutability of the
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