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Abstract

We study the complexity of closure operators, with applications to machine

learning and decision theory. In machine learning, closure operators emerge

naturally in data classification and clustering. In decision theory, they can

model equivalence of choice menus, and therefore situations with a preference

for flexibility. Our contribution is to formulate a notion of complexity of

closure operators, which translate into the complexity of a classifier in ML,

or of a utility function in decision theory.



1 Introduction

We study the complexity of closure operators, with applications to machine

learning and decision theory in economics. Closure operators can be used

to model a coarsening of reality. For example, the set of all 16 subsets

of the set ta, b, c, du may be viewed as a fine-grained description of some

physical system. A coarser view could regard some subsets as equivalent,

just like in the usual topology on the real line, the rational numbers are

“indistinguishable” from the real numbers in the sense that their closure

equals the reals. For example, all subsets of ta, cu in ta, b, c, du could be seen

as equivalent, which a closure operator may capture by mapping the sets tau,

tcu, and ta, cu into ta, cu.

Such coarsening of reality emerges naturally in machine learning and in

decision theory. In machine learning, a classifier will decide that some in-

dividual data-points should be lumped together. For example, the classifier

can be applied to images of household pets, and classify them according to

species, without regard for color or size. An Irish Setter is indistinguishable

from a Dachshund: both are mapped into the class of dogs; while a canary

and a parrot may be seen as distinct from any dogs, but grouped together

as birds.

In economic decision theory, an agent may be choosing a menu, or a store,

from which to make an ultimate choice. Someone who is in the market for

a particular item, say a Canon 5D Mark III, will regard any photography

store that carries this model as equivalent: one store indistinguishable from

another as long as they have what the consumer is looking for. An agent

choosing items in ta, b, c, du, with preferences a ą b ą c ą d, will consider

all menus that contain a as indifferent; any menu that contains b but not a

is also indifferent, and so on.

Closure operators are ideally suited to analyze these situations. In par-

ticular, we shall see that closure operators can capture a desire for flexibility

stemming from agents who are uncertain about their preferences. If our
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agent is unsure of whether they rank a over b, or the other way around, they

may have a strict preference for a larger menu containing both options. For

example they may prefer tau over tbu (as menus), but strictly prefer ta, bu

over tau. A branch of decision theory (one that started with the seminal

paper of Kreps, 1979) relies on closure operators as a modeling device. In

particular, the work of 2001 uses the operator that maps a set A Ď Rn to

its convex hull; and their key axiom is that agents are indifferent between A

and its convex hull.

Our starting point is a representation theorem for closure operators. We

shall see that a closure operator may be built up from more basic, or simpler,

operators. In machine learning, it is natural to think of a classifier as resulting

from the composition of simple linear classifiers. We show that a similar

representation is possible, even in discrete settings where there is no language

for talking about linearity. In decision theory, some agents may have complex

preferences over menus that result from a desire for flexibility in choice. We

shall see that such complex preferences can be constructed from simpler

operators that do not exhibit such a desire for flexibility.

Our representation theorem contains those of 2015 and 2020 as special

cases, and relies on similar ideas. The main novelty in our work lies in con-

necting the topologies arising from a closure operator, to those arising from

its simplest constituent operators; and in using this connection to formulate

a notion of complexity. It is indeed natural in machine learning to identify

the complexity of a classifier with the number of different simple classifiers

needed to represent it: our paper formalizes this connection in the abstract

model of discrete data.

For decision theory, we shall see that the complexity of an operator is

tied to the size of the (subjective) state-space needed to represent an agent’s

choices. As we wrote above, a preference for flexibility emerges from uncer-

tainty about future preferences. Such uncertainty can be represented with a

state space that is obtained (as in Kreps, 1979) from the relevant operator.
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Indeed, 2001 write:

“the size of the subjective state space provides a measure of the

agent’s uncertainty about future contingencies.”

We show how to extend the approach in Dekel et. al, so that if their key axiom

is applied to an arbitrary closure operator, even in the discrete setting of our

paper, a representation with a preference for flexibility may be obtained. In

this representation, we can bound the size of the state-space through the

representation of a closure operator in terms of simpler constituents.

2 Literature Review

Closure operators and their connections to topologies are a subject of study

in mathematics (Ward, 1942), but the literature that is closest to our work

pertains to applications in economics and computer science. Some of these

applications are related to convex geometries and their representations.

The basic concepts of abstract convex geometry and combinatorial con-

vex hull operator are developed in Edelman and Jamison, 1985. Convex hull

operators are a class of closure operators with an extra anti-exchange prop-

erty1. In decision theory, Koshevoy, 1999 studies the connection between the

combinatorial convex hull operators and the path-independent choice func-

tions. The closest papers to ours are Richter et al., 2015 and Chambers et

al., 2020. Richter et al., 2015 provide a characterization of a combinatorial

convex hull operator through a set of primitive orderings. Using their repre-

sentation, Richter et al., 2015 propose a notion of competitive equilibrium in

an abstract environment. Chambers et al., 2020 extends the result of Richter

et al., 2015 and relates it to the Kreps, 1979 model of preferences for flexi-

bility in decision theory. They provide the main characterization of closure

operators by weak orders.

1We say that f satisfies the anti-exchange property if given any closed set A and two
unequal points x, y P XzA, then x P fpAY yq implies that y R fpAY xq.
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In the context of dynamic choice, and preferences for flexibility, follow-

ing Kreps, 1979, 2001, and 2001, a rather extensive literature in economics

studies different aspects of choice over menus. The closest related papers

are those of Klaus Nehring and Puppe, 1999, Kopylov, 2009, Kopylov, 2018,

and Gorno, 2016. Klaus Nehring et al., 1999 provides a more refined Pareto

representation of the Krepsian model. They provide the connection to the

representation by Aizerman and Malishevski, 1981 of choice correspondences

satisfying the heritage and outcast properties, which is another route for prov-

ing Claim 1 in Richter et al., 2015; that every convex geometry is generated

by a set of primitive ordering.2 Kopylov, 2009 determines the number of pos-

itive and negative states in the setting of 2001. Gorno, 2016 shows that any

preference ordering in Kreps’ setting has a representation as a Dekel-Lipman-

Rustichini representation. Finally, Kopylov, 2018 proposes a combinatorial

model of subjective states. By relaxing the axioms of Kreps, he presents a

weaker model of coherent aggregation.

Our application to classification problems in machine learning is related

to the link between closure operators and Galois connections, and their appli-

cations in formal concept theory. Generally, there are different applications of

lattice theory for studying general hierarchical concepts. For an overview of

representations and applications to closure systems and formal concept the-

ory see Caspard and Monjardet, 2003, Domenach and Leclerc, 2004, Bertet,

Demko, Viaud, and Guérin, 2018, and Davey, 2002. In our paper, we focus

on a simple model with a new complexity notion, its decision-theoretic and

conceptual interpretations, and how it may be computed efficiently.

2In a nutshell, the heritage property states that if A Ď B, then fpAq Ě fpBqXA. When
imposed on a choice function, this property is the α property of Sen, 1977. The outcast
property states that if fpAq Ď B Ď A, then fpAq “ fpBq. This property is a weaker
form of property β of Sen, 1977. Note, however, that our paper takes closure operators as
primitive, not choice.
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3 Model and preliminaries

3.1 Preliminary definitions and notational conventions

Let X be a set. We denote the set of all subsets of X by 2X . A binary relation

on X is 1) a weak order on X if it is complete and transitive (meaning that

it orders all elements of X); 2) a partial order if it is reflexive, transitive

and anti-symmetric (@x, y P X if x ľ y and y ľ x then x “ y); 3) a total

order if it is a complete partial order.

Let ľ be a partial order on X. We say that two elements x, y with x ľ y

or y ľ x are ordered , or comparable , by ľ. A subset Y of X is a chain

if it is totally ordered by ľ, and an anti-chain if no two of its elements

are ordered by ľ. An element x P X is said to be an upper bound of Y if

x ľ a for every a P Y . We denote the least upper bound , or join , of Y (if

it exists) by
Ž

Y . Similarly, we denote the greatest lower bound or meet

of Y by
Ź

Y . The partially ordered set X is a lattice if, for all x, y P X,

the set tx, yu has a join and a meet: denoted by x_ y and x^ y respectively.

We introduce some concepts from discrete geometry that may be viewed

as analogues to concepts in convex analysis: see Richter et al., 2015 for an

earlier application of these ideas to economics. Denote the set of all weak

orders on X by R. The support function of A Ď X is the function

hA : R Ñ 2X defined by hApľq “ tx P A| x ľ y @y P Au. Similarly, we

may define the support half-space of A ‰ H with respect to ľP R by

Hpľ, hAq “ tx P X| hApľq ľ xu. By definition, we set Hpľ, hHq “ H.

Observe the analogy with convex analysis. Here the set R serves the same

role as the dual of X (the set of continuous linear functionals), when X is a

Euclidean space.

One final notational convention is that we denote the indicator function

for a set C Ď X by 1C . So 1Cpxq “ 1 if x P C and 1Cpxq “ 0 otherwise.
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3.2 Closure operators

The paper is a study of a special kind of functions defined on the subsets of

a finite set X; functions of the form f : 2X Ñ 2X that have the properties of

closure operators in topology (Kuratowski, 1955):

Definition 1. A closure operator on X is a map f : 2X Ñ 2X that

satisfies the following properties:

1. Extensivity : A Ď fpAq and fpHq “ H.

2. Idempotence : fpfpAqq “ fpAq.

3. Monotonicity : A Ď B implies fpAq Ď fpBq.3

As applications of our theory, we shall discuss in detail two concrete in-

terpretations of closure operators below, but in the abstract one may think

of the operator as a model of imperfect perception. The closure operator de-

scribes a coarse perception of reality: one that does not distinguish between

A and fpAq. The use of closure operators in topology follows this interpreta-

tion, as fpAq consists of the points that are arbitrarily close to the elements

of A.

The following are examples of closure operators:

1. The identity operator is the closure operator I : 2X Ñ 2X such that

IpAq “ A for every A P 2X .

2. The trivial closure operator is defined as the closure operator f :

2X Ñ 2X such that fpAq “ X for every nonempty A P 2X .

3. A binary classifier is an operator fC , associated to a set C Ď X.

So that fCpHq “ H, and for nonempty A, fCpAq “ C if A Ď C and

fCpAq “ X otherwise.

3Kuratowski imposes fpAYBq “ fpAqYfpBq, a stronger property than monotonicity.
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4. Given a function u : X Ñ R,

fupAq “ tx P X : upxq ď maxtupx1q : x1 P Auu

is the strategically rational operator defined from the function u.

Of the preceding examples, binary classifiers (3) and strategically ra-

tional (4) operators will play an important role in the paper. It is worth

discussing these two classes of closure operators in some detail before pro-

ceeding.

First note that a binary classifier gives rise to closed sets SpfCq “

tH, C,Xu, which are the smallest kind of non-trivial topology possible. In

our paper, we shall think of these as simple classifiers. Binary classifiers are,

moreover, a special case of strategically rational operators: Indeed for a given

C Ď X we may define u “ 1XzC , and observe that fC “ fu.

Turning to strategically rational operators, one may interpret u : X Ñ R

as a utility function, and maxtupxq : x P Au as the best utility achievable

from a set A Ď X of possible choices. Then fupAq is the largest set of choices

that an agent with utility u would consider to be as good as choosing from

A. In particular, if fupAq “ fupBq then the agent is equally happy choosing

an item from A as from B.

The “strategic rationality” terminology is borrowed from Kreps, 1979,

and will be useful when we talk about applications to decision theory. It

suggests an agent who is forward looking, and identifies a menu with the ele-

ment they plan to choose from the menu. Alternatively, strategically rational

operators can be seen as abstract counterparts to the simple linear classifiers

used in machine learning: we shall also emphasize this interpretation when

we talk about applications to machine learning.

Finally note that all that matters about u in the definition of fu is the

weak order represented by u; that is, x ľ y iff upxq ě upyq. In other words,

if u “ h ˝ v, for a strictly monotone increasing function h : R Ñ R, then
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fu “ fv. In the rest of the paper, we shall therefore write fľ for strategically

rational closure operators, where it will be understood that ľ is a weak

order over X. Observe that these coincide with the supporting half-spaces

we introduced above.

Definition 2. A set A Ď X is closed with respect to a closure operator

f : 2X Ñ 2X , if A “ fpAq. The set fp2Xq of all closed sets with respect to

the closure operator f is the topology defined by f , and is denoted by Spfq.

The terminology of closed sets and topology is justified by the following

well-known result, which we state as Lemma 1.4

Lemma 1. Let f : 2X Ñ 2X be a closure operator on X, then the set of

closed sets Spfq is closed under intersection and contains H and X. Indeed,

Spfq endowed with the meet and join operators A^B “ AXB and A_B “

fpA Y Bq is a lattice that has H and X as its (respectively) smallest and

largest elements.

Moreover, if S is any subset of 2X that is closed under intersection and

contains H and X, then there is a unique closure operator fS : 2X Ñ 2X

such that SpfSq “ S.

3.3 Application 1: A theory of classifiers

Interpret the elements of X as data, and suppose given a finite set L of

labels . A labeling correspondence is a set-valued function Φ : X Ñ L

that associates with each data point x P X a subset of labels Φpxq.

Given a labeling correspondence Φ : X Ñ L, we define a classifier as a

function f : 2X Ñ 2X with fpAq “ tx|x P X,
Ş

yPA Φpyq Ď Φpxqu for every

A Ď X.

4In the context of convex geometry, which is most relevant for our paper, the result
has been noticed in Edelman et al., 1985. But the result is well known; see, for example,
Ward, 1942 and Kuratowski, 1955.
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The interpretation of a labeling correspondence is straightforward. It

attaches a set of labels to each data point. We interpret each label as a

single feature or property attached to each data point. Hence, attaching two

different labels l1, l2 P L to a data point x P X, Φpxq “ tl1, l2u, is interpreted

as if the data point x has both of those properties.

To understand the definition of a classifier, assume that the classifier f ,

associated with a labeling correspondence Φ. Given a data point x Ď X,

Φpxq is the set of all labels associated with the point x. To find the set of

data points in the same class (or category) as x, we need to consider all data

points with at least all the labels of the data point x. This is precisely the

definition of fpxq.

More generally, for a given set of data points A Ď X, fpAq is the set of

all data points that at least have all the labels in common with all points

in A. The idea is that if a decision-maker wants to find all data points that

are in the same class as the observed data points in A (without any other

information), she should consider all points fpAq.

Remark. A classifier derived from a labeling function is a closure operator:

The extensivity and monotonicity properties are simple to verify. To show

idempotence, notice that by monotonicity fpAq Ď fpfpAqq. Hence, we only

need to show that fpfpAqq Ď fpAq. Assume that x P fpfpAqq. By definition,
Ş

yPfpAq Φpyq Ď Φpxq. We know that for every y P fpAq we have
Ş

zPA Φpzq Ď

Φpyq. Hence,
Ş

zPA Φpzq Ď
Ş

yPfpAq Φpyq Ď Φpxq. Thus, x P fpAq. As a

result, f satisfies the idempotence property.

The ideas may be illustrated by means of an example.

Example 1. Consider a set of four data points X “ ta, b, c, du. The set

of labels is defined as L “ tdog, cat, black,white, female,male, caru. Assume

that the labeling correspondence Φ : X Ñ L is as follows:
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Φpaq “ tdog, black, femaleu

Φpbq “ tdog, black,maleu

Φpcq “ tcat,white, femaleu

Φpdq “ tcar, blacku

The classifier associated with the above labeling correspondence has

eight classes. Class1={a} associated with the labels {dog, black, female},

Class2={b} associated with the labels {dog, black, male}, Class3={c} as-

sociated with the labels {cat, white, female}, Class4={d} associated with

labels {car, black}, Class5={a,b} associated with the labels {dog, black},

Class6={a,b,d} associated with the labels {black}, Class7={a,c} associated

with the labels {female}, and the last class is Class8={a,b,c,d} associated

with all data points in the set X.

Figure 1 depicts the structure of the classifier and the associated lattice

structure.

The topology Spfq, represents all possible different classes of data

points, and fpAq is the smallest class that contains A. By Lemma 1, we

know that the set of classes is closed under intersections. Moreover, there is

a lattice structure associated with the labeling correspondence. Indeed, we

may interpret a classifier through the topology it induces: Let x P X be in

two classes A,B P S, which means that it has the properties of the classes A

and B. Then, there is a class C P S, with the properties of the classes A and

B, such that x P C. The trivial class X represents the set of all data points,

having every possible label.

These observations may be summed up in the following proposition.

Proposition 2. Let X be a set of data points. We have the followings:

1. Let Φ : X Ñ L be a labeling correspondence. The classifier f : 2X Ñ 2X
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ta, b, c, du

ta, b, du

ta, bu ta, cu

tau tbu tcu tdu

H

Figure 1: The lattice associated with the labeling correspondence Φ in Ex-
ample 1.

associated with Φ is a closure operator.

2. Let f : X Ñ X be a closure operator on X. Then, there exists a set

of labels L, and a labeling correspondence Φ : X Ñ L such that the

classifier associated with Φ is f . Moreover, one choice of L and Φ is

achieved by defining L “ Spfq and Φ : X Ñ L with Φpxq “ ts| s P

Spfq, x P su.

The representation in the second part of the above proposition is not

unique. However, section 5 provide the minimum number of labels needed

to represent a given classifier.

3.4 Application 2: Decision theory

Consider a decision-maker who is going to ultimately choose an element

x P X, but who is first presented with a choice among possible menus

A Ď X. After selecting the menu A, the consumer chooses an alternative

from A.

11



We may think of a consumer, for example, who first decides between

retail shops, or restaurants, and then chooses an item from the shop, or

a meal on the menu. But the situation is quite general: Most problems

in dynamic choice involve first selecting an alternative that will determine

what may be chosen in the future: think, for example, of choosing how much

to consume and how much to save, which will determine what is affordable

in the future. Or making a career choice, which may determine the set of

geographical location one may ultimately be able to choose among to live in.

We capture the situation in the abstract as a problem of choosing a set in X.

In particular, we shall focus on agents who have a preference for flexibility.

Consider a decision maker, say Alice, who chooses according to a prefer-

ence relation ľ on X “ tx, y, zu. If Alice can perfectly predict her choice, she

will only care about the best option available in a menu. So if, for example,

x ą y ą z are Alice’s preferences, then she will be indifferent between any

menu that contains x, and between any menu that does not contain x but

that contains y. Alice’s situation may be described through a strategically

rational operator, with

tx, y, zu “ fľptxuq “ fľptx, yuq “ fľptx, zuq “ fľptx, y, zuq.

Bob, in contrast, may be unsure about his ultimate choice from a menu.

He might have the same preference as Alice, or he might actually have the

preference y ą1 x ą1 z that ranks y first. Observe that, as a consequence,

Bob will strictly prefer the menu tx, y, zu to txu, or to tx, zu, as the larger

menu does not close any doors for Bob. If, in the end, Bob’s preference is

ľ1, then tx, y, zu lets him get his favorite choice. Indeed for Bob we need an

operator with

tx, y, zu “ fptx, y, zuq “ fptx, yuq ‰ tx, zu “ fptxuq “ fptx, zuq.

Bob’s preferences cannot be captured through a single strategically ratio-
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nal operator. Actually for him we have that f “ fľ X fľ1 , and thus Bob’s

operator f is derived from two strategically rational operators.

Now we see, as a preview of our results, that Bob’s behavior is more com-

plex than Alice’s because we need two basic strategically rational operators

to capture Bob’s choice, while one suffices for Alice.

In all, Bob has a “preference for flexibility,” a model that was first pro-

posed by Kreps, 1979.5 In Section 7 below we briefly recap Kreps’ model and

show what our results have to say about the resulting representation.

4 A general representation of closure opera-

tors

A key motivation for the study in our paper is the next result, due to 2020,

which shows that a closure operator may be found as the intersection of

supporting half-spaces.6

Theorem 3. A function f : 2X Ñ 2X is a closure operator iff there exist

weak orders ľ1, . . . ,ľk on X, such that

fpAq “
č

iPt1,...,ku

Hpľi, hAq. (1)

Using the language introduced above, we may rephrase this result as

follows:

Corollary 4. A function f : 2X Ñ 2X is a closure operator iff there exist

5Kreps’ model motivated a sizable literature in decision theory; see, for example, 2001,
2007, Gul et al., 2001, K. Nehring, 2001, Klaus Nehring et al., 1999, Chateauneuf and
Jaffray, 1989, and 2020

6Note also that Richter et al., 2015 contains a similar result for linear orders.
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strategically rational operators gui
, 1 ď i ď k, so that

fpAq “
č

iPt1,...,ku

gui
pAq. (2)

Our first result is an elaboration on Theorem 3. It serves to introduce

the notion that operators generate more complex operators, and how the

resulting topologies are connected.

Theorem 5. Let g1, . . . , gk be closure operators on X, then f : 2X Ñ 2X

defined by

fpAq “
č

iPt1,...,ku

gipAq

is a closure operator. We say that f is generated from g1, . . . , gk.

Moreover, if f, g1, . . . , gk are closure operators on X then f is generated

from g1, . . . , gk iff

1. Spgiq Ď Spfq for all i P t1, ¨ ¨ ¨ , ku;7

2. and if A P Spfq and x R A, then there exists a closure operator gi P

tg1, . . . , gku such that x R gipAq.

Theorem 5 warrants some remarks. Assume that the classifier f is gener-

ated by g1, . . . , gk. By the first condition in the theorem, the topology Spfq

is finer than that of any constituent operator Spgiq.

The second condition is similar to the Separating Hyper Plane Theorem

in convex geometry. It means that if A is a closed set of f and x R A, then

there should be a separating classifier gi P tg1, . . . , gku that detect that x is

not in the closure of A with respect to gi.

7This statement is Theorem 5.1 in Ward, 1942.
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5 Complexity of operators

In the Machine Learning literature, a neural network is built from a set of

simple classifiers. Given a data set, and a set of labels, a researcher can

add many linear classifiers to build a large neural network that can shatter

data points to the correct classes. More generally, a researcher can combine

many different functions to form a complex function with lots of parameters

to shatter the set of data points to the correct classes.

We proceed with an analogous motivation: in Theorem 5, complex op-

erators are built up from simpler ones. In the abstract, discrete, setting of

our paper, there is no useful notion of norm or approximation, but the rep-

resentation in Theorem 5 serves as a starting point. When f “ Xgi, we may

think of f as being more complex than any of its building blocks gi, just as a

neural network is more complex than its simpler constituents. In fact, using

the theorem, we may associate complexity to the topology defined from each

operator:

Definition 3. The operator f is more complex than the operator g if

Spgq Ď Spfq.

So that a more complex operator induces a finer topology. The “more

complex than” relation is, we think natural, but it induces an incomplete par-

tial order on operators, and will render some pairs of operators incomparable.

We consider two ways of completing the complexity binary relations.

• The minimum number of weak orders (MNWO) of an operator

f is the smallest number n so there exists weak orders ľ1, . . . ,ľn with

f “ Xn
i“1gľi

.

• The minimum number of binary classifiers (MNBC) of an op-

erator f is the smallest number n so there exists subsets C1, . . . , Cn of

X with f “ Xn
i“1gCi

.
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The MNWO has a natural interpretation. We may think of strategically

rational operators as simple because they do not exhibit a preference for

flexibility. Or because they reflect a one-dimensional property (like size,

color, being closer to the entrance of a supermarket). Their topologies are

chains, which are naturally represented using k ´ 1 labels when they are of

length k.

The MNBC may be though of as reflecting the length of the binary code

needed to describe the topology of the closure operator. In fact, we can

show that the minimum number of labels needed to describe a classifier, as

a labeling correspondence, is exactly the same as minimum number of the

binary classifier needed.

Let P pfq by the elements of the topology Spfq that are not the intersec-

tion of other closed sets in Spfq, and let Bpfq be the elements in P pfq other

than H and X.

Proposition 6. Let f be a closure operator, then the MNWO of f is equal

to the width of P pfq, and the MNBC is equal to the cardinality of Bpfq.

6 Application 1: complexity of classifiers

In the application to classifiers, we may think of binary classifers gC as cap-

turing a single property that datapoints may or may not posses, which makes

them good candidates for the simplest possible classifers available, and thus

suggest MNBC as a natural measure of complexity for a classifier.

In constrast, the strategically-rational operators fľ are analogous to the

linear classifers in Machine Learning. Indeed, fľpAq “ Hpľ, hAq, a “discrete

halfspace,” and the topology associated to f is Spfľq “ tHpA, hAq| A Ď Xu.

Observe that Spfľq is a single chain with respect to set inclusion (in other

words, the lattice associated with fľ is a total order). Interestingly, the

reverse is also correct. If a lattice associated with a classifier f is a single

chain (total order), then it is generated by a single unique weak order.
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Proposition 7. The lattice associated with a closure operator is a single

chain if and only if a single weak order generates it. Moreover, the weak

order generating the lattice is unique.

More generally, we say that f is a simple classifier with length k,

whenever the number of closed sets (classes) generated by f , |Spfq|, is k` 1.

Notice that Spfq always contains H and X. Hence, a simple classifier with

length k has k nonempty different classes.

Consider the classifier associated with Example 1. There are eight classes

other than H. Let L “ tClass1, . . . ,Class8u. Using the result of Proposi-

tion 2, one choice of labeling correspondence is

Φpaq “ tClass1,Class5,Class6,Class7,Class8u

Φpbq “ tClass2,Class5,Class6,Class8u

Φpcq “ tClass3,Class7,Class8u

Φpdq “ tClass4,Class6,Class8u.

The above labeling correspondence is different that the original one in the

example. However, they both have the same classifier with the same set of

classes.

Remark. Using the proof of Lemma 7, any simple classifier with length k

is associated with a unique weak order with k different indifference classes.

Let tA1, . . . , Aku be a partition of X into the indifference classes of a weak

order ľ with x ą y whenever y P Ai, x P Aj such that i ă j. Then,

tA1, pA1 YA2q, . . . , pA1 YA2 Y . . .YAkqu is the set of closed sets of a simple

classifier with length k. The reverse can be done in the same way.

Remark. Consider a binary classifier fC : 2X Ñ 2X . Assume that the cor-

responding topology is Spfq “ tH, C,Xu. The corresponding weak order

ľf is x ľ y if and only if x P A, y P XzA. From the perspective of clas-

sification, there is no difference between f and another binary classifier g

with Spgq “ tH, XzC,Xu. The weak order associated with g is the reverse
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order of ľf . The classifier derived from the label “horse” achieves the same

purposes as one derived from “not a horse.”

Example 2. By Theorem 3, any given classifier f may be generated by weak

orders ľ1, . . . ,ľk. Now we use use Theorem 5 to define binary classifiers

tg1, . . . , gku that generate f . One simple way is to notice that for any binary

classifier gi, Spgiq should be a subset of Spfq. Moreover, for any class H ‰

A P Spfq and x R A, there should be one of gi to separate x and A. Hence,

if we consider all binary classifiers gC for every closed set C P Spfq, both

requirements of Theorem 5 will be satisfied.

In Example 2, the representation uses |Spfq| ´ 1 binary classifiers and is

clearly not minimal. We shall see how to obtain a minimal representation

using binary classifiers, but first we consider strategically rational classifers

of different length. One way to proceed (which we shall see is not optimal)

is to decompose Spfq into chains:

Example 3. Let X “ ta, b, cu be a set of data points and f :

2X Ñ 2X be a closure operator with the set of closed sets Spfq “

tH, tau, tbu, tcu, ta, bu, ta, b, cuu. We consider the following three chains:

Spg1q “ tH, tau, ta, bu, ta, b, cuu

Spg2q “ tH, tbu, ta, bu, ta, b, cuu

Spg3q “ tH, tcu, ta, b, cuu

Notice that, since both conditions of Theorem 5 are satisfied, then tg1, g2, g3u

generates f . Figure 2 illustrates the decomposition.

We take up a discussion of minimal representations in Section 8
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ta, b, cu

ta, bu

tau tbu tcu

H

ta, b, cu ta, b, cu ta, b, cu

ta, bu ta, bu

tau tbu tcu

H H H

Figure 2: The lattice associated with the closure operator f is in the top.
The associated decomposition into g1, g2, g3 is in the bottom.
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7 Application 2: Choice over menus

Our second application is to the choice of menus, A Ď X. In decision theory,

the choice over menus are thought of as capturing the general problem of

dynamic choice in an abstract setting. An agent is making choices today that

may constrain her future choices. To this end, suppose that İ, a preference

relation over 2X , captures choices made over menus. The indifference relation

derived from İ is denoted by ≈, so that A ≈ B when A İ B and B İ A.

Kreps, 1979 introduced the idea that an agent may have a preference for

flexibility due to uncertainty about her ultimate future choices. He proposed

some simple axioms on ≈, and proved that they give rise to a particular kind

of utility representation; a representation that reflects the agents’ uncertainty

over a state space that guides her future choices.

The literature on menu choice in economics is substantial, but for our

purposes we want to highlight the work of Dekel, Lipman, and Rustichini,

2001 because their theory of choice hinges crucially on adopting a particular

closure operator. In a setting of choice over lotteries, they use the convex

hull operator (which is a closure operator in the Euclidean setting of their

paper). Kreps’ result also uses a closure operator in constructing his state

space, but his axioms do not explicitly reference the closure operator.

Following Kreps, 1979, we entertain the following axioms on İ:

1. Desire for flexibility: B Ď A implies A İ B,

2. Ordinal submodularity: A ≈ A Y B implies that for all C, A Y C ≈
AYB Y C.

There are two possible approaches. The first is to define, as in Kreps,

1979, the function f : 2X Ñ 2X from preference İ by

fpAq “
ď

BP2X , A≈AYB

B. (3)
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The second approach is proposed by Dekel, Lipman, and Rustichini, 2001,

using a convex-hull operator over subsets (menus) of a Euclidean space. The

key property in this approach is that a closure operator is given so that

A ≈ fpAq for all menus A.

Definition 4. İ respects f if A ≈ fpAq for every menu A P 2X .

If we follow the first approach then it is easy to show (see Kreps, 1979)

that, under the two axioms,

1. f is a closure operator,

2. İ respects f ,

3. A ≈ AYB if and only if fpBq Ď fpAq,

4. fpBq Ă fpAq, then A ą1 B.

In consequence, we obtain the following version of Kreps’ result:

Theorem 8. Let İ be a preference relation over 2X that satisfies desire for

flexibility and ordinal submodularity, and let f be defined using Equation (3).

Then there is a function U : XˆSpfq Ñ R, and a strictly increasing function

u : RS Ñ R such that

uprmax
aPA

Upa, sqssPSq (4)

represents İ. The minimum number of states (cardinality of Spfq) needed

for the representation is precisely the MNWO of the associated operator f ,

which is |P pfq|.

If we instead adopt a given closure operator f , we obtain an analogue to

the result in Dekel, Lipman, and Rustichini, 2001:

Theorem 9. Suppose given a closure operator f , and a preference İ over

2X that respects f . Then there exist a state space S, where S “ S`YS´ with

21



S`XS´ “ H and has cardinality at most 2p|Spfq|´1q, and a state-dependent

utility U : X ˆ S Ñ R, such that:

UpAq “
ÿ

sPS`

max
aPA

Upa, sq ´
ÿ

sPS´

max
aPA

Upa, sq (5)

represents İ.

Theorem 9 presumes a closure operator that respects the preference İ,

but is otherwise arbitrary. Dekel, Lipman, and Rustichini, 2001, working

in a space of lotteries, impose that a preference respects the convex-hull

operator, mapping each set in a Euclidean space into its convex hull (this is

indeed a closure operator in the Euclidean case). Our theorem shows that

the convexity properties of lotteries are not needed. Once we adopt the

framework in our paper, the same ideas may be extended to the purely finite

and discrete setting of our paper.

Now, any preference relation is respected by the identity operator, which

gives rise to the following consequence of our result:

Corollary 10. For every preference ordering İ over the set of menus, there

exists a representation as in Equation 5 with at most 2ˆ p2|X| ´ 1q states.

Remark. The representation constructed in the proof of Theorem 9 is not a

minimal additive representation. For example, consider a one-to-one utility

function U : X Ñ R, which induces a preference ordering İ over the set of

menus by means of

A İ B if and only if maxtUpxq : x P Au ě maxtUpxq : x P Bu.

It should be clear that the associated strategically rational operator has a

topology of size X. Our construction in Proposition 9, however, generates a

representation with at least 2p|X| ´ 1q subjective states.
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ta, b, c, du

tau tbu

H

ta, b, c, du

ta, bu

tau

H

Figure 3: The lattices associated with the closure operator f1 (the left one)
and f2.

8 Discussion

We discuss the ideas behind our definitions of complexity through a series

of examples. This discussion will also lead up to a proof of the minimal

numbers of weak orders, and binary classifiers, needed to represent a given

closure operator.

We start with a simple example that illustrates the definitions in the

paper:

Example 4. Let X “ ta, b, c, du be the set of data points. Consider the

classifiers f1, f2 defined by:

Spf1q “ tH, tau, tbu, ta, b, c, duu

Spf2q “ tH, tau, ta, bu, ta, b, c, duu

Figure 3, illustrates the underlying lattice structures. The topology Spf1q

has depth two and width two, while Spf2q has depth three and width one.

The number of nonempty classes that f1 or f2 can detect is three. The

MNWO of f1 is two, while that of f2 is one. The MNBC of both f1 and f2

is two.
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ta, b, c, du

ta, bu ta, cu

tau

H

ta, b, c, du

ta, b, cu

ta, bu

tau

H

Figure 4: The lattices associated with the closure operator f3 (left) and f4
(right).

The calculations can be a lot more challenging. Consider the following

classifiers f3 and f4:

Spf3q “ tH, tau, ta, bu, ta, cu, ta, b, c, duu

Spf4q “ tH, tau, ta, bu, ta, b, cu, ta, b, c, duu

Figure 4, illustrates the associated lattices. The width, depth, and the

number of classes can easily be seen. The classifier f3 has depth three, width

two, and four nonempty classes. Similarly, the classifier f4 has depth four,

width one, and four nonempty classes. Two simple classifiers can generate

the classifier f3, and the classifier f1 can be generated by one simple classifier.

However, when it comes to the decomposition into the binary classifiers,

we need to be more careful. The classifier f4 can be generated with three

binary classifiers. It is not hard to see that the following classifiers are the
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only minimal representations of f4 through binary classifiers:

Spf4,1q “ tH, tau, ta, b, c, duu

Spf4,2q “ tH, ta, bu, ta, b, c, duu

Spf4,3q “ tH, ta, b, cu, ta, b, c, duu

Now consider f3. We might, at first, think that we need at least three

binary classifiers to generate f3. However, perhaps surprisingly, in this case,

we only need two binary classifiers. We define the classifiers f3,1, f3,2 as

follows:

Spf3,1q “ tH, ta, bu, ta, b, c, duu

Spf3,2q “ tH, ta, cu, ta, b, c, duu

By the second condition in Proposition 5, since tau “ ta, bu X ta, cu, we

can see that f3,1, f3,2 generate f3. Hence, if we think about MNBC as a notion

of complexity, then f4 is more complex than f3.

Remark. The MNWO of an operator f is bounded by the width of the topol-

ogy Spfq, but may be strictly smaller.

Our next example illustrates Remark 8.

Example 5. Let X “ ta, b, cu be a set of data points. We define the classifier

f as follows:

Spfq “ tH, tau, tbu, tcu, ta, bu, tb, cu, ta, b, cuu

Figure 5 illustrates the lattice associated with f . The antichain with

classes tau, tbu, tcu is the largest antichain in the lattice. Therefore, the

width of the lattice Spfq is three. As a result of the Dilworth’s Theorem,

one can decompose the lattice to three chains. For example, the three chains

C1 “ tH, tau, ta, bu, ta, b, cuu, C2 “ ttcu, tb, cuu, and C3 “ ttbuu. Attaching
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ta, b, cu

ta, bu tb, cu

tau tbu tcu

H

Figure 5: The lattice associated with the classifier f .

H and ta, b, cu to each of the three chains implies the following three simple

classifiers:

SpfC1q “ tH, tau, ta, bu, ta, b, cuu

SpfC2q “ tH, tcu, tb, cu, ta, b, cuu

SpfC3q “ tH, tbu, ta, b, cuu

However, we can generate f by only two simple classifiers:

Spf1q “ tH, tau, ta, bu, ta, b, cuu

Spf2q “ tH, tcu, tb, cu, ta, b, cuu

By using the second condition of Proposition 5, since tbu “ ta, buX tb, cu

then f1, f2 can generate f . Therefore, the MNWO is only two, while the

width of Spfq is three.

MNWO may be smaller than width when a class is the same as the

intersection of some other classes detected by some simple classifiers. The

first class may be detected without needing to explicitly add it to a simple
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ta, b, cu

ta, bu tb, cu

tau tcu

Figure 6: The lattice associated with P pfq.

classifier.

Example 6. Consider Example 5. The set P pfq is obtained by removing

the classes H and tbu from Spfq. Figure 6 illustrates the structure of P pfq.

The width of P pfq is two, which is the same as the MNWO of f .

9 Proofs

9.1 Proof of Proposition 2.

We have already proved the first part in remark 3.3. To prove the second

part, we define L “ Spfq and Φ : X Ñ L with Φpxq “ ts| s P Spfq, x P su.

Based on the proof of the first part, we know that the classifier g : 2X Ñ 2X

associated with Φ is a closure operator. Thus, we only need to prove that

g “ f .

First, we prove that gpAq Ď fpAq for every A P 2X . Let A P 2X and

x P gpAq. By the definition of g,
Ş

yPA Φpyq Ď Φpxq. Then, by definition of

Φ, we have ts P Spfq| @y P A, y P su Ď ts P Spfq| x P su. Hence, if s P Spfq

with A Ď s, then x P s.

Now, consider the set s “ fpAq. By monotonicity of the closure operator

we have A Ď s. Since s P Spfq and A Ď s, then we obtain that x P s. This

means that x P fpAq. Thus, gpAq Ď fpAq for every A P 2X .
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For the other side, we need to show that fpAq Ď gpAq for every A P 2X .

Let A P 2X and x P fpAq. By the definition of Φ and g, it remains to show

that
Ş

yPA Φpyq “ ts P Spfq|A Ď su Ď Φpxq “ ts P Spfq| x P su. Thus,

it remains to show that if s P Spfq and A Ď s, then we would have x P s.

However, f is monotonic and s is a closed set respect to f . Thus, since A Ď s

then, fpAq Ď fpsq “ s. Moreover, we assumed that x P fpAq. As a result,

we have x P s.

9.2 Proof of Theorem 5

Suppose first that fpAq “
Ş

iPt1,...,ku gipAq. Extensivity and monotonicity of

f come from extensivity and monotonicity of each of g1, . . . , gk. For the idem-

potence property, we need to show that fpfpAqq “ fpAq. By monotonicity

of f , we only need to show that fpfpAqq Ď fpAq.

Let x be in fpfpAqq. By the definition of f , for all i P t1, . . . , ku

x P gipfpAqq. Again by the definition of f , for all i P t1, . . . , ku x P

gip
Ş

jPt1,...,ku gjpAqq. Since
Ş

jPt1,...,ku gjpAq Ď gipAq and gi is monotonic, then

gip
Ş

jPt1,...,ku gjpAqq Ď gipgipAqq. But, since gi is a closure operator, then

gipgipAqq “ gipAq. As a result, gip
Ş

jPt1,...,ku gjpAqq Ď gipAq. Thus, for all

i P t1, . . . , ku we have x P gipAq, which means that x P
Ş

jPt1,...,ku gjpAq.

Again by the definition of f , the last result shows that x P fpAq. Hence,

fpfpAqq Ď fpAq, which completes the proof.

Now we turn to the second statement in the theorem. So let f, g1, . . . , gk

be closure operators on X. First, we show that if f is generated by closure

operators g1, . . . , gk, then the two conditions in the theorem hold.

To prove the first condition, observe that f is a closure operator by the

first part of the proof. Let gi P tg1, . . . , gku and A P Spgiq. Since every

gj P tg1, . . . , gku is a closure operator, then gj is monotonic. Hence, for every

gj, A Ď gjpAq. Moreover, since A P Spgiq, then gipAq “ A. As a result,

A “
Ş

jPt1,...,ku gjpAq, which means that A “ fpAq. Thus, A P Spfq. Hence,

for every i P t1, . . . , ku we have Spgiq Ď Spfq.
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To prove the second condition, let A P Spfq and x R A. By the definition

of f , x R A “ fpAq “
Ş

jPt1,...,ku gjpAq. Therefore, there exists some i P

t1, . . . , ku such that x R gipAq. Thus, we complete the proof of the second

condition.

Conversely, suppose now that both conditions are satisfied. We proceed

to show that fpAq “
Ş

jPt1,...,ku gjpAq.

By the first condition, for all i P t1, . . . , ku Spgiq Ď Spfq. Hence, for every

A P 2X and for every i P t1, . . . , ku we have A Ď gipAq Ď fpAq. Therefore,

A Ď
Ş

jPt1,...,ku gjpAq Ď fpAq. Since Spfq is closed under intersection and

gipAq Ď Spgiq Ď Spfq, we also have
Ş

jPt1,...,ku gjpAq P Spfq.

Since f is a closure operator, it is monotonic. Applying f to all terms of

A Ď
Ş

jPt1,...,ku gjpAq Ď fpAq, gives us fpAq Ď fp
Ş

jPt1,...,ku gjpAqq Ď fpfpAqq.

By idempotence property of f , we have fpAq Ď fp
Ş

jPt1,...,ku gjpAqq Ď fpAq,

which results in fpAq “ fp
Ş

jPt1,...,ku gjpAqq. But we have already shown

that
Ş

jPt1,...,ku gjpAq P Spfq. Therefore, fpAq “ fp
Ş

jPt1,...,ku gjpAqq “
Ş

jPt1,...,ku gjpAq. Thus, we show that fpAq “
Ş

jPt1,...,ku gjpAq. The last result

completes the proof.

9.3 Proof of Proposition 6

Let a closure operator f be generated by a set of closure operators

tgľ1 , . . . , gľnu. Consider a closed set A P Spfq. If A is not an intersection of

other elements of Spfq, then by Theorem 5 there should be at least one gľi

such that A P Spgľi
q. Moreover, if a set of closure operators tgľ1 , . . . , gľnu

has the following two properties. First, Spgľi
q Ď Spfq. Second, they can de-

tect all the closed sets of Spfq that are not the intersections of other closed

sets of Spfq. Then, f can be generated by tgľ1 , . . . , gľnu.

As a result, we remove all the classes that are the intersections of some

other classes from the lattice Spfq. In other words, in the lattice, Spfq, every

class with an out-degree of more than two will be removed. The remaining

set is a partially ordered set with respect to the set inclusion. Note that
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different weak orders should generate the elements of any anti-chain. How-

ever, by Dilworth’s Theorem, the reverse is also true; the minimum number

of weak orders that can cover the lattice is the length of the largest anti-

chain. Therefore, the MNWO should be the width of the remaining partially

ordered set.

The same observation and technique can be applied to find the minimum

number of binary classifiers needed to generate a given closure operator.

However, since both H and X are generated through any binary classifier,

we can remove them from Spfq. Every other class in the remaining partially

ordered set Bpfq should be contained in one of the binary classifiers.

9.4 Proof of Proposition 7

If ľ generates f , then Theorem 3 guaranties that f is a closure operator.

By the definition of f , the set of closed sets is Spfľq “ tHpľ, hAq| A Ď Xu.

Using the definition of support half-space, Spfľq is a single chain respect to

the set inclusion.

For the other side. If f is a closure operator such that Spfq is a single

chain, then define a ľ b if and only if fpaq Ě fpbq. Since Spfq is a total

order, ľ is a weak order.

To show that ľ generates f , we need to show that for every A P 2X

we have fpAq “ Hpľ, hAq. Notice that there should be some x P A with

fpxq “ fpAq. Otherwise, since Spfľq is a single chain, there should be a

proper subset of fpAq which contains all the closure of the singleton subsets

of A, which is not correct.

Now, consider any y P fpAq. Since fpyq Ď fpxq, then x ľ y. Thus,

y P Hpľ, hAq. As a result, fpAq Ď Hpľ, hAq.

For the other side, since fpxq “ fpAq, then x should be a maximal element

in Hpľ, hAq. Hence, for all y P Hpľ, hAq we have fpyq Ď fpxq “ fpAq. As a

result Hpľ, hAq Ď fpAq. The last result completes the proof.
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9.5 Proof of Theorem 9

We use the Möbius inversion formula to prove the result. Appendix A.1

explains the technique in more detail.

Consider the lattice Spfq. Define the partial order ľ over Spfq by revers-

ing the partial order induced by the set inclusion. In other words, A ľ B if

and only if A Ď B. We can check that the meet and join of the lattice Spfq

will be swapped.

Since İ is a transitive binary relation, we can extend it to a weak order

over the finite set 2X . Then there should be a representation by real-valued

functions. Consider any utility function U : 2X Ñ R that represents İ.

We define the Möbius operator Φ : pSpfqqR Ñ pSpfqqR as follows:

ΦpfqpAq “
ÿ

AľB
BPSpfq

UpBq. (6)

Möbius inversion formula guarantees that the Möbius operator is bijective

and the inverse is Φ´1pgqpAq “
ř

AľB µpB,AqgpBq, where µ is the Möbius

function.

As a result, if we define the function h : Spfq Ñ R, for every A P Spfq

as:

hpAq “
ÿ

AľB
BPSpfq

µpB,AqUpBq, (7)

Then for every A P Spfq, U can be retrieved as follows:

UpAq “
ÿ

AľB
BPSpfq

hpBq. (8)

However, A ľ B if and only if A Ď B. Therefore, we have

UpAq “
ÿ

AĎB
BPSpfq

hpBq. (9)
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Notice that the above equation is only correct for A P Spfq. However,

since İ respects f and U represents İ, then for every A P 2X we have

UpAq “ UpfpAqq. Therefore, for every A P 2X , since fpAq P Spfq, we have

UpAq “ UpfpAqq “
ÿ

fpAqĎB
BPSpfq

hpBq. (10)

Note that, since f is a closure operator, then A Ď B if and only if fpAq Ď

B for every A P 2X and every B P Spfq. Therefore, for every A P 2X we have

UpAq “
ÿ

AĎB
BPSpfq

hpBq. (11)

We define h`pBq “ maxp0, hpBqq and h´pBq “ maxp0,´hpBqq. Since

h “ h` ´ h´, then we have

UpAq “
ÿ

AĎB
BPSpfq

h`pBq ´
ÿ

AĎB
BPSpfq

h´pBq. (12)

By comparing the above equation and Equation 5, we only need to make

some changes to make them equal. The trick is as follows.

We define functions U`, U´ : pX ˆ SpfqzHq Ñ R as follows:

U`px,Bq “

$

&

%

´h`pBq if x P B

0 if x R B

U´px,Bq “

$

&

%

´h´pBq if x P B

0 if x R B

Now, consider any A P 2X and B P SpfqzH. By our definition of U`, U´,
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we have

max
aPA

U`pa,Bq “

$

&

%

´h`pBq if A Ď B

0 otherwise

max
aPA

U´pa,Bq “

$

&

%

´h´pBq if A Ď B

0 otherwise

As a result of the above observation, we get the following result:

UpAq “
ÿ

AĎB
BPSpfq

h`pBq ´
ÿ

AĎB
BPSpfq

h´pBq

“ p
ÿ

AĎB
BPSpfqzH

´max
aPA

U`pa,Bqq ´ p
ÿ

AĎB
BPSpfqzH

´max
aPA

U´pa,Bqq

“ p
ÿ

BPSpfqzH

´max
aPA

U`pa,Bqq ´ p
ÿ

BPSpfqzH

´max
aPA

U´pa,Bqq

“ ´p
ÿ

BPSpfqzH

max
aPA

U`pa,Bqq ` p
ÿ

BPSpfqzH

max
aPA

U´pa,Bqq

“ p
ÿ

BPSpfqzH

max
aPA

U´pa,Bqq ´ p
ÿ

BPSpfqzH

max
aPA

U`pa,Bqq (13)

Equation 13 and 5 are similar except their indexes. To make them the

same, we consider any two disjoint sets S`, S´ Ď N 8, with both have |Spfq|´

1 elements. We consider any two bijection index1 : S` Ñ SpfqzH, index2 :

S´ Ñ SpfqzH. Let S “ S`YS´. We define the function U : X ˆS Ñ R as

follows:

8The choice of N is arbitrary. As long as S`, S´ are disjoint and each has |Spfq| ´ 1
elements, our argument follows.
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Upx, sq “

$

&

%

U´px, index1psqq if s P S`

U`px, index2psqq if s P S´

Then, using Equation 13 and our definition of function U , we have the

following result:

UpAq “ p
ÿ

BPSpfqzH

max
aPA

U´pa,Bqq ´ p
ÿ

BPSpfqzH

max
aPA

U`pa,Bqq

“
ÿ

sPS`

max
aPA

Upa, sq ´
ÿ

sPS´

max
aPA

Upa, sq (14)

Equation 14 finishes our proof.
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A Appendix

A.1 Möbius Operator

The main technical tool in our results on menu choice is the Möbius inversion

formula9. Let pX,ľq be a finite partially ordered set. We define the Möbius

function µ : X ˆX Ñ R as follows:

We set µpx, yq “ 0 whenever y Ã x, and µpx, xq “ 1 for all x P X. Then,

9For an application of the technique in Kreps’ setting, check K. Nehring, 2001. For a
complete study of the concept, see Chateauneuf et al., 1989.
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define other values inductively as follows:

µpx, yq “ ´
ÿ

yązľx

µpx, zq.

By above definition, we have:

ÿ

yľzľx

µpx, zq “

$

&

%

1 if x “ y,

0 otherwise.

Let pXqR denote the set of all functions from X to R. Then, the Möbius

operator Φ : pXqR Ñ pXqR is defined by Φpfqpxq “
ř

xľy fpyq. Möbius

inversion formula guarantees that the Möbius operator is bijective and the

inverse is Φ´1pgqpxq “
ř

xľy µpx, yqgpyq.

Theorem 11. (Möbius inversion formula) Let pX,ľq be a finite partially

ordered set and µ be its Möbius function. Let f, g : X Ñ R. Then

gpxq “
ÿ

xľy

fpyq

implies that

fpxq “
ÿ

xľy

µpy, xqgpyq.

Proof. To be complete, we add the proof.

ÿ

xľy

µpy, xqgpyq “
ÿ

xľy

µpy, xq
`

ÿ

yľz

fpzq
˘

“
ÿ

xľyľz

µpy, xqfpzq

“
ÿ

xľz

`

ÿ

xľyľz

µpy, xq
˘

fpzq “ fpxq.
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