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Abstract. We characterize choice rules for schools that regard students

as substitutes while expressing preferences for a diverse student body. The

stable (or fair) assignment of students to schools requires the latter to re-

gard the former as substitutes. Such a requirement is in conflict with the

reality of schools’ preferences for diversity. We show that the conflict can

be useful, in the sense that certain unique rules emerge from imposing both

considerations. We also provide welfare comparisons for students when

different choice rules are employed.
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1. Introduction

Recent school choice programs seek to install a stable (or “fair,” to use

the terminology of school choice) assignment of students to schools (Abdulka-

diroğlu and Sönmez, 2003; Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005).

This objective is severely compromised by school districts’ concern for diver-

sity. Under diversity considerations, a stable assignment may not exist, and

the mechanisms used in reformed school districts may not work.

There is a very basic tension between diversity considerations and the re-

quirements of stable matching: diversity considerations introduce complemen-

tarities in schools’ choices; but the theory of stable matchings requires sub-

stitutability. If a school is concerned with gender balance, for example, then

it may admit a mediocre male applicant only to maintain gender balance

because it has admitted an excellent female applicant. The female applicant

cannot be admitted without the male applicant: the two students are thus com-

plements, not substitutes, for the school. Complementarities in the school’s

choices of students are a problem because both the theory and the mecha-

nism proposed in school choice programs require that students be substitutes

in schools’ choices. We are far from the first to recognize this problem: Sec-

tion 1.1 below discusses the relevant literature. The idea that diversity clashes

with stability is very easy to recognize; in Section 2.1 we present a particularly

simple example of the incompatibility between stability and diversity concerns.

Our paper seeks to reconcile diversity with the objective of implementing a

stable matching of students to schools. We characterize the schools’ choices

that are compatible with both diversity considerations and the theory of stable

matchings. There is so much tension between substitutability and diversity

that one might think no choice rule can satisfy both. We show that this need

not be the case: we study the choices that satisfy certain normative axioms,

one of them being substitutability, and show how combinations of axioms

give rise to unique choice procedures. Our procedures allow schools to express

concerns for diversity while using the standard mechanism (the one used in the
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school choice programs guided by stable matching theory) to install a stable

assignment of students to schools.1

We assume that students belong to one of multiple types. Types could

be categories of gender, socioeconomic status, race, or ethnicity. In all our

results, an “ideal” or “target” distribution plays a crucial role. Discussions

over diversity in school choice often express the idea that each school should

have a distribution of white, black, Hispanic, etc. children that matches, as

closely as possible, the distribution of races and ethnicities in the relevant

population. This idea is present in the literature on education (Alves and

Willie, 1987, e.g.), as well as in actual school districts’ criteria for affirmative

action (see Cambridge (Fiske, 2002)).

Broadly speaking, our paper uses ideas and models from choice theory (indi-

vidual, or social choice) to obtain results that we believe are useful for practical

market design. We present three results. Each one says that a unique school

choice rule emerges from some combination of policy desiderata, expressed as

axioms. We imagine that a school district can discuss a menu of axioms and

will settle on the axioms that it deems most desirable. In recent school choice

reforms, school districts have chosen among axioms of fairness or efficiency.

We propose to enrich the discussion with axioms that deal with diversity.

Our first result is to axiomatize a rule that tries to minimize the distance

between the distribution over types in the student body and a given ideal

distribution over types (see Section 3.1). This rule thus operationalizes the

criterion mentioned above, in which districts (or schools) target a particular

distribution of types. The axiomatization tells us what such a rule means in

terms of normative qualitative axioms.

In two other rules, the school sets aside a number of seats for each type of

student (quotas and reserves ; see Section 3.2). The number of seats set aside

for each type is related to the target distribution over types.

In our model, schools have two sources of preferences. They have given

“priorities,” which are preferences over individual students. These priorities

1We do not propose any new mechanisms: We want a theory that will work with the
mechanisms that have already been accepted and adopted by multiple school districts. In-
deed, these mechanisms have been accepted across many different market design problems
(Roth, 2008), such as markets for entry-level professional jobs.
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can result from test scores, from the distance of the student’s residence to the

school, or some other objective criteria. The school also has preferences over

the composition of the student body: these preferences come from concerns

about diversity. The school or the district may combine these two preferences

in different ways. Our results give recommendations on how the combination

should be carried out. If a school or a district agrees on a set of axioms, then

there will be a unique way of combining priorities and diversity preferences

into a choice rule for the school. As we shall see, substitutability, imposed

as an axiom, has very strong implications for how to combine priorities and

preferences over the composition of the student body.

Our analysis takes the priorities over individuals as given, which is in line

with practice. Therefore, some of our axioms depend on an exogenously spec-

ified priority over students, and their validity may be a function of those pri-

orities. In the Online Appendix, we show that our analysis can also be carried

out with endogenous priorities.

Finally, one might envision achieving diversity by directly manipulating pri-

orities. For example, underrepresented groups may be given a high priority.

This possibility falls outside of the model with exogenous priorities; but we feel

that the admissions rules (ideal points, reserves, and quotas) with exogenous,

non-diversity-related priorities are important enough in the debate on school

choice to warrant the focus on exogenous priorities.

1.1. Related literature. Abdulkadiroğlu and Sönmez (2003) introduced match-

ing theory as a tool in school choice and noted the problem with diversity con-

cerns; they offer a solution based on quotas, one of the models we axiomatize

below.2

The last two years have seen multiple explorations into controlled school

choice and diversity concerns. Kojima (2012) shows that affirmative action

policies based on majority quotas may hurt minority students. To overcome

this difficulty, Hafalir, Yenmez, and Yildirim (2013) propose affirmative action

based on minority reserves. More generally, Ehlers, Hafalir, Yenmez, and

Yildirim (2014) study affirmative action policies when there are both upper

and lower type-specific bounds. They propose solutions based on whether

2See Kahlenberg (2002) for controlled school choice in practice.
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the bounds are hard or soft. In contrast, our paper seeks to endogenize the

rules and consider (possibly) all of them. Other papers consider specific choice

rules, including some that are close to our reserves rule (Aygün and Bo, 2013;

Westkamp, 2013; Kominers and Sönmez, 2012).

In contrast with other papers in the literature, our focus is not on the mar-

ket as a whole, but rather on the preferences or choices of individual schools.

However, we consider the welfare implications of different choice rules on stu-

dents in Section 4 using a general comparative static result that we provide in

the Online Appendix.

The axiomatic approach is appealing in part because practical school choice

is already based on offering a menu of axioms. The reforms in Boston and

New York were based on offering school administrators a choice between sta-

bility and efficiency (Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005). We

envision using our results by expanding the menu of axioms to include axioms

that relate to diversity.

We focus on school preferences, but student preferences may also induce

problems: for example, students may have preferences over their colleagues.

These problems are treated by Echenique and Yenmez (2007) and Pycia (2012);

they are outside the scope of the present analysis. We focus here on diversity

and its effects on standard stable matching theory.

2. Model

Our model has three components: a choice rule, which describes the admis-

sions policy of the school; a priority order, which ranks individual students

according to how desirable they are to the school; and a partition of students

into “types.”

Let S be a nonempty finite set of all students . A choice rule is a function

C that maps each nonempty set S ⊆ S to a subset C(S) ⊆ S of chosen

students. Choice rules are both a basic tool in microeconomic theory, and a

common modeling device in matching theory (Alkan and Gale, 2003; Hatfield

and Milgrom, 2005, for example). The interpretation of C is that, if a school

had the ability to admit its students out of the set S of students, then it would

choose C(S) to be its student body.



CONTROL CONTROLLED 5

We shall assume that there is a positive number q such that |C(S)| ≤ q

for all S ⊆ S. The number q is the capacity of the school: the number of

available seats that it has.

A priority , or a (strict) preference , on S is a binary relation � on S
that is complete, transitive, and antisymmetric.

The set of students S is partitioned into students of different “types,” which

can be based on gender, socioeconomic factors, race, or ethnicity. Formally,

there exists a set T ≡ {t1, . . . , td} of types , and a type function τ : S → T ,

where τ(s) is the type of student s. Let St be the set of type-t students; i.e.,

St ≡ {s ∈ S : τ(s) = t}. Similarly, for any set of students S ⊆ S, St denotes

the subset of S that includes all type t students; i.e, St ≡ S ∩ St.
We use a function ξ : 2S → Zd+ to describe the number of students of each

type in each particular set. So we let

ξ(S) ≡ (|St1 |, . . . , |Std |) ∈ Zd+,

which consists of the number of students of each type in S. We term ξ(S) the

distribution of students in S.

We assume that the school is not large enough to admit all students of a

given type: q < |St| for all t ∈ T .

2.1. Gross substitutes. Our paper deals with the conflict between stability

and diversity considerations. At the root of the conflict lies the property of

gross substitutes. We first present a very stylized example illustrating the

problem.

Suppose that there are two schools, c1 and c2, and two students, s1 and

s2. The students are of different types. For example, s1 and s2 could be of

different race or ethnicity.

School c1 can admit two students, but it is constrained to mimic the pop-

ulation representation of each type. So it must admit either both students or

neither. School c2 has a single empty seat. It prefers to admit student s1 over

student s2, meaning that student s1 has higher priority than s2 in school c2.

Students have preferences over schools: s1 prefers c1 over c2, while s2’s

favorite school is c2. The table below summarizes all agents’ preferences.
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c1 c2 s1 s2

{s1, s2} s1 c1 c2

s2 c2 c1

It is easy to see that no matching of students to schools is stable. For exam-

ple, if both students are assigned to school c1, then s2 might request the empty

slot in school c2. School c2 finds s2 acceptable, so the pair (c2, s2) can “block”

this assignment (equivalently, s2’s claim to the empty seat is “justified,” us-

ing the standard terminology in school choice; see Abdulkadiroğlu and Sönmez

(2003)). Similarly, if s2 is assigned to c2 then s1 would have no place, as school

c1 cannot admit an unbalanced student body. Then s1 would claim s2’s spot

in school c2. Since s1 has a higher priority than s2 at that school, (c2, s1) can

“block” this assignment (equivalently, s1 “justifiably envies” s2 in c2). Thus

the assignment of s2 to c2 is unstable. Finally, if s1 is assigned to school c2

and s2 is unassigned, then both students would prefer school c1, and school c1

prefers both of them. Therefore, (c1, {s1, s2}) can block the assignment.

There is no stable or fair assignment of students to schools in this example.

The reason is that c1’s preferences for diversity cause the students s1 and

s2 to be complements. Complementarities in the school’s preference make it

impossible to have a stable assignment.

The axiom needed to avoid such problems is gross substitutes.

Gross Substitutes (GS): If a student is chosen from set S, then the student

is also chosen from any subset of S that contains her.

GS says that no student should be chosen because he or she complements

another student. Consider the choices of school c1 in the example. The school

would accept s1 if both students had applied, but it would reject s1 if only s1

had applied for its seats. Therefore, c1’s choice rule does not satisfy GS.

If all schools’ choices satisfy GS, then a stable matching exists and the

mechanism proposed by the recent school choice literature works well. GS was

first studied by Kelso and Crawford (1982). GS is sufficient for the existence

of stable matchings and for the Gale-Shapley deferred acceptance algorithm

to find a stable matching. It is also in a sense necessary for these properties

to hold (Hatfield and Milgrom, 2005).
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2.2. Gross substitutes as a stand-alone normative consideration. We

have argued that GS is appealing because it enables the use of the most popular

and successful mechanism in school choice. There is another argument for GS.

We claim that GS may be desirable even when admissions are not governed

by a centralized mechanism.

Consider a school that processes applications in batches, making decisions

sequentially. GS guarantees that a school will never decide to go back on a

rejection. This is a desirable property of the school’s choice rule. Consider, for

example, the admissions procedure to a graduate program. In a first stage, a

department may want to turn down certain students, admit others, and waitlist

others. To turn down a student is a decision that is hard to back down from.

GS says that the admissions committee will never need to reconsider a decision

to reject a student.

3. Results

We characterize rules that differ in how they trade off concerns for diversity

with concerns for the quality, or priority, of individual students.

Our first rule puts diversity first. It is called the ideal point rule, because it

seeks to achieve a distribution over student types that is as close as possible

to some given ideal distribution. Once the distribution over types is fixed, the

rule admits the highest-priority students of each type. The diversity-first ideal

point rule will never trade off a low-priority student for a high-priority student

when they are of different types.

Then we turn to rules with flexible diversity, in which we sometimes allow

priorities to guide the choice over students of different types. Of course, if

we let priorities always guide choices, then the school may completely miss

its diversity objectives. So we need to say precisely when the priority will be

allowed to guide choice.

The key idea is that the number of students of a type tells us when priorities

are allowed to guide choices. In one axiom, we require that once we have

enough students of one type (where the notion of enough depends on how

one treats students in other situations), then the admission of a student of

that type cannot be due to diversity considerations–it must be because of



8 ECHENIQUE AND YENMEZ

priorities. In another axiom we take the opposite route, and say that the

rejection of a student cannot be due to diversity when we do not have enough

of that student’s type.

Each of these two axioms leads to a rule of its own. In the first case, it leads

to a rule that achieves diversity by reserving seats for different student types.

In the second, it leads to a rule that achieves diversity by capping the number

of students that the school can admit of each type.

3.1. Diversity First. We describe a rule that emphasizes diversity over in-

dividual students’ priorities. It first decides on a distribution over types, and

then admits the highest-priority students of each type.

The first axiom, monotonicity, is responsible for putting diversity first.

Monotonicity says that having more students of each type available leads to

more students (or at least as many) being admitted of each type–regardless of

priorities.

Monotonicity: When S ′ has at least as many students of each type as S,

then C(S ′) has at least as many students of each type as C(S).

One implication of monotonicity is that whenever two sets have the same

number of students for each type, then the same number of students must be

chosen from both sets for each type. This implication captures the idea of

putting diversity above priorities.

The second axiom simply says that, when comparing students of the same

type, the choice should be guided by the students’ priorities.

Within-type �-compatibility: When a student is chosen over another

student and they both have the same type, then the chosen student must have

higher priority than the non-chosen student.

A choice rule is generated by an ideal point for priority � if there

exists an ideal distribution of students z∗ such that the choice rule first chooses

a distribution of students that is as close to z∗ as possible, and then admits

the best students of each type according to priority order �.
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More formally, a choice rule C is generated by an ideal point for prior-

ity � if there exists a vector z∗ ∈ Zd+ with ||z∗|| ≤ q such that for any S ⊆ S,3

(1) ξ(C(S)) is the closest vector to z∗ (in Euclidean distance),4 among those

in B(ξ(S)), where

B(x) ≡ {y ∈ Zd+ : y ≤ x and ||y|| ≤ q};

and (2) type-t students in C(S) have higher priority than any type-t student

in S \ C(S), for any t.

Our first result is a characterization of ideal point rules.

Theorem 1. A choice rule is generated by an ideal point for priority � if

and only if it satisfies gross substitutes, monotonicity, and within-type �-

compatibility.

The proof is in the Appendix at the end of the paper. In the Online Appen-

dix we also verify the independence of the axioms used in all three theorems.

3.2. Flexible Diversity. We now turn to rules that are flexible in how they

incorporate diversity objectives. A school can now trade off students of differ-

ent types, sometimes allowing priorities to determine the choice of a student

of one type over a student of another type.

Of course, if priorities always determine choice, then the school cannot main-

tain any kind of diversity objective. Therefore, the key point is to determine

when the school will use priorities and when diversity considerations will pre-

vail. We consider two alternative axioms, both of which roughly say that the

number of students of each type determine when priorities are used.

In our axioms, priorities take over once there are “enough” students of the

type in question. One axiom states that when there are enough type-t students,

then the choice of a type-t student must be explained by the high priority of

that student. The second axiom says that when there are not enough type-t

students, then the rejection of a type-t student must be explained by the low

priority of that student. In other words, a student of a type of which there

3For any vector x ∈ Zd
+, let ||x|| be the sum of its coordinates, i.e., ||x|| ≡

∑d
i=1 xi.

4Instead of the Euclidean distance, we can work with any Lp-distance for p <∞.
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are few (relative to some diversity objectives) cannot be rejected for diversity

reasons.

We proceed to give precise formulations of these two criteria. Our notion of

“enough” is called saturation. Our notion of “not enough” is called demanded.

A type t is saturated in a set of students if there is a set of students,

with the same number of type-t students, in which not all type-t students are

chosen. Saturation says that the number of type-t students has been judged

to be enough, so that there are situations with the same number of type-t

students in which some type-t students have been rejected.

Now we can introduce an axiom that says that the choice of students of

different types must reflect priorities when the chosen student’s type is satu-

rated.

Saturated �-compatibility: Whenever a student whose type is saturated

is chosen over another student, the chosen student must have higher priority

than the non-chosen student.

Saturated �-compatibility is one operationalization of the idea that pri-

orities guide choice once there are enough students of one type. It implies

within-type �-compatibility because when the chosen and rejected students

have the same type, say type t, then type t is saturated in the set.

Our second operationalization is based on the notion of a demanded type. A

type t is demanded in a set of students if there is some other set of students

with the same number of type-t students in which more type-t students are

chosen. That is, a type t is demanded in S if there is S ′ such that |St| = |S ′t|
with |C(S)t| < |C(S ′)t|.

Demanded �-compatibility: Whenever a student is chosen over another

student whose type is demanded, the chosen student must have higher priority

than the non-chosen student.

Now, we describe the first flexible choice rule. A choice rule is generated

by reserves for priority � if a number of seats is “reserved” for each type.

First, for each type t, type-t students with the highest priority are chosen until

the reserves for type t are filled, or type-t students are exhausted. Next, for

the remaining seats, students of the highest priority are chosen until all the
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seats or students are exhausted. Note that in the second stage, students of

all types compete against each other for seats that were either not reserved or

reserved but not filled in the first stage.

More formally, a choice rule C is generated by reserves for priority �
if there exists a vector (rt)t∈T ∈ Zd+ with ||r|| ≤ q such that for any S ⊆ S,

(1) |C(S)t| ≥ min{rt, |St|};
(2) if s ∈ C(S), s′ ∈ S \ C(S) and s′ � s, then it must be the case that

τ(s) 6= τ(s′) and
∣∣C(S)τ(s)

∣∣ ≤ rτ(s); and

(3) if ∅ 6= S \ C(S), then |C(S)| = q.

If a choice rule is generated by reserves, then it satisfies the desirable prop-

erty that no student is turned away when there is an empty seat in the school.

We call this property acceptance.

Acceptance: A student is rejected only when all seats are filled.

Acceptance is used in various forms in the literature. It is useful in our

characterization of choice rules generated by reserves.

Theorem 2. A choice rule is generated by reserves for priority � if and only

if it satisfies gross substitutes, acceptance, and saturated �-compatibility.

We now turn to our second flexible choice rule. Choice rule C is generated

by quotas for priority � if it implements diversity by capping the number

of students of each type. More explicitly, the school has a maximum number rt

of type-t students that it can admit. Any type-t student in excess of rt will be

rejected, regardless of priorities. The school considers all students and chooses

the highest-ranked ones conditional on not exceeding any upper bound or the

school capacity. In particular, if the sum of the upper bounds is less than the

school’s capacity, then this model is equivalent to the ideal-point model.

More formally, choice rule C is generated by quotas for priority � if

there exists a vector (rt)t∈T ∈ Zd+ such that for any S ⊆ S,

(1) |C(S)t| ≤ rt;

(2) if s ∈ C(S), s′ ∈ S \ C(S) and s′ � s, then it must be the case that

τ(s) 6= τ(s′) and
∣∣C(S)τ(s

′)
∣∣ = rτ(s′); and

(3) if s ∈ S \ C(S), then either |C(S)| = q or
∣∣C(S)τ(s)

∣∣ = rτ(s).
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If a choice rule is generated by quotas, then it can fail the acceptance axiom.

Therefore, choice rules generated by reserves may be more favorable than

choice rules generated by quotas. Indeed, we provide a welfare comparison for

students in the next section (Proposition 1). On the other hand, if a choice

rule is generated by quotas then it satisfies the following property.

Rejection maximality (RM): If a type-t student is rejected from a set

when there is an empty seat, then the number of type-t students chosen from

this set is weakly greater than the corresponding number for any set that does

not have more type-t students than this set. (s ∈ S\C(S) and |C(S)| < q imply

that, for every S ′ such that
∣∣S ′τ(s)∣∣ ≤ ∣∣Sτ(s)∣∣, we have

∣∣C(S)τ(s)
∣∣ ≥ ∣∣C(S ′)τ(s)

∣∣.)
Roughly speaking, rejection maximality states that whenever a type-t stu-

dent is rejected despite the existence of an empty seat, a maximum number of

type-t students must have been reached. Note that acceptance implies rejec-

tion maximality.

Theorem 3. A choice rule is generated by quotas for priority � if and only if

it satisfies gross substitutes, rejection maximality, within-type �-compatibility,

and demanded �-compatibility.

4. Matching Markets

We now work out one implication of our results for market-wide outcomes.

In a matching market, there are two sets of agents: the set of students and the

set of schools. Each student has a strict preference ordering over schools and

remaining unmatched whereas each school has a choice rule over groups of stu-

dents. More formally, a matching market is a tuple 〈C,S, (�s)s∈S , (Cc)c∈C〉,
in which C is a finite set of schools , S is a finite set of students , for each

s ∈ S; �s is a strict preference order over C ∪ {s} where {s} is the outside

option for student s,5 and for each c ∈ C; Cc is a choice rule over sets of

students.

An outcome in this market is a matching that specifies the match for every

agent. For matching µ, let µ(s) be the match of student s, which is a school

or the outside option, and µ(c) be the set of students matched with school c.

5The outside option for student s can be going to a private school or being homeschooled.
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A matching is stable if it satisfies individual rationality and no blocking.

First, individual rationality for schools means that no school can be better

off by rejecting some of the admitted students, whereas for students it means

that each student prefers her assigned school to her outside option. Second, no

blocking implies that there exists no coalition of agents who can beneficially

rematch among themselves. This is the standard definition of stability used in

many-to-one matching problems (Roth and Sotomayor, 1990).

The student-optimal stable mechanism (SOSM) is defined through the al-

gorithm of Gale and Shapley (1962). When schools’ choices satisfy gross sub-

stitutes, SOSM produces the best stable matching for students.6 SOSM has

been implemented in many matching markets, including several school dis-

tricts and markets for entry-level professional jobs (Roth, 2008; Pathak and

Sönmez, 2013).

Suppose that schools’ choice rules are generated using the quota model.

Then there can be situations in which a student is turned away from a school

even though there is an empty seat. We can avoid this by using reserves instead

of quotas. In the next result, we study the effects of this change on students’

welfare, and show that each student weakly prefers reserves to quotas when

SOSM is in place.

Proposition 1. Suppose that SOSM is used in a matching market. Then each

student weakly prefers the outcome when schools’ choice rules are generated by

reserves to the outcome when schools’ choice rules are generated by quotas, if

each school uses its vector of reserves as quotas.

Proposition 1 follows from a more general result that we show in the online

appendix (Theorem C.1).

References
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Appendix A. Proofs of Theorems 1-3

All our results are based on mapping a choice rule into a function f : {x ∈
Zd+ : 0 ≤ x ≤ ξ(S)} → Zd+, mapping distributions into distributions. The

axioms have properties of such functions as counterparts. We begin with some

preliminary results on functions that map distributions into distributions.

We say that f is monotone increasing if y ≤ x implies that f(y) ≤ f(x);

f is within budget if f(x) ∈ B(x); that f satisfies gross substitutes if

y ≤ x⇒ f(x) ∧ y ≤ f(y).

A function f is generated by an ideal point if there is z∗ ∈ Zd+ such that

||z∗|| ≤ q, and f(x) minimizes the Euclidean distance to z∗ among the vectors

in B(x).

We shall first introduce some simple lemmas related to functions on Zd+. For

any x, y ∈ Zd+, let x ∧ y ≡ (min{x1, y1}, . . . , min{xd, yd}) be the infimum of x

and y.

Lemma 1. Let z∗ ∈ Zd+ satisfy ||z∗|| ≤ q. Then x∧z∗ is the unique minimizer

of the Euclidean distance to z∗ among the vectors in B(x).

Proof. First note that x∧z∗ ∈ B(x). The distance from z to z∗ is minimized if∑
t(zt−z∗t )2 is minimized. But for each t, (zt−z∗t )2 is minimized by setting zt =

min{xt, z∗t }: when min{xt, z∗t } = z∗t this is trivial, and when min{xt, z∗t } = xt

then there is no z ∈ B(x) with zt > xt. Since zt = min{xt, z∗t } for every t, we

get z = x ∧ z∗. �

Lemma 2. Function f is generated by an ideal point if and only if it is mono-

tone increasing, within budget, and satisfies gross substitutes.
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Proof. We first show that if f is generated by an ideal point z∗, then it is

monotone increasing, within budget and it satisfies gross substitutes. Suppose

that the ideal point is z∗. By Lemma 1, f(x) = x ∧ z∗. Then f(x) ≤ x

and ||f(x)|| ≤ ||z∗|| ≤ q, so f is within budget. Next we show monotonicity:

y ≤ x⇒ y ∧ z∗ ≤ x ∧ z∗ ⇒ f(y) ≤ f(x). Last we show gross substitutes. Let

y ≤ x. Then, f(x) ∧ y = (x ∧ z∗) ∧ y = (x ∧ y) ∧ z∗ = y ∧ z∗ = f(y).

We now turn to proving that the axioms are sufficient for generation by an

ideal point. We suppose that f is a function satisfying monotonicity, gross

substitutes, and it is within budget.

Note if y ≤ x then the monotonicity of f , and that f(y) ≤ y implies that

f(y) ≤ y ∧ f(x). Thus the GS axiom becomes:

(1) y ≤ x⇒ f(x) ∧ y = f(y).

Let x̂ be such that x̂t > q for all t. For arbitrary y, we shall prove that f(y) =

y∧f(x̂). Note that x̂∧y ≤ x̂, monotonicity, and gross substitutes, imply (using

equation (1)) that f(x̂∧y) = (x̂∧y)∧f(x̂) = (x̂∧f(x̂))∧y = f(x̂)∧y. Similarly,

x̂∧y ≤ y gives us that f(x̂∧y) = (x̂∧y)∧f(y) = (y∧f(y))∧x̂ = f(y)∧x̂. Thus,

f(x̂) ∧ y = f(y) ∧ x̂. But since f(y)t ≤ q for all t, we have, f(y) ∧ x̂ = f(y).

Therefore, f(y) = f(x̂)∧ y. By Lemma 1, f(y) minimizes the distance to f(x̂)

in B(y). Therefore, f is generated by ideal point f(x̂). �

We also need the following axiom in what follows.

Axiom 1. Choice rule C satisfies irrelevance of rejected students (IRS)

if C(S ′) ⊆ S ⊆ S ′ implies that C(S) = C(S ′).

The following simple result follows from well-known arguments in choice

theory. Its proof is omitted.

Lemma 3. If C satisfies GS and acceptance, then it also satisfies IRS.

Proof of Theorem 1. Suppose that C satisfies the axioms. We argue that

it is generated by an ideal point for priority �.

Define f : {x ∈ Zd+ : 0 ≤ x ≤ ξ(S)} → Zd+ as follows. For any x ≤ ξ(S),

consider S such that x = ξ(S) and let f(x) = ξ(C(S)). By monotonicity,

ξ(S) = ξ(S ′) implies ξ(C(S)) = ξ(C(S ′)); hence the particular choice of S
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does not matter, therefore f is well defined. Moreover, when y ≤ x we have

f(y) ≤ f(x), again by monotonicity. So f is monotone increasing. In addition,

f(x) ≤ x and ||f(x)|| ≤ q; so f is within budget.

To show that f satisfies GS, let ξ(S) ≥ x ≥ y and S ′ ⊆ S be such that

ξ(S ′) = x. Construct S with ξ(S) = y as follows. For any t, if yt ≥ ξ(C(S ′))t,

then St ⊇ C(S ′)t. However, if yt < ξ(C(S ′))t, then St ⊆ C(S ′)t. In the former

case C(S)t ⊇ C(S ′)t, and in the later case C(S)t = St by GS. In both cases,

ξ(C(S))t ≥ min{ξ(S)t, ξ(C(S ′))t} for any t, which implies f(y) ≥ f(x) ∧ y.

By Lemma 2, f is generated by the ideal point z∗ ≡ f(x̂) where x̂ is such

that x̂t > q for all t. Since f(z∗) = z∗, we have that ||z∗|| ≤ q. Therefore, C is

generated by z∗ for � because 1) f is generated by the ideal point z∗ implies

ξ(C(S)) is the closest vector to z∗ in B(ξ(S)) for every S and 2) within-type

�-compatibility implies that any type-t student in C(S) has a higher priority

than any student in S \ C(S) for every S.

Conversely, let C be generated an ideal point for priority �. It is immediate

that C satisfies within-type �-compatibility.

Define f from C as above: f is well defined because for any S and S ′ such

that ξ(S) = ξ(S ′) = x, ξ(C(S)) is the closest vector to z∗ among those in

B(x) and ξ(C(S ′)) is the closest vector to z∗ among those in B(x). Therefore,

ξ(C(S)) = ξ(C(S ′)) by Lemma 1.

To show that C satisfies monotonicity, let y = ξ(S) and x = ξ(S ′) such that

y ≤ x. By Lemma 1, f(x) = x∧ z∗ and f(y) = y ∧ z∗. Then, f(x) = x∧ z∗ ≤
y ∧ z∗ = f(y), and, therefore, ξ(C(S)) ≤ ξ(C(S ′)).

To see that C satisfies GS, let s ∈ S ⊆ S ′, τ(s) = t, ξ(S) = y and ξ(S ′) = x.

As we have shown above, f(x) = x ∧ z∗ and f(y) = y ∧ z∗. If f(y)t ≥ f(x)t,

then more type t students are chosen in S compared to S ′. Since s ∈ C(S ′),

and C is generated by an ideal point, we derive that s ∈ C(S). On the other

hand, if f(y)t < f(x)t, then f(y)t < z∗t since f(x)t = (x ∧ z∗)t ≤ z∗t . Since

f(y)t = (y ∧ z∗)t, we derive that f(y)t = yt. That means that all type t

students are chosen from S; so s ∈ C(S).
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Proof of Theorem 2. For any x ≤ ξ(S), let F (x) ≡ {ξ(C(S)) : ξ(S) = x}
and

f̂(x) =
∧

f(x)∈F (x)

f(x).

The proof of the theorem requires the following lemma.

Lemma 4. Let C satisfy GS. If y ∈ Zd+ is such that f̂(y)t < yt then f̂(y +

et′)t < yt + 1t=t′

Proof. Let y and t be as in the statement of the lemma. Let S be such that

ξ(S) = y and ξ(C(S))t < ξ(S)t = yt. Such a set S exists because f̂(y)t < yt.

Let s′ /∈ S be an arbitrary student with τ(s′) = t′. Note that

∅ 6= St \ C(S)t ⊆ (S ∪ {s′})t \ C(S ∪ {s′})t,

as C satisfies GS. Then we cannot have ξ(C(S ∪ {s′}))t = yt + 1t=t′ because

that would imply (S ∪ {s′})t \ C(S ∪ {s′})t = ∅. Then

yt + 1t=t′ > ξ(C(S ∪ {s′}))t ≥ f̂(y + et′)t.

�

Suppose that C satisfies the axioms. Construct r as follows. Let x̄ = ξ(S).

Lemma 4 implies that if f̂(yt, x̄−t)t < yt then f̂(y′t, x̄−t)t < y′t for all y′t > yt.

Then there is rt ∈ N such that yt > rt if and only if f̂(yt, x̄−t) < yt. This uses

the assumption on the cardinality of St that f̂(y)t < yt if yt is large enough.

Note that we may have rt = 0.

First we prove if S ⊆ S with |St| ≤ rt then St = C(S)t. Observe that,

for any x and t, f̂(rt, x−t) = rt. To see this note that if there is x and t

such that f̂(rt, x−t) < rt then Lemma 4 would imply that f̂(rt, x̄−t) < rt, in

contradiction with the definition of r. In fact, we can say more: For any x, t,

and yt, if yt ≤ rt then f̂(rt, x−t) = rt and Lemma 4 imply that f̂(yt, x−t) = yt.

Therefore, letting S ⊆ S with |St| ≤ rt we have that∣∣C(S)t
∣∣ ≥ f̂(y)t = yt,

where y = ξ(S). Since yt = |St| ≥ |C(S)t| we have that St = C(S)t.

Second we prove that, if |St| > rt, then |C(S)t| ≥ rt. Let S̃ = C(S).

Assume, towards a contradiction, that
∣∣∣S̃t∣∣∣ < rt. Let S ′ = S̃ ∪S ′′, where S ′′ ⊆
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St \ S̃t is such that |S ′t| = rt. By Lemma 3, C satisfies IRS, so C(S ′) = C(S).

Thus,

f̂(ξ(S ′))t ≤
∣∣C(S ′)t

∣∣ =
∣∣C(S)t

∣∣ < rt.

Since ξ(S ′)t = |S ′t| = rt, we obtain a contradiction with the definition of rt

above.

Third, suppose that s ∈ C(S), s′ ∈ S \C(S) and s′ � s. Since s′ ∈ S \C(S),

τ(s′) is saturated in S. If τ(s) = τ(s′), we get a contradiction with saturated

�-compatibility and s′ � s. Therefore, τ(s) 6= τ(s′). If
∣∣C(S)τ(s)

∣∣ > rτ(s),

then by the construction of rt type τ(s) must be saturated in S. But this

contradicts saturated �-compatibility and s′ � s, so
∣∣C(S)τ(s)

∣∣ ≤ rτ(s).

It remains to show that if C is generated by reserves for priority �, then it

satisfies the axioms. It is immediate that it satisfies acceptance and saturated

�-compatibility.

To see that it satisfies GS, let S ⊆ S ′ and s ∈ S \C(S). Then
∣∣Sτ(s)∣∣ > rτ(s);

so
∣∣S ′τ(s)∣∣ > rτ(s). Moreover, s ∈ S \C(S) implies that there are rτ(s) students

in Sτ(s) ranked above s. Let C(1)(S) be the set of students that are accepted in

the first step (on reserved seats), S∗ be the set of students that are considered

in the second step (on open seats) and q∗ be the number of remaining seats to

be allocated in the second step. Again, s ∈ S \C(S) implies that there are q∗

students ranked above s in S∗. Consider the construction of C(S ′): s cannot

be admitted in the first step since S ′τ(s) ⊇ Sτ(s) and that there are at least

rτ(s) students ranked above s in Sτ(s). Furthermore, in the second step of the

new procedure, there are more higher ranked students of each type compared

to S∗, so s can also not be admitted in the second step since there are at most

q∗ seats left. Therefore, s ∈ S ′ \ C(S ′).

Proof of Theorem 3. For reasons of space, we include only a sketch of the

sufficiency direction of the proof. Suppose that C satisfies the axioms and let

rt ≡ max
S∈S
|C(S)t|.

Lemma 5. Suppose S ′ ⊆ St. If |C(S ′)| < min{q, |S ′|} then |C(S ′)| = rt.

Proof. Since rt = max
S∈S
|C(S)t|, there exists a set S̄ such that

∣∣C(S̄)t
∣∣ = rt. By

GS, we can choose S̄ such that S̄ ⊆ St and S̄ = C(S̄) (simply choose C(S̄)t



20 ECHENIQUE AND YENMEZ

to be the set in question). Now let S ′ be a set of students as in the statement

of the lemma. Suppose towards a contradiction that |C(S ′)| < rt.

Note that |C(S ′)| < min{q, |S ′| , rt} and
∣∣C(S̄)

∣∣ = rt. So RM implies that∣∣S̄∣∣ > |S ′|.
Let P ⊆ S̄ be a set of cardinality |S ′|. By GS, S̄ = C(S̄) implies that

P = C(P ), so |C(P )| = |S ′| > C(S ′). A contradiction to RM. �

To show that C is generated by quotas priority � we need three things.

First, |C(S)t| ≤ rt for every S ⊆ S. This is immediate by construction of rt.

Second, we show that if s ∈ C(S), s′ ∈ S \ C(S) and s′ � s, then it must

be the case that τ(s) 6= τ(s′) and
∣∣C(S)τ(s

′)
∣∣ = rτ(s′). If τ(s) = τ(s′), we get

a contradiction to within-type �-compatibility. If
∣∣C(S)τ(s

′)
∣∣ 6= rτ(s′), then∣∣C(S)τ(s

′)
∣∣ < rτ(s′) by construction of r. We shall prove that τ(s′) is demanded

in S, which will yield the desired contradiction to demanded �-compatibility.

Let S ′ ≡ Sτ(s
′). We consider three cases.

• First, if |C(S ′)| = q then
∣∣C(S)τ(s

′)
∣∣ < ∣∣C(S ′)τ(s

′)
∣∣ (as s ∈ C(S) and

τ(s) 6= τ(s′)), so τ(s′) is demanded in S.

• Second, if |C(S ′)| < q and |C(S ′)| < |S ′|, then, by Lemma 5, |C(S ′)| =
rτ(s′), so |C(S ′)| >

∣∣C(S)τ(s
′)
∣∣. Hence τ(s′) is demanded in S.

• Third, consider the case when |C(S ′)| < q, and |C(S ′)| = |S ′|. Then

|C(S ′)| >
∣∣C(S)τ(s

′)
∣∣, as s′ ∈ Sτ(s′) \C(S)τ(s

′). Thus τ(s′) is demanded

in S.

Finally, we need to show that if s ∈ S \ C(S), then either |C(S)| = q

or
∣∣C(S)τ(s)

∣∣ = rτ(s). Suppose that |C(S)| < q. Let S ′ ≡ Sτ(s). By RM,∣∣C(S)τ(s)
∣∣ ≥ |C(S ′)|, so |C(S ′)| < q since |C(S)| < q. Similarly |C(S ′)| <

|S ′|, because otherwise
∣∣C(S)τ(s)

∣∣ ≥ |C(S ′)| would imply C(S)τ(s) = S ′; a

contradiction since s ∈ S \ C(S). We have established |C(S ′)| < min{q, |S ′|},
so by Lemma 5 we get |C(S ′)| = rτ(s).

To finish the proof, suppose that C is generated by quotas for �. Then it

is easy to see that C satisfies RM, within-type �-compatibility and demanded

�-compatibility. We show that it also satisfies GS. Suppose that s ∈ S ⊆ S ′

and s ∈ C(S ′). For each type t, let S(t; rt) ⊆ St be the rt highest ranked type

t students in S (if |St| ≤ rt then S(t; rt) = St). Define S ′(t; rt) analogously.

Since s ∈ C(S ′), we have s ∈ S ′(τ(s), rτ(s)) and the ranking of s in ∪tS ′(t; rt)
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is no more than q. Since S ⊆ S ′, the preceding statements also hold for S

instead of S ′, which implies that s ∈ C(S).


