How to control controlled school choice

Federico Echenique M. Bumin Yenmez Caltech Carnegie Mellon

WZB Matching Workshop - Aug 29, 2014

School choice

Two schools/colleges: c_1 , c_2 Two students: s_1 , s_2 .

<i>c</i> ₁	<i>c</i> ₂	s_1	<i>s</i> ₂
s_1, s_2	s_1	<i>c</i> ₁	<i>c</i> ₂
	<i>s</i> ₂	<i>c</i> ₂	c_1

Two schools/colleges: c_1 , c_2 Two students: s_1 , s_2 .

<i>c</i> ₁	<i>c</i> ₂	s_1	<i>s</i> ₂
s_1, s_2	s_1	<i>c</i> ₁	<i>c</i> ₂
	<i>s</i> ₂	<i>c</i> ₂	c_1

Two schools/colleges: c_1 , c_2 Two students: s_1 , s_2 .

<i>c</i> ₁	<i>c</i> ₂	s_1	<i>s</i> ₂
s_1, s_2	<i>s</i> ₁	<i>c</i> ₁	<i>c</i> ₂
	<i>s</i> ₂	<i>c</i> ₂	c_1

Two schools/colleges: c_1 , c_2 Two students: s_1 , s_2 .

<i>c</i> ₁	<i>c</i> ₂	s_1	<i>s</i> ₂
s_1, s_2	s_1	<i>c</i> ₁	<i>c</i> ₂
	<i>s</i> ₂	<i>c</i> ₂	c_1

Main results

Tension between:

- "package" preferences,
- ▶ "item" preferences,

Pure item preferences \rightarrow GS. Pure package preferences \rightarrow complements.

Main results

► GS + Axioms on how to resolve tension

 \iff specific "utility function" (or procedure) for schools.

 Implications for matching: some procedures are better for students than others (Pareto ranking of school choice procedures).

Literature

- School choice: Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu, Pathak, Sönmez and Roth (2005) (Boston), Abdulkadiroğlu, Pathak and Roth (2005) (NYC)
- Controlled school choice: Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu (2005), Kamada and Kojima (2010), Kojima (2010), Hafalir, Yenmez, Yildirim (2011), Ehlers, Hafalir, Yenmez, Yildirim (2011), Budish, Che, Kojima, and Milgrom (2011), Erdil and Kurino (2012), Kominers and Sönmez (2012), Aygün and Bo (2013), Westkamp (2013).

One School

- A finite set S of *students*.
- A choice rule C on S.
- A strict *priority* \succ on S.
- ► Students partitioned into *types*.

- 1. A finite set S of *students*.
- 2. A choice rule: $C: 2^{\mathcal{S}} \setminus \{\emptyset\} \to 2^{\mathcal{S}}$

s.t. $C(S) \subseteq S$.

3. A number q > 0 s.t. $|C(S)| \le q$.

- 1. A finite set S of *students*.
- 2. A choice rule: $C: 2^{\mathcal{S}} \setminus \{\emptyset\} \to 2^{\mathcal{S}}$

s.t. $C(S) \subseteq S$.

3. A number q > 0 s.t. $|C(S)| \le q$.

Note:

- 1. Choice C(S) is a "package"
- 2. Allow $C(S) = \emptyset$.
- 3. q = school capacity.

- A finite set S of *students*.
- A strict *priority* \succ on S.

Axioms: Gross substitutes

Axiom (Gross Substitutes (GS))

$$s \in S \subseteq S'$$
 and $s \in C(S') \Rightarrow s \in C(S)$.

Axioms: Gross substitutes

Equivalently:

Axiom (Gross Substitutes (GS))

$$S \subseteq S'$$
 and $s \in S \setminus C(S) \Rightarrow s \in S' \setminus C(S')$.

Here: substitutes = absence of complements. When schools satisfy GS, there is a stable matching & the DA algorithm finds one.

Two schools/colleges: c_1 , c_2 Two students: s_1 , s_2 .

<i>c</i> ₁	<i>c</i> ₂	s_1	<i>s</i> ₂
s_1, s_2	s_1	<i>c</i> ₁	<i>c</i> ₂
	<i>s</i> ₂	<i>c</i> ₂	c_1

 $s_1 \notin C_{c_1}(\{s_1\})$ while $s_1 \in C_{c_1}(\{s_1, s_2\})$.

1. ${\mathcal S}$ is partitioned into students of different types.

- 2. Set $T \equiv \{t_1, \ldots, t_d\}$ of types,
- 3. $\tau : S \rightarrow T$

1. ${\mathcal S}$ is partitioned into students of different types.

2. Set
$$T \equiv \{t_1, \ldots, t_d\}$$
 of types,
3. $\tau : S \rightarrow T$

Define function $\xi : 2^S \to \mathbf{Z}^d_+$. Let $\xi(S) = (|S \cap \tau^{-1}(t)|)_{t \in T};$

 $\xi(S)$ is the *type distribution* of students in S.

- ▶ "package" preferences,
- ▶ "item" preferences,

- ▶ "package" preferences,
- ▶ "item" preferences,

When will you admit a high priority student over a low priority student?

- ▶ "package" preferences,
- ▶ "item" preferences,

When will you admit a high priority student over a low priority student?

First resolution of this tension: never when of different types. Put package (distributional) preferences first. Axiom (Monotonicity)

$\xi(S) \leq \xi(S')$ implies that $\xi(C(S)) \leq \xi(C(S'))$.

Axiom (Within-type ≻-compatibility)

$$s \in C(S), s' \in S \setminus C(S)$$
 and $\tau(s) = \tau(s') \Rightarrow s \succ s'$.

Ideal point

 $(\mathcal{S}, \mathcal{C}, \succ)$ is generated by an ideal point if:

Given an ideal $z^* \in \mathbf{Z}^d_+$,

- 1. Chose closest feasible distribution of types to z^* .
- 2. For each type, chose "best" (highest priority) available students.

Ideal point

 $(\mathcal{S}, \mathcal{C}, \succ)$ is generated by an ideal point if:

 $\exists z^* \in \mathbf{Z}^d_+$ such that $\|z^*\| \leq q$ s.t,

- 1. $\xi(C(S))$ min. Euclidean distance to z^* in $B(\xi(S))$ where $B(x) = \{z \in \mathbf{Z}^d_+ : z \le x \text{ and } |z| \le q\};$
- 2. students of type t in C(S) have higher priority than students of type t in $S \setminus C(S)$.

Ideal point

Theorem

- $(\mathcal{S}, \mathcal{C}, \succ)$ satisfies
 - ► GS
 - Monotonicity
 - ► and within-type ≻-compatibility

iff it is generated by an ideal point.

Ideal point rule may be wasteful.

Axiom (Acceptance)

A student is rejected only when all seats are filled.

 $|C(S)| = \min\{|S|, q\}.$

- ▶ "package" preferences,
- ▶ "item" preferences,

When will you admit a high priority student over a low priority student?

- ▶ "package" preferences,
- ▶ "item" preferences,

When will you admit a high priority student over a low priority student?

Second resolution of tension: some times; depending on the number of students of each type.

 $t \in T$ is saturated at S if there is S' such that $|S^t| = |S'^t|$ with $S'^t \setminus C(S')^t \neq \emptyset$.

 $t \in T$ is saturated at S if there is S' such that $|S^t| = |S'^t|$ with $S'^t \setminus C(S')^t \neq \emptyset$.

Axiom (Saturated ≻-compatibility)

 $s \in C(S)$, $s' \in S \setminus C(S)$ and $\tau(s)$ is saturated at S imply $s \succ s'$.

Reserves

 $(\mathcal{S}, \mathcal{C}, \succ)$ is generated by reserves if:

Lower bound on each student type that school tries to fill: "painted seats."

Students compete openly for the unfilled seats.

Reserves

 $(\mathcal{S}, \mathcal{C}, \succ)$ is generated by reserves if:

$$\exists$$
 vector $(r_t)_{t\in\mathcal{T}}\in\mathsf{Z}_+^d$ with $\|r\|\leq q$ such that for any $S\subseteq\mathcal{S}$,

1.
$$|C(S)^t| \ge r_t \land |S^t|$$
;
2. if $s \in C(S)$, $s' \in S \setminus C(S)$ and $s' \succ s$, then it must be the case that $\tau(s) \ne \tau(s')$ and $|C(S)^{\tau(s)}| \le r_{\tau(s)}$; and
3. if $\emptyset \ne S \setminus C(S)$, then $|C(S)| = q$.

Reserves

Theorem

- $(\mathcal{S}, \mathcal{C}, \succ)$ satisfies
 - ► *GS*,
 - ► acceptance,
 - ► saturated ≻-compatibility,

iff it is generated by reserves.

- ► Pathak Sönmez
- Kominers Sönmez

- First assign open seats based on priorities.
- ► Second, assign reserved seats based on priorities.

The opposite order to Reserves.

Chicago

Ex:

- $\blacktriangleright \ \mathcal{S} = \{s_1, s_2, s_3, s_4\}$
- s_1, s_2 of type 1
- ► *s*₃, *s*₄ of type 2
- one school with three seats: one reserved for each type and one open.
- priorities are

 $s_1 \succ s_3 \succ s_4 \succ s_2$.

Chicago

Ex:

- $\blacktriangleright \ \mathcal{S} = \{s_1, s_2, s_3, s_4\}$
- ▶ s₁, s₂ of type 1
- ► *s*₃, *s*₄ of type 2
- one school with three seats: one reserved for each type and one open.
- priorities are

$$s_1 \succ s_3 \succ s_4 \succ s_2$$
.

Reserves assign: s_1 , s_3 and s_4 Chicago: s_1 , s_2 and s_3 a violation of saturated \succ -compatibility

Quotas

Achieve diversity by upper bound:

 $|C(S)^t| \leq r_t$

Quotas

Achieve diversity by upper bound:

 $|C(S)^t| \leq r_t$

New axiom:

Axiom

Choice rule C satisfies rejection maximality (RM) if $s \in S \setminus C(S)$ and |C(S)| < q imply for every S' such that $|S'^{\tau(s)}| \le |S^{\tau(s)}|$ we have $|C(S)^{\tau(s)}| \ge |C(S')^{\tau(s)}|$.

Theorem

- $(\mathcal{S}, \mathcal{C}, \succ)$ satisfies
 - ► *GS*,
 - ► *RM*,
 - ► demanded ≻-compatibility,

iff it is generated by quotas.

Proofs: Idea is to map C into $f : \mathbf{Z}_{+}^{d} \to \mathbf{Z}_{+}^{d}$. Translate axioms into properties of f.

Theorem

 $(\mathcal{S}, \mathcal{C}, \succ)$ satisfies

- ► GS
- Monotonicity
- ► and within-type ≻-compatibility

iff it is generated by an ideal point.

Under Mon, $\{\xi(C(S)) : \xi(S) = x\}$ is a singleton. So, map C into a function $f : \mathbf{Z}_{+}^{d} \to \mathbf{Z}_{+}^{d}$ by

$$f(x) = \{\xi(C(S)) : \xi(S) = x\}.$$

So, map C into a function $f : \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$ by $f(x) = \{\xi(C(S)) : \xi(S) = x\}.$

Then C satisfies GS iff

$$y \leq x \Rightarrow f(x) \land y \leq f(y).$$

(proof: ...)

So, map C into a function $f: \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$ by

$$f(x) = \{\xi(C(S)) : \xi(S) = x\}.$$

Then C satisfies GS iff

$$y \leq x \Rightarrow f(x) \land y \leq f(y).$$

(proof: ...) Then *C* satisfies GS and Mon iff

$$y \leq x \Rightarrow f(x) \land y = f(y).$$

 \boldsymbol{C} satisfies GS and Mon iff

$$y \le x \Rightarrow f(x) \land y = f(y).$$

Let $z^* = \xi(C(S))$. For any $x, x \le \xi(S)$ implies
 $f(x) = x \land f(\xi(S)) = x \land z^*.$

A "projection," hence min. Euclidean distance.

Theorem

- $(\mathcal{S}, \mathcal{C}, \succ)$ satisfies
 - ► *GS*,
 - acceptance,
 - ► saturated ≻-compatibility,

iff it is generated by reserves.

Map C into a function $f: \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$ by

$$f(x) = \bigwedge \{\xi(C(S)) : \xi(S) = x\}.$$

Map C into a function $f: \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$ by

$$f(x) = \bigwedge \{\xi(C(S)) : \xi(S) = x\}.$$

Lemma

Let C satisfy GS. If
$$y \in \mathbf{Z}_+^d$$
 is such that $f(y)_t < y_t$ then $f(y + e_{t'})_t < y_t + 1_{t=t'}$

Lemma \Rightarrow construct the vector r of minimum quotas as follows. Let $\bar{x} = \xi(S)$. The lemma implies that if $f(y_t, \bar{x}_{-t})_t < y_t$ then $f(y'_t, \bar{x}_{-t})_t < y'_t$ for all $y'_t > y_t$. Then there is $r_t \in \mathbf{N}$ such that $y_t > r_t$ if and only if $f(y_t, \bar{x}_{-t}) < y_t$.

Overview

Basic tension: when to trade off students of different types. GS disciplines this tradeoff.

Model		Diversity				Priorities		
	GS	Mon	Dep	Eff	RM	t-WARP	A-SARP	E-SARP
Ideal point	\checkmark	\checkmark				\checkmark		
Schur	\checkmark		\checkmark	\checkmark		\checkmark		
Reserves	\checkmark			\checkmark			\checkmark	
Quotas	\checkmark				\checkmark			\checkmark

Rules in red are rigid. Rules in blue are flexible.

Conclusion

- Gross substitutes & diversity & rationality axioms pin down precise choice rules:
 - 1. ideal-point and Schur-generated generated rules,
 - 2. choice rules generated by quotas and reserves.
- Procedures are Pareto ranked.

Axioms: rationality

Axiom

C satisfies the type-WARP if, $\forall s, s'$, S and S' s.t. $\tau(s) = \tau(s')$ and $s, s' \in S \cap S'$,

 $s \in C(S)$ and $s' \in C(S') \setminus C(S) \Rightarrow s \in C(S').$

Axioms: rationality

Axiom

C satisfies the type-WARP if, $\forall s, s'$, S and S' s.t. $\tau(s) = \tau(s')$ and $s, s' \in S \cap S'$,

 $s \in C(S)$ and $s' \in C(S') \setminus C(S) \Rightarrow s \in C(S').$

Axioms: diversity

Axiom

C satisfies distribution-monotonicity (Mon) if

$$\xi(S) \leq \xi(S') \Rightarrow \xi(C(S)) \leq \xi(C(S')).$$

Axioms: diversity

Axiom

C satisfies distribution-monotonicity (Mon) if

$$\xi(S) \leq \xi(S') \Rightarrow \xi(C(S)) \leq \xi(C(S')).$$

- Strong assumption.
- Doesn't restrict the *form* of diversity.

Law of aggregate demand

Axiom

C satisfies the law of aggregate demand if

 $S \subseteq S' \Rightarrow |C(S)| \le |C(S')|.$

If C satisfies monotonicity, then it also satisfies the law of aggregate demand. Therefore, if C is generated by an ideal point then it satisfies the law of aggregate demand.

Choice rule C is generated by quotas if:

there exists an upper bound on each student type

but otherwise students compete openly for the seats.

Quotas

Choice rule C is generated by quotas if:

 \exists a strict priority \succeq over S and a vector $(r_t)_{t \in T} \in \mathbf{Z}^d_+$ such that for any $S \subseteq S$,

Quotas

Choice rule C is generated by quotas if:

 \exists a strict priority \succeq over S and a vector $(r_t)_{t \in T} \in \mathbf{Z}^d_+$ such that for any $S \subseteq S$,

1.
$$|C(S)^t| \leq r_t;$$

2. if $s \in C(S)$, $s' \in S \setminus C(S)$ and $s' \succ s$, then it must be the case that $\tau(s) \neq \tau(s')$ and $|C(S)^{\tau(s')}| = r_{\tau(s')}$; and

3. if $s \in S \setminus C(S)$, then either |C(S)| = q or $|C(S)^{\tau(s)}| = r_{\tau(s)}$.

Quota-generated choice

Theorem

A choice C satisfies

- gross substitutes,
- ► E-SARP,
- and rejection maximality

if and only if it is quota-generated.

Matching Market

Matching market

A matching market is a tuple $\langle C, S, (\succ_s)_{s \in S}, (C_c)_{c \in C} \rangle$,

- C is a finite set of *schools*
- S is a finite set of *students*
- \succeq_s is a strict preference order over $C \cup \{s\}$
- C_c is a choice rule over S.

A matching in a market $\langle \mathcal{C}, \mathcal{S}, (\succ_s)_{s \in \mathcal{S}}, (\mathcal{C}_c)_{c \in \mathcal{C}} \rangle$ is a function μ defined on $\mathcal{C} \cup \mathcal{S}$ s.t.

- $\mu(c) \subseteq S$
- ► $\mu(s) \in C \cup \{s\}$
- $s \in \mu(c)$ iff $c = \mu(s)$.

A matching μ is stable if

- (individual rationality) $C_c(\mu(c)) = \mu(c)$ and $\mu(s) \succeq_s \{s\};$
- (no blocking) there's no (c, S') s.t

•
$$S' \not\subseteq \mu(c)$$

•
$$S' \subseteq C_c(\mu(c) \cup S')$$

•
$$c \succeq_s \mu(s)$$
 for all $s \in S'$.

Gale-Shapley deferred acceptance algorithm (DA)

Deferred Acceptance Algorithm (DA)

Step 1 Each student applies to her most preferred school. Suppose that S_c^1 is the set of students who applied to school c. School c tentatively admits students in $C_c(S_c^1)$ and permanently rejects the rest. If there are no rejections, stop.

Gale-Shapley deferred acceptance algorithm (DA)

Deferred Acceptance Algorithm (DA)

- Step 1 Each student applies to her most preferred school. Suppose that S_c^1 is the set of students who applied to school c. School c tentatively admits students in $C_c(S_c^1)$ and permanently rejects the rest. If there are no rejections, stop.
- Step k Each student who was rejected at Step k 1 applies to their next preferred school. Suppose that S_c^k is the set of new applicants and students tentatively admitted at the end of Step k - 1 for school c. School c tentatively admits students in $C_c(S_c^k)$ and permanently rejects the rest. If there are no rejections, stop.

Standard results

Theorem

 Suppose that choice rules satisfy gross substitutes, then DA produces the stable matching that is simultaneously the best stable matching for all students.

Standard results

Theorem

- Suppose that choice rules satisfy gross substitutes, then DA produces the stable matching that is simultaneously the best stable matching for all students.
- Suppose, furthermore, that choice rules satisfy the law of aggregate demand then DA is group incentive compatible for students and each school is matched with the same number of students in any stable matching.

The student-proposing deferred-acceptance algorithm = SOSM
Pareto comparisons-1

Theorem

Consider profiles $(C)_{c\in\mathcal{C}}$ and $(C')_{c\in\mathcal{C}}$ that satisfy GS.Suppose that $C_c(S) \subseteq C'_c(S)$ for every $S \subseteq S$ and $c \in C$. Let μ and μ' be the SOSM's with $(C)_{c\in\mathcal{C}}$ and $(C')_{c\in\mathcal{C}}$, respectively. Then $\mu'(s) \succeq_s \mu(s)$ for all s.

Pareto comparisons-1

Theorem

Consider profiles $(C)_{c\in\mathcal{C}}$ and $(C')_{c\in\mathcal{C}}$ that satisfy GS.Suppose that $C_c(S) \subseteq C'_c(S)$ for every $S \subseteq S$ and $c \in C$. Let μ and μ' be the SOSM's with $(C)_{c\in\mathcal{C}}$ and $(C')_{c\in\mathcal{C}}$, respectively. Then $\mu'(s) \succeq_s \mu(s)$ for all s.

Under some assumptions, then:

Reserves are better than quotas for all students.

Schur concave is better than ideal point for all students.

Conclusion

Conclusion

- Gross substitutes & diversity & rationality axioms pin down precise choice rules:
 - 1. ideal-point and Schur-generated generated rules,
 - 2. choice rules generated by quotas and reserves.
- Procedures are Pareto ranked.

Proofs

Let
$$f : \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$$
.

• f is monotone increasing if $y \le x$ implies that $f(y) \le f(x)$;

Let $f : \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$.

- f is monotone increasing if $y \le x$ implies that $f(y) \le f(x)$;
- f satisfies gross substitutes if

$$y \leq x \Rightarrow f(x) \land y \leq f(y);$$

Let $f : \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$.

- f is monotone increasing if $y \le x$ implies that $f(y) \le f(x)$;
- f satisfies gross substitutes if

$$y \leq x \Rightarrow f(x) \land y \leq f(y);$$

► f is within budget if

$$f(x)\in B(x)\equiv\{z\in \mathbf{Z}^d_+:z\leq x ext{ and } |z|\leq q\}.$$

Let $f : \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$.

- f is monotone increasing if $y \le x$ implies that $f(y) \le f(x)$;
- f satisfies gross substitutes if

$$y \leq x \Rightarrow f(x) \land y \leq f(y);$$

f is within budget if

$$f(x)\in B(x)\equiv\{z\in \mathbf{Z}^d_+:z\leq x ext{ and } |z|\leq q\}.$$

Lemma

f is monotone increasing, within budget, and satisfies gross substitutes if and only if there exists $z^* \in \mathbf{Z}^d_+$ s.t. $|z^*| \leq q$, and $f(x) = x \wedge z^*$.

We need to define z^* and \succ .

We need to define z^* and \succ . Let $f : A \subseteq \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$ be defined by $f(x) = \xi(C(S))$ for S with $\xi(S) = x$.

Lemma

f is well defined, within budget, and monotone increasing.

We need to define z^* and \succ . Let $f : A \subseteq \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$ be defined by $f(x) = \xi(C(S))$ for S with $\xi(S) = x$.

Lemma

f is well defined, within budget, and monotone increasing.

Lemma

If C satisfies gross substitutes, then

$$y \leq x \Rightarrow f(y) \geq y \wedge f(x).$$

We need to define z^* and \succ . Let $f : A \subseteq \mathbf{Z}^d_+ \to \mathbf{Z}^d_+$ be defined by $f(x) = \xi(C(S))$ for S with $\xi(S) = x$.

Lemma

f is well defined, within budget, and monotone increasing.

Lemma

If C satisfies gross substitutes, then

$$y \leq x \Rightarrow f(y) \geq y \wedge f(x).$$

 \Rightarrow There exists z^* s.t. $f(x) = x \wedge z^*$.

We need to define \succ .

We need to define \succ .

Define R by sRs' if $\tau(s) = \tau(s')$ and there is some $S \ni s, s'$ such that $s \in C(S)$ and $s' \notin C(S)$.

We need to define \succ .

Define R by sRs' if $\tau(s) = \tau(s')$ and there is some $S \ni s, s'$ such that $s \in C(S)$ and $s' \notin C(S)$. R is transitive: Let sRs' and s'Rs''; we shall prove that sRs''.

We need to define \succ .

Define R by sRs' if $\tau(s) = \tau(s')$ and there is some $S \ni s, s'$ such that $s \in C(S)$ and $s' \notin C(S)$. R is transitive: Let sRs' and s'Rs''; we shall prove that sRs''.

▶ Let S' be such that $s', s'' \in S'$, $s' \in C(S')$, and $s'' \notin C(S')$

We need to define \succ .

Define R by sRs' if $\tau(s) = \tau(s')$ and there is some $S \ni s, s'$ such that $s \in C(S)$ and $s' \notin C(S)$. R is transitive: Let sRs' and s'Rs''; we shall prove that sRs''.

- ▶ Let S' be such that $s', s'' \in S'$, $s' \in C(S')$, and $s'' \notin C(S')$
- $s \in C(S' \cup \{s\})$ (otherwise violation of t-WARP)

We need to define \succ .

Define R by sRs' if $\tau(s) = \tau(s')$ and there is some $S \ni s, s'$ such that $s \in C(S)$ and $s' \notin C(S)$. R is transitive: Let sRs' and s'Rs''; we shall prove that sRs''.

- ▶ Let S' be such that $s', s'' \in S'$, $s' \in C(S')$, and $s'' \notin C(S')$
- ▶ $s \in C(S' \cup \{s\})$ (otherwise violation of t-WARP)
- ► $s'' \notin C(S' \cup \{s\})$ (GS)

Define \succ to be the linear extension of \succ .

Back

► f is efficient if

 $z > f(x) \Rightarrow z \notin B(x).$

► f is efficient if

$$z > f(x) \Rightarrow z \notin B(x).$$

F is Schur-generated if there is z^{*} ∈ Z^d₊ s.t. |z^{*}| ≤ q and a monotone increasing Schur-concave function φ : Rⁿ → R with ν(x) = φ(x − z^{*}).

► f is efficient if

$$z > f(x) \Rightarrow z \notin B(x).$$

F is Schur-generated if there is z^{*} ∈ Z^d₊ s.t. |z^{*}| ≤ q and a monotone increasing Schur-concave function φ : Rⁿ → R with ν(x) = φ(x − z^{*}).

Lemma

f is efficient and satisfies gross substitutes if and only if it is Schur-generated.

Let $f : A \subseteq \mathbf{Z}_{+}^{d} \to \mathbf{Z}_{+}^{d}$ be defined by $f(x) = \xi(C(S))$ for S with $\xi(S) = x$.

Proof: Pareto comparisons

Theorem

There are $z_c^* \in Z$, $c \in C$, s.t

- ▶ if µⁱ results from SOSM using the C_c that minimize the Euclidean distance to z^{*}_c
- ► and if µ^s is the matching resulting from SOSM using Schur-generated choices from z^{*}_c,

then $\forall s \in \mathcal{S}$,

 $\mu^{s}(s) \succeq_{s} \mu(s) \succeq_{s} \mu^{i}(s).$

Proposition

Suppose that C_c and C'_c satisfy gross substitutes and that $C_c(S) \subseteq C'_c(S)$. Then the student-optimal stable matching in $\langle \mathcal{C}, \mathcal{S}, (\succ_s)_{s \in \mathcal{S}}, (C'_c)_{c \in \mathcal{C}} \rangle$ Pareto dominates the student-optimal stable matching in $\langle \mathcal{C}, \mathcal{S}, (\succ_s)_{s \in \mathcal{S}}, (C_c)_{c \in \mathcal{C}} \rangle$.