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A theory of stability in many-to-many matching markets
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We develop a theory of stability in many-to-many matching markets. We give con-
ditions under which the setwise-stable set, a core-like concept, is nonempty and
can be approached through an algorithm. The usual core may be empty. The
setwise-stable set coincides with the pairwise-stable set and with the predictions
of a non-cooperative bargaining model. The setwise-stable set possesses the con-
flict/coincidence of interest properties from many-to-one and one-to-one mod-
els. The theory parallels the standard theory of stability for many-to-one, and
one-to-one, models. We provide results for a number of core-like solutions, be-
sides the setwise-stable set.
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1. INTRODUCTION

Consider a collection of firms and consultants. Each firm wishes to hire a set of consul-
tants, and each consultant wishes to work for a set of firms. Firms have preferences over
the possible sets of consultants, and consultants have preferences over the possible sets
of firms. This is an example of a “many-to-many” matching market. A matching is an
assignment of sets of consultants to firms, and of sets of firms to consultants, so that
firm f is assigned to consultant w if and only if w is also assigned to f . The problem is
to predict which matchings can occur.

Many-to-many matching markets are understood less well than many-to-one mar-
kets, in which firms hire many workers, but each worker works for only one firm. The
many-to-one market model seems to describe most labor markets, so why should one
study many-to-many markets? There are two reasons.
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First, some important real-world markets are many-to-many. One example is firms/
consultants. But the best-known example is probably the market for medical interns
in the U.K. (Roth and Sotomayor 1990). This example is important because it works
through a centralized matching mechanism. Further, the theory of many-to-one match-
ings has helped in understanding and shaping centralized matching mechanisms for
medical interns in the U.S. (Roth and Peranson 1999). Another example is the assign-
ment of teachers to high schools in some countries (35% of teachers in Argentina work in
more than one school). The assignment of teachers to high schools is a clear candidate
for a centralized solution guided by theory. Finally, one can view many-to-many match-
ing as an abstract model of contracting between down-stream firms and up-stream
providers.

Second, even a few many-to-many contracts can make a crucial difference, and most
labor markets have at least a few many-to-many contracts. We present an example (Sec-
tion 2.2) of a many-to-one market where the number of agents can be arbitrarily large
and still one many-to-many contract changes the contracting outcome for all agents. In
the U.S., 76% of total employment is in industries with 5% or more multiple jobholders.1

If even a few multiple jobholders (many-to-many contracts) make an important differ-
ence, we need a many-to-many model to understand the bulk of the labor markets in
the U.S.

We first give an overview of our solutions and results. Then we place our results in
the related literature.

1.1 Overview of solutions

We argue that the core is a potentially problematic solution for many-to-many markets.
One problem is that the core may not be individually rational, in the sense that there are
core matchings where a firm—for example—would be better off firing some worker. An-
other problem, well-known in the literature, is that the core may not be pairwise stable,
in the sense that there may be a firm f and a worker w that are not currently matched,
but where w would like to work for f , and f would like to hire w .

The situation contrasts with one-to-one and many-to-one matching markets, in
which the standard solution is the set of pairwise-stable and individually-rational
matchings. In one-to-one and many-to-one markets, this standard solution coincides
with the core.

We consider alternatives to the core. One alternative is the setwise-stable set of Roth
(1984) and Sotomayor (1999): the set of individually-rational matchings that cannot be
blocked by a coalition that forms new links only among its members, but may preserve
its links to agents outside of the coalition. A second alternative is the individually-
rational core (defined implicitly by Sotomayor (1999)): the set of individually-rational
matchings that cannot be blocked using an individually-rational matching. A third al-
ternative is the pairwise-stable set, described above.

1Source: 2002 Annual averages of employed multiple job holders by industry, Division of Labor Force
Statistics, U.S. Bureau of Labor Statistics.
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A fourth alternative is the fix-point set: matchings where each agent a is choosing
her best set of partners, out of the set of potential partners who, given their current
match, are willing to link to a . In a matching in the fix-point set, a firm, for example,
might be better off with a different set of workers than the one she has, but this set must
involve at least one worker who prefers not to add the firm to his list of employers. The
definition of the fix-point set is circular; it is defined as the set of fixed points of a certain
operator.

1.2 Overview of results

We consider two restrictions on agents’ preferences. The first is substitutability, first in-
troduced by Kelso and Crawford (1982) and used extensively in the matching literature.
The second is a strengthening of substitutability that we call strong substitutability.

We explain the two hypotheses. Let f be a firm. Substitutability (Definition 3.4) of f ’s
preferences requires: “if hiring w is optimal when the set of available workers is {w }∪S′,
and S is a subset of S′, then hiring w must still be optimal when the set of available work-
ers is {w } ∪S.” Strong substitutability (Definition 6.2) requires: “if hiring w is optimal
when the set of available workers is {w } ∪S′, and the firm prefers S′ to S, then hiring w
must still be optimal when the set of available workers is {w } ∪S.” Substitutability re-
quires that, if w is chosen from a given set of workers, she is chosen also from a smaller
set of workers. Strong substitutability, on the other hand, says that, if w is chosen from
a given set of workers, she is chosen also from a worse set of workers.

Strong substitutability is stronger than substitutability. But it is weaker than separa-
bility, and not stronger than responsiveness—two other assumptions used in matching
theory (separability is used extensively also in social choice).

We now enumerate and briefly discuss our main results.
For economy of exposition, we present results as results on the fix-point set, which

we denote by E (P). The implications for the other solutions should be clear at all times.
If preferences are substitutable, the fix-point set is nonempty, and we give an algo-

rithm for finding a fix-point matching; the fix-point set equals the set of individually ra-
tional and pairwise-stable matchings; a basic non-cooperative bargaining game—firms
propose to workers, then workers propose to firms—has the fix-point set as its set of
subgame-perfect equilibrium outcomes; a matching in the fix-point set that is blocked
(in the sense of the core) must be blocked in a “non-individually-rational way,” through
a coalition of agents that all have incentives to deviate from the block. Note that these
results translate into results about the pairwise-stable set, as it equals the fix-point set.

If firms’ preferences are substitutable, and workers’ preferences are strongly substi-
tutable, the fix-point set equals the set of setwise-stable matchings, and a matching in
the fix-point set must be in the individually-rational core. Thus setwise-stable match-
ings exist, the individually-rational core is nonempty, and our algorithm finds a match-
ing in the individually-rational core that is setwise stable. Our model is symmetric; the
same results hold when firms’ preferences are strongly substitutable and workers’ pref-
erences are substitutable.

If preferences are substitutable, the fix-point set has certain properties one can in-
terpret as worker-firm conflict of interest and worker-worker (or firm-firm) coincidence
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of interest: the fix-point set is a lattice. That the fix-point set is a lattice implies that
there is a “firm-optimal” fix-point matching—a matching that is simultaneously better
for all firms, and worse for all workers, than any other matching in the fix-point set—and
a “worker-optimal” matching—one that is best for all workers, and worse for all firms.
Besides the lattice-structure, there are other conflict/coincidence of interest properties
from one-to-one and many-to-one markets (Roth 1985). We extend these properties to
many-to-many markets. If preferences are strongly substitutable, the lattice operations
on the fix-point set are the standard lattice operations from one-to-one matching mar-
kets. The stated properties translate to the pairwise-stable, and setwise-stable, sets by
their relation to the fix-point set under the various restrictions on preferences.

If firms’ preferences are substitutable and workers’ preferences are strongly sub-
stitutable, the theory of many-to-many matchings parallels the theory of many-to-one
matchings: the setwise-stable set equals the pairwise-stable set, and the setwise-stable
set is a nonempty lattice. In the standard many-to-one model, firms’ preferences are
substitutable and workers’ preferences are trivially strongly substitutable. So our model
encompasses standard many-to-one theory.

In sum, we give conditions (substitutability, strong substitutability) under which our
alternatives to the core are nonempty and can be approached through an algorithm. We
emphasize that—even under the strongest of our hypotheses—the core may be empty.
The setwise-stable set, the fix-point set, and the pairwise-stable set are identical and
possess a lattice structure. The setwise-stable set, the fix-point set, and the pairwise-
stable set coincide with the outcomes of a simple non-cooperative bargaining model.
We reproduce and extend conflict/coincidence of interest properties.

1.3 Related literature

Setwise stability was first defined by Roth (1984). Sotomayor (1999) emphasizes the dif-
ference between setwise stability, pairwise stability, and the core. Sotomayor (1999)
presents examples where the setwise-stable set is empty; preferences in her examples
are not strongly substitutable. Sotomayor (1999) refers to a definition of core that co-
incides with our individually-rational core. We are the first to prove positive results
on the setwise-stable set and the individually-rational core, in particular that they are
nonempty.

The previous literature on many-to-many matchings has results for the pairwise-
stable set. Roth (1984) proved that, with substitutable preferences, the pairwise-stable
set is nonempty, and there are firm- and worker-optimal pairwise-stable matchings.
Blair (1988) proved that the pairwise-stable set has a lattice structure. A standard ob-
jection (Roth and Sotomayor 1988) to pairwise-stability is that it does not allow for more
general coalitions. We show that, under our structure on preferences, allowing for more
general coalitions does not make a difference. As by-products of our results, we repro-
duce Roth’s and Blair’s results on pairwise stability using fixed-point methods—similar
methods have been used in matching contexts by Adachi (2000), Echenique and Oviedo
(2004), Hatfield and Milgrom (2005), Roth and Sotomayor (1988), and Fleiner (2003).
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Blair’s lattice structure relies on a somewhat artificial order; under our strongest struc-
ture, we obtain a lattice structure with the standard order in one-to-one theory.

Roth (1985) discusses global conflict/coincidence of interest properties, beyond the
lattice property of pairwise-stable matchings. We extend Roth’s results to many-to-many
matchings.

Recently, Sotomayor (2004) proved that, with responsive preferences, a mechanism
that coincides with the one in Section 7, implements the pairwise-stable matchings. She
also proves that, under a restriction on preferences she calls “maxmin,” the pairwise-
stable matchings are in the core. Sotomayor claims that one can modify her proof to
show that pairwise-stable matchings are setwise stable.

In independent work, Konishi and Ünver (2005) show that a concept they call cred-
ible group stability is equivalent to pairwise stability. Credible group stability is similar
in spirit (but logically unrelated) to our bargaining set (defined in Section 4.3). Konishi
and Ünver require preferences to be responsive and satisfy a separability assumption;
their model is neither more nor less general than our model.

A precedent to our results on a bargaining set is Klijn and Massó (2003). Klijn and
Massó study Zhou’s bargaining set for the one-to-one matching model. The bargain-
ing set we propose is different from Zhou’s bargaining set. We compare the two in
Section 4.3.

Alcalde et al. (1998) and Alcalde and Romero-Medina (2000) prove that the core is
implemented in certain many-to-one models by simple mechanisms, similar to the one
we present in Section 7.

Alkan (2001, 2002) presents properties (including distributivity) of the lattice struc-
ture on pairwise-stable matchings, in many-to-many markets with additional structure
on preferences. Martínez et al. (2004) present an algorithm that finds all the pairwise-
stable matchings in a many-to-many matching market.

2. MOTIVATING EXAMPLES

We give two motivating examples. The first example shows that the core may be a prob-
lematic solution. The second example shows that many-to-many matchings can be im-
portant, even when only a small number of agents on one side of the market are allowed
to match with more than one agent on the other side.

2.1 A problem with the core

EXAMPLE 2.1. Suppose the set of workers is W = {w1, w2, w3} and the set of firms is F =
�

f 1, f 2, f 3
	

. Workers’ preferences are

P(w1) : f 3, f 2 f 3, f 1 f 3, f 1, f 2

P(w2) : f 1, f 1 f 3, f 1 f 2, f 2, f 3

P(w3) : f 2, f 1 f 2, f 2 f 3, f 3, f 1.

The notation means that w1 prefers
�

f 3
	

to
�

f 2, f 3
	

,
�

f 2, f 3
	

to
�

f 1, f 3
	

,
�

f 1, f 3
	

to
�

f 1
	

,
and so on. We often omit braces ({. . .})when denoting sets. If A ⊆ F is not listed it means
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that ; is preferred to A. Firms’ preferences are

P( f 1) : w3, w2w3, w1w3, w1, w2

P( f 2) : w1, w1w3, w1w2, w2, w3

P( f 3) : w2, w1w2, w2w3, w3, w1.

Consider the matching µ̂ defined by µ̂(w1) = { f 2, f 3}, µ̂(w2) = { f 1, f 3}, and µ̂(w3) =
{ f 1, f 2}.

Note that µ̂ is a core matching: To make f 1—for example—better off than in µ̂, f 1

should hire only w3, which would make w2 hired only by f 3, so w2 would be worse off.
Now, if f 1 is in a blocking coalition C , w3 must be in C . Then f 2 must be in C , or w3

would only be hired by f 1 and thus worse off. But f 2 inC implies that w1 must be inC .
Then f 3 must be inC , so w2 must also be inC—a contradiction, as w2 is worse off.

But is µ̂ a reasonable prediction? Under µ̂, f 1 is matched to w2 and w3, but would
in fact prefer to fire w2. The problem is that f 1 is not “allowed” to fire w2 because—as
argued above— f 1 would have to form a block that includes w2 and w2 is worse off if she
is fired. ◊

Example 2.1 shows that core matchings need not be “individually rational.” There
are actions, like firing a worker, that an agent should be able to implement on its own,
but that the definition of core ends up tying into a larger coalition. In the example, the
members of the larger coalition include the worker to be fired, so not all members of the
coalition will be better off by the firing.

An additional problem, pointed out by Blair (1988) and Roth and Sotomayor (1990,
page 177) is that core matchings may not be pairwise stable (see also Sotomayor 1999).

2.2 Many-to-many vs. many-to-one

There is a large literature on one-to-one and many-to-one matchings. Many-to-many
matchings constitute a more general model. We have argued that, in many cases, the
generality matters. Here we present an example supporting our argument; we observe
that the presence of a few many-to-many contracts can change the matching outcome
for all agents.

In Example 2.2, if one worker is allowed to match with more than one firm, the result-
ing stable/core matching changes for a large number of agents. Thus, even in markets
where one-to-one, or many-to-one, is the rule, a few many-to-many contracts can make
a big difference. The example is important because most labor markets have at least a
few many-to-many contracts. Thus one needs a many-to-many model to study labor
markets.

EXAMPLE 2.2. Let W = {w , w1, . . . , w2K } and F = { f 1, . . . , f K , f }. The preferences of work-
ers wk , for k = 1, . . . , 2K , are the same:

P(wk ) : f 1, f 2, . . . , f K , f .

The preferences of w are
P(w ) : f 1 f , f , f 1.
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The preferences of firms f k for k = 2, . . . , K are

P( f k ) : w2k−2w2k−1, w2k−1w2k , w w2k .

Firms f 1 and f have preferences

P( f 1) : w w1, w1w2

P( f ) : w , w1, w2, . . . , wK .

Consider matchings µ and µ′ defined by

f 1 f 2 . . . f k . . . f K f
µ= w1w2 w3w4 . . . w2k−1w2k . . . w2K−1w2K w
µ′ = w w1 w2w3 . . . w2k−2w2k−1 . . . w2K−2w2K−1 w .

First, if w is not allowed to match with more than one firm, then µ is the unique
core (and stable) matching. If w is allowed to match with more than one firm, then
〈{w } ,{ f 1, f },µ′〉 blocks µ. Further, µ′ is the unique core matching. ◊

The story behind the example should be familiar to academics. Suppose that firms
are universities. All workers wk agree about the ranking of firms: f 1 is the best, fol-
lowed by f 2, etc. Firm f is the worst. However, worker w , an established and coveted
researcher in her field, has a strong desire to work at f for geographic reasons ( f is in the
town where w grew up, and that is where her family lives). If part-time (many-to-many)
appointments are not allowed, w will work only for f and the resulting matching is, in
all likelihood, µ. On the other hand, if w is allowed to have part-time appointments at f
and f 1, µ′ results.

3. PRELIMINARY DEFINITIONS

A (strict) preference relation P on a set X is a complete, anti-symmetric, and transitive
binary relation on X . We denote by R the weak preference relation associated to P ; so
x R y if and only if x = y or x P y . If A is a set, we refer to a collection of preference
relations (P(a ))a∈A as a preference profile.

3.1 The model

The model has three primitive components:

• a finite set W of workers

• a finite set F , disjoint from W , of firms

• a preference profile P = (P(a ))a∈F∪W , where P(a ) is a preference relation over 2F

if a ∈W and over 2W if a ∈ F .
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For any agent a ∈ F ∪W , a set of partners of a is a subset of F if a ∈W and a subset
of W if a ∈ F .

Denote the preference profile (P(w ))w∈W by P(W ) and (P( f )) f ∈F by P(F ).
The assignment problem consists of matching workers with firms, allowing that

some firms or workers remain unmatched.
Formally, a matching µ is a mapping from the set F ∪W into the set of all subsets of

F ∪W such that for all w ∈W and f ∈ F :

• µ(w )∈ 2F

• µ( f )∈ 2W

• f ∈µ(w ) if and only if w ∈µ( f ).

We denote byM the set of all matchings.
Given a preference relation P(a ), the sets of partners preferred by a to the empty set

are called acceptable.
Given an agent a and a set of partners S of a , let Ch (S, P(a )) denote agent a ’s most-

preferred subset of S according to a ’s preference relation P(a ). So Ch (S, P(a )) is the
unique subset S′ of S such that S′ P(a )S′′ for all S′′ ⊆S, S′′ 6=S′.

We should note that we believe our main results extend to the model of matching
with contracts proposed by Hatfield and Milgrom (2005). In their model, each matching
specifies not only how individuals are matched, but also additional characteristics of
how they match (for example, at which salary). Our method of studying the fixed points
of a certain operator is similar to theirs, and our results seem to translate to their model.

We do not explicitly impose bounds on the number of partners an agent can have,
called “quotas” in the literature. These can be incorporated in the agents’ preferences
by requiring that sets are partners that are too large be unacceptable.

3.2 Individual rationality, stability, and core

For each agent a , let P(a ) be a preference relation. A matching µ is individually rational
ifµ(a )R(a ) A, for all A ⊆µ(a ), for all a ∈W ∪F . Hence a matching is individually rational
if and only if

µ(a ) =Ch (µ(a ), P(a )),

for all a ∈ F ∪W .
Individual rationality captures the idea that links are voluntary: if agent a prefers a

proper subset A (µ(a ) of partners over µ(a ), then she will upset µ by severing her links
to the agents in µ(a ) \A. The definition is from Roth and Sotomayor (1990, p. 173).

Let w ∈W , f ∈ F , and let µ be a matching. The pair (w , f ) is a pairwise block of µ if
w /∈µ( f ), w ∈Ch (µ( f )∪{w }, P( f )), and f ∈Ch (µ(w )∪{ f }, P(w )).

DEFINITION 3.1. A matching µ is pairwise stable if it is individually rational and there is
no pairwise block of µ. Denote the set of pair-wise stable matchings by S(P).
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DEFINITION 3.2. A block of a matching µ is a triple 〈W ′, F ′,µ′〉, where F ′ ⊆ F , W ′ ⊆W ,
and µ′ ∈M are such that

(i) F ′ ∪W ′ 6= ;

(ii) µ′(s )⊆ F ′ ∪W ′ for all s ∈ F ′ ∪W ′

(iii) µ′(s )R(s )µ(s ) for all s ∈ F ′ ∪W ′

(iv) µ′(s ) P(s )µ(s ) for some s ∈ F ′ ∪W ′.

In words, a block of a matching µ is a “recontracting” between a subset of workers
and firms, so that the agents who recontract are all weakly better off, and at least one of
them is strictly better off. Say that 〈W ′, F ′,µ′〉 blocks µ if 〈W ′, F ′,µ′〉 is a block of µ.

DEFINITION 3.3. A matching µ is a core matching if there are no blocks of µ. Denote the
set of core matchings by C (P).

An example with an empty core is Example 2 in Konishi and Ünver (2005). We do
not reproduce the example here, but one can verify that it falls under the strongest of
our restrictions on preferences. Thus the setwise-stable set, for example, is nonempty
when the core may be empty.

3.3 Substitutability

DEFINITION 3.4. An agent a ’s preference relation P(a ) satisfies substitutability if, for any
sets S and S′ of partners of a with S ⊆S′,

b ∈Ch (S′ ∪b , P(a )) implies b ∈Ch (S ∪b , P(a )).

A preference profile P = (P(a ))a∈A is substitutable if, for each agent a ∈ A, P(a ) satis-
fies substitutability.

4. SETWISE STABILITY

4.1 The setwise-stable set

DEFINITION 4.1. A setwise block to a matching µ is a triple 〈W ′, F ′,µ′〉, where F ′ ⊆ F ,
W ′ ⊆W , and µ′ ∈M are such that

(i) F ′ ∪W ′ 6= ;

(ii) µ′(s ) \µ(s )⊆ F ′ ∪W ′ for all s ∈ F ′ ∪W ′

(iii) µ′(s ) P(s )µ(s ) for all s ∈ F ′ ∪W ′

(iv) µ′(s ) =Ch (µ′(s ), P(s )) for all s ∈ F ′ ∪W ′.

DEFINITION 4.2. A matchingµ is in the setwise-stable set ifµ is individually rational, and
there are no setwise blocks to µ. Denote the set of setwise-stable matchings by SW (P).
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This definition of SW (P) is from Sotomayor (1999, Definition 2, pages 59–60). The
crucial difference between setwise stability and the core is in item (ii) of Definitions 3.2
and 4.1. By item (ii) of Definition 4.1, a setwise block needs only involve the agents
who form new matches in the block. The justification is that one only needs an agent’s
consent to form a new match, not to maintain an existing match. Definition 3.2, in
contrast, requires all agents involved in the blocking match to be part of the block; this
feature is why the attempted “firing” fails Example 2.1.

Item (iv) of Definition 4.1 contains an element of forward-looking behavior: we con-
sider only blocks that are individually rational, so the agents who engage in blocking do
not have an incentive to defect from the block. Item (4) suggests a relation with some
notion of a bargaining set, a forward looking solution. We prove in Section 6 that a rela-
tion exists.

Recall Example 2.1. We argued that the core matching µ̂ (in fact the unique core
matching) is not a good prediction. Consider, instead, the matching defined by µ(w i ) =
{ f i }, for i = 1, 2, 3. It is easy, if somewhat cumbersome, to check that µ is setwise stable.

It also has some interest to see why µ in Example 2.1 is not a core matching; 〈W, F, µ̂〉
blocks µ, as µ̂(w1) = { f 2, f 3} P(w1) µ(w1), µ̂(w2) = { f 1, f 3} P(w2) µ(w2), and µ̂(w3) =
{ f 1, f 2} P(w3)µ(w3). Similarly for firms. But this is a block from which all agents wish to
unilaterally deviate. We characterize the blocks of setwise-stable matchings in Section 8.

Note, incidentally, that µ is not Pareto optimal, as it is Pareto dominated by µ̂. Thus
setwise stable matchings need not be Pareto optimal.

4.2 The individually-rational core

DEFINITION 4.3. A block 〈W ′, F ′,µ′〉 is individually rational if µ′(s ) = Ch (µ′(s ), P(s )) for
all s ∈ F ′ ∪W ′.

DEFINITION 4.4. A matching µ is in the individually-rational core if it is individually ra-
tional and has no individually-rational blocks. Denote the set of individually-rational
core matchings by IRC (P).

Sotomayor (1999) restricts attention to individually-rational matchings. So she im-
plicitly refers to the individually-rational core.

4.3 A bargaining set

Let µ be a matching.

DEFINITION 4.5. An objection to µ is a triple 〈W ′, F ′,µ′〉, where F ′ ⊆ F , W ′ ⊆ W , and
µ′ ∈M are such that (i), (ii), and (iii) from Definition 4.1 are satisfied.

Let 〈W ′, F ′,µ′〉 be an objection to µ. A counterobjection to µ is an objection 〈W ′′, F ′′,
µ′′〉 to µ′ such that F ′′ ⊆ F ′ and W ′′ ⊆W ′.

DEFINITION 4.6. A matching µ is in the bargaining set if µ is individually rational and
there are no objections without counterobjections to µ. Denote the bargaining set by
B (P).
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The bargaining set reflects forward-looking agents; an objection would not be im-
plemented if the agents who must carry out the objection have incentives to deviate.

For the one-to-one model, Klijn and Massó (2003) prove that Zhou’s bargaining set
(Zhou 1994) coincides with a weak pairwise-stability solution. The bargaining set we
propose differs from Zhou’s because counterobjections are allowed only from “within”
the objecting coalition. With more general counterobjections, one gets a larger solution,
and our results would then imply that the larger solution is nonempty. But Zhou’s bar-
gaining set rules out counterobjections that come only from within—so our results do
not imply that Zhou’s bargaining set is nonempty. Still, it seems to us that B (P) captures
the strategic reasoning underlying Zhou’s bargaining set.

4.4 The Blair core

We introduce a solution using Blair’s (1988) order on sets of partners to define blocks
The definition of a block (Definition 3.2) formally makes sense for any profile of bi-

nary relations (B (s ))s∈F∪W . Accordingly, one can define the core matchings C (B ) for any
profile B = (B (s ))s∈F∪W of binary relations.

In particular, given a preference profile P = (P(s )), we can construct a binary relation
R B = (R B (s )) by saying that A R B (s ) D if and only if A = D or A = Ch (A ∪D, P(s )). The
strict relation P B is A R B (s ) D if and only if A 6= D and A = Ch (A ∪D, P(s )). We call the
resulting core, C (P B ), the Blair-Core, as Blair (1988) introduced the relation P B .

Note that a matching µ is in the Blair-Core if it is immune to deviations µ′ such that
µ′(a ) = Ch (µ′(a )∪µ(a ), P(a )). But µ′(a ) = Ch (µ′(a )∪µ(a ), P(a )) is only sufficient, and
not necessary, for µ′(a ) P(a ) µ(a ). So the Blair-Core contains more matchings than the
core.

4.5 Strong pairwise stability

We introduce a solution that requires stability against blocks by a firm and a set of work-
ers. This solution plays an auxiliary role in our results (similar to its role in Echenique
and Oviedo 2004); it reflects the effect of strengthening the structure on only one side of
the market.

A pair (D, f )∈ 2W ×F with D 6= ; blocks* µ if D∩µ( f ) = ;, D ⊆Ch (µ( f )∪D, P( f )), and
f ∈Ch (µ(w )∪ f , P(w )) for all w ∈D.

DEFINITION 4.7. A matching µ is stable* if it is individually rational and there is no pair
(D, f )∈ 2W × F that blocks* µ. Denote the set of stable* matchings by S∗(P).

5. A FIXED-POINT APPROACH

We construct a map T on the set of “pre-matchings,” a superset ofM . We shall use the
fixed points of T to prove results about the various notions of stability.

5.1 Pre-matchings

Say that a pair ν = (νF ,νW )with νF : F → 2W and νW : W → 2F is a pre-matching. Let VW

(VF ) denote the set of all νW (νF ) functions. Thus, VF = (2W )F , VW = (2F )W . Denote the
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set of pre–matchings ν = (νF ,νW ) by V =VF ×VW . We often refer to νW (w ) by ν (w ) and
to νF ( f ) by ν ( f ).

A pre-matching ν is a matching if ν is such that νW (w ) = f if and only if w ∈ νF ( f ).

5.2 The map T

Let ν be a pre-matching, and let

U ( f ,ν ) = {w ∈W : f ∈Ch (ν (w )∪{ f }, P(w ))}

and
V (w ,ν ) = { f ∈ F : w ∈Ch (ν ( f )∪{w }, P( f ))}.

The set V (w ,ν ) is the set of firms f that are willing to hire w , possibly after firing some of
the workers it was assigned by ν . The set U ( f ,ν ) is the set of workers w that are willing
to add f to its set of firms ν (w ), possibly after firing some firms in ν (w ).

Now, define T :V →V by

(Tν )(s ) =

(

Ch (U (s ,ν ), P(s )) if s ∈ F

Ch (V (s ,ν ), P(s )) if s ∈W.

The map T has a simple interpretation: (Tν )( f ) is firm f ’s optimal team of workers,
among those willing to work for f , and (Tν )(w ) is the set of firms preferred by w , among
the firms that are willing to hire w .

Let the fix-point set be the set of fixed points of T ; we denote it by E (P). Formally,

E (P) = {ν ∈V : ν = Tν}.

Recall Example 2.1 and matching µ from Section 4.1. Note that µ is a setwise-stable
matching and a fixed-point of T : V (w1,µ) = { f 1, f 2}, so { f 1} = Ch (V (w1,µ), P(w1)),
V (w2,µ) = { f 2, f 3}, so { f 2} = Ch (V (w2,µ), P(w2)), and V (w3,µ) = { f 1, f 3}, so { f 3} =
Ch (V (w3,µ), P(w2)). Similarly for firms.

Further, µ̂, the core matching in Example 2.1, is not a fixed-point of T , as U ( f 1, µ̂) =
{w2} and {w2, w3} 6=Ch (U ( f 1, µ̂), P( f 1)).

We now describe an algorithm that is associated with the techniques we use to prove
our results: the techniques exploit the fixed points of T , and the algorithm is designed
to find a fixed point of T . The definition of the algorithm is very simple.

DEFINITION 5.1. The T -algorithm is the procedure of iterating T , starting at some pre-
matching ν .

Say that the T -algorithm stops at ν ′ ∈ V if there is ν ∈ V and K such that ν ′ = T k (ν )
for all k ≥ K . Note that the T -algorithm stops at ν ′ only if ν ′ ∈ E (P).

The prematching at which one starts the iterations of T matters. We consider two
candidates: Let ν0 and ν1 be the prematchings defined by ν0( f ) = ν1(w ) = ;, ν0(w ) = F ,
and ν1( f ) =W for all w and f . We consider the T -algorithm starting at prematchings ν0

and ν1.
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The T -algorithm is different from Gale and Shapley’s (1962) deferred-acceptance al-
gorithm, in the sense that it behaves differently in certain cases. Echenique and Oviedo
(2004) present an example where Gale and Shapley’s algorithm is “fooled” and finds
a matching that is not stable; the T -algorithm, in contrast, never finds a non-stable
matching. That said, the T -algorithm performs intuitively similar steps to Gale and
Shapley’s; it “offers” matches sequentially to an agent’s best available partners. And,
under the right structure on preferences, both algorithms find the same pairwise-stable
matching. See Echenique and Oviedo (2004) for a more detailed comparison of the al-
gorithms.2

6. NONEMPTINESS OF SOLUTIONS AND RELATIONSHIPS AMONG SOLUTIONS

We organize the results according to the structure needed on preferences. In some re-
sults, we impose structure on only one side of the market. We always impose weakly
more structure on workers’ preferences. The model is symmetric, so it should be clear
that appropriate versions of the results are true, interchanging the structure on workers’
and firms’ preferences.

The following table lists the solutions for easy reference when reading the results.

S(P) Pairwise stable set (Definition 3.1)
C (P) Core (Definition 3.3 )
SW (P) Setwise stable set (Definition 4.2)
IRC (P) Individually-rational core (Definition 4.4)
B (P) Bargaining set (Definition 4.6)
S∗(P) Strong pairwise stability (Definition 4.7)
E (P) Fix-Point set

Table 1 on page 256 contains a summary of results in the paper.

6.1 Results under substitutability

THEOREM 6.1. E (P)⊆S∗(P)⊆S(P). Further:

(i) If P(W ) is substitutable, then

S∗(P) = E (P)⊆C (P B ).

(ii) If P is substitutable, then S(P) = E (P), E (P) is nonempty, and the T -algorithm stops
at a matching in E (P).

For a proof see Section 11.

2The T -algorithm is also different from Martínez et al.’s (2004) algorithm for finding all pairwise-stable
matchings; their algorithm builds on Gale and Shapley’s algorithm by successively truncating preferences
(while maintaining substitutability) to find all the pairwise-stable matchings.
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6.2 Results under strong substitutability

DEFINITION 6.2. An agent a ’s preference ordering P(a ) satisfies strong substitutability
if, for any sets S and S′, with S′ P(a )S,

b ∈Ch (S′ ∪b , P(a )) implies b ∈Ch (S ∪b , P(a )).

Say that a preference profile P is strongly substitutable if P(a ) satisfies strong substi-
tutability for every agent a .

PROPOSITION 6.3. If P(a ) satisfies strong substitutability, then it satisfies substitutability.

PROOF. Let S and S′ be sets of agents, with S ⊆S′. Suppose that b ∈C ′ =Ch (S′∪b , P(a )).
We now prove that b ∈Ch (S ∪b , P(a )).

Note that C ′ =Ch (C ′, P(a )). Now, S∪b ⊆S′∪b implies that C ′ R(a )S∪b . If C ′ =S∪b
then S ∪b =Ch (S ∪b , P(a )) and we are done. Let C ′ P(a )S ∪b . Then b ∈Ch (S ∪b , P(a )),
as P(a ) satisfies strong substitutability. �

THEOREM 6.4. SW (P)⊆E (P) and B (P)⊆E (P). Further, if P(F ) is substitutable and P(W )
is strongly substitutable, then E (P) = SW (P) = B (P) and E (P)⊆ IRC (P).

For a proof, see Section 12.
Thus, when one side of the market has strongly substitutable preferences, we can

characterize the setwise-stable set. In light of Proposition 6.3, Theorem 6.4 implies that
S(P) = SW (P) and that S(P) = B (P).

THEOREM 6.5. If P(F ) is substitutable and P(W ) is strongly substitutable, then S(P),
IRC (P), SW (P), and B (P), are nonempty. The T -algorithm finds a matching in S(P),
IRC (P), SW (P), and B (P).

For a proof, see Section 12.

REMARK 6.6. Example 4 in Konishi and Ünver (2005) has agents with substitutable pref-
erences and a pairwise-stable matching that is not in SW (P), thus Theorem 6.4 is tight.
(We thank Hideo Konishi and Utku Ünver for pointing this out.) Sotomayor (1999) pre-
sents an example where the set of setwise-stable matchings is empty. One can show that
preferences in her example are not strongly substitutable.

REMARK 6.7. We can weaken the definition of strongly substitutable as follows. For all S
and S′ with S =Ch (S, P(a )), S′ =Ch (S′, P(a )), and S′ P(a )S,

b ∈Ch (S′ ∪b , P(a )) implies b ∈Ch (S ∪b , P(a )).

All our results go through under this weaker definition. We chose the stronger formula-
tion in our exposition to make the comparison with earlier work easier—it makes com-
parison with substitutability easier. But when we check that an example violates strong
substitutability, we check for the weaker version.
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6.3 Discussion of strong substitutability

How strong is the assumption of strong substitutability? We lack a characterization of
strong substitutability—just as a characterization of traditional (Kelso–Crawford) sub-
stitutability is unavailable.3 But we give a feeling for the assumption by discussing pref-
erences that are built from preferences over individual workers.

First, strong substitutability is weaker than the assumption of separability used in
matching models (Crawford and Knoer 1981; Dutta and Massó 1997; Sönmez 1996).
Separability says that, for any set of partners S, S ∪b P S \b if and only if b P ; (separa-
bility has been used quite extensively in social choice theory; e.g. Barberà et al. (1991)).
The proof that separability implies strong substitutability is straightforward; we omit it.

The statement that separability implies strong substitutability is true when agents
do not have quotas; a quota for an agent a is a number q such that if S has more than
q members, then ; P S. Thus it applies for example to Kelso and Crawford’s (1982) orig-
inal model, as well as the treatment in Chapter 6 of Roth and Sotomayor (1990). These
models rule out that players have quotas.

Second, strong substitutability is not stronger than responsiveness, another com-
mon assumption is the matching literature (see Roth and Sotomayor (1990) for a defi-
nition of responsiveness). One can easily write examples of non-responsive preferences
that satisfy strong substitutability.

Third, to give a feeling for how restrictive strong substitutability is, consider the fol-
lowing example with four workers and a quota of two.4

EXAMPLE 6.8. Let W = {w1, w2, w3, w4}. Suppose that a firm has preferences over indi-
vidual workers w1 P w2, w2 P w3 and w3 P w4.

Suppose the firm has a quota of 2, so only sets with two or fewer elements are ac-
ceptable. How can we rank the sets

{w1, w2} ,{w1, w3} ,{w1, w4} ,{w2, w3} ,{w2, w4} ,{w3, w4}

building from preferences over individuals? Obviously we need {w1, w2} P {w1, w3} ,
{w2, w3} P {w3, w4}, and so on. There are two possibilities:

P1 : w1w2, w1w3, w1w4, w2w3, w2w4, w3w4, w1, w2, w3, w4

P2 : w1w2, w1w3, w2w3, w1w4, w2w4, w3w4, w1, w2, w3, w4

The ranking of {w1, w4} and {w2, w3} is undetermined; P1 ranks {w1, w4} first, P2

ranks {w2, w3} first. Both P1 and P2 are substitutable, but only P2 is strongly substi-
tutable: Note that w4 ∈Ch ({w1w4} , P1) and {w1, w4} P1 {w2, w3}, but w4 /∈Ch ({w2, w3}∪
w4, P1). So P1 is not strongly substitutable. It is simple, if tedious, to check that P2 is
strongly substitutable. ◊

3Echenique (2004) has a partial characterization that allows him to count the number of substitutable
rules and show they are a small set of rules.

4 The right separability assumption for models with quotas is q-separability, developed by Martínez et al.
(2000). But q-separability does not imply strong substitutability.
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Example 6.8 points to a general procedure for obtaining strongly-substitutable pref-
erences from preferences over individuals when there is a quota. Let (S ∪b ) P (S \b ) if
and only if b P ;, unless S has the maximum number of elements allowed by the quota.
If S and S′ have the maximum number of elements, let S P S′ if the worst agent in S is
preferred to the worst agent in S′.

Example 6.8 suggests that strong substitutability may be a strong assumption when
a) agents have a quota, b) agents have responsive preferences, and c) all sets that exhaust
the quota are acceptable. Even in this case, we believe strong substitutability is valuable
because it provides the wealth of results we document here and is easily interpretable
economically.

Finally, in applications, the set of acceptable partners is often quite small. And both
substitutability and strong substitutability are less restrictive if fewer sets of partners
are acceptable (Remark 6.7). For example, the size of the set of acceptable hospitals
in the National Resident Matching Program in 2003 was on average 7.45, out of 3719
programs.5 To be fair, this number could be artificially low because agents strategically
report shorter rank-order lists in the NRMP. In a recent proposal to match high schools
and students in New York City by a Gale-Shapley algorithm, students would be required
to rank 12—out of over 200—acceptable high schools. Students and parents complain
that 12 is too long a list (New York Times story by David M. Herszenhorn, “Revised Ad-
mission for High Schools,” on October 3rd, 2003).

When the set of acceptable partners is small, strong substitutability is quite com-
mon, at least in the sense that one struggles to find preferences that do not satisfy it.
See, for example, Examples 6.6 in Roth and Sotomayor (1990) and 5.2 in Blair (1988).

7. AN IMPLEMENTATION OF SW (P)

We present a simple (non-cooperative) bargaining game. The set of subgame-perfect
Nash equilibrium (SPNE) outcomes of the game coincides with the setwise-stable set,
so the game fully implements SW (P) in a complete-information environment.

The game is described as follows. First, every firm f proposes a set of partners
η f ⊆ W . Firms make these proposals simultaneously. Second, after observing all the
firms’ proposals, each worker w proposes a set of partners ξw ⊆ F . Workers make these
proposals simultaneously. Finally, a matching µ results by w ∈µ( f ) if and only if w ∈η f

and f ∈ ξw . In words, w and f are matched if and only if f proposes w as its partner
and w proposes f as its partner. Given a preference profile P , this description defines
an extensive-form game, Γ(P).

A strategy for a firm f is a proposal η f ⊆W . A strategy for a worker w is a collection,
ξw , with one proposal ξw (η) ⊆ F for each profile η = (η f ) f ∈F of firms’ proposals. A
strategy profile (η∗,ξ∗) is a subgame-perfect Nash equilibrium (SPNE) of Γ(P) if, for all w
and f ,

ξ∗w (η)∩{ f̃ : w ∈η f̃ }R(w ) A,

5 Source: http://www.nrmp.org/, accessed in 2004.

http://www.nrmp.org/
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for all A ⊆ { f̃ : w ∈η f̃ } and

η∗f ∩{w : f ∈ ξ∗f (η)}R( f ) A ∩{w : f ∈ ξ∗f (A,η∗− f )}

for all A ⊆W . In words, (η∗,ξ∗) is an SPNE ifξ∗w (η) is an optimal proposal given the firms’
proposal η, and η∗f is optimal given the other firms’ proposals η∗− f and the workers’
proposals.

THEOREM 7.1. Let P(W ) be substitutable. A matching µ is the outcome of a subgame-
perfect Nash equilibrium of Γ(P) if and only if µ∈ E (P).

See Section 13 for a proof. Theorems 6.4 and 7.1 imply the following result.

COROLLARY 7.2. Let P(F ) be substitutable and P(W ) be strongly substitutable. A match-
ing µ is the outcome of a subgame-perfect Nash equilibrium if and only if µ∈ SW (P).

The implication of Theorem 7.1 and Corollary 7.2 is that the setwise-stable match-
ings are exactly those consistent with a basic non-cooperative bargaining model. Thus
core matchings, for example, are not guaranteed to be SPNE outcomes.

8. BLOCKS OF SETWISE-STABLE MATCHINGS

In Example 2.1, µ̂ blocks µ through a coordinated and non-individually-rational effort
of all agents. The preferences in Example 2.1 exhibit agents a who want agents b , where
b dislikes a but is willing to accept a if she gets c , who dislikes b , and so on until a cycle
is closed. We call such a cycle an acceptance-rejection cycle.

We now show that a matching in E (P) can, in fact, be blocked only through an effort
of this kind.

DEFINITION 8.1. Let µ be a matching. An agent a wants to add an agent b to her part-
ners if

b ∈Ch (µ(a )∪b , P(a )).

An alternating sequence of workers and firms

(w0, f 0, w1, f 1, . . . , wK , f K ),

with (w0, f 0) = (wK , f K ), is an acceptance-rejection cycle for µ if, for k with 0≤ k ≤ K −1,
wk wants to add f k to her partners but f k does not want to add wk , while f k wants to
add wk+1 to her partners and wk+1 does not want to add f k .

THEOREM 8.2. Let P be substitutable. If µ ∈ E (P) and 〈W ′, F ′,µ′〉 is a block of µ, then
there is an acceptance-rejection cycle for µ in µ′(F ′ ∪W ′) \µ(F ′ ∪W ′).

See Section 13 for a proof. Theorems 6.4 and 8.2 imply
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COROLLARY 8.3. Let P(F ) be substitutable and P(W ) strongly substitutable. If µ∈ SW (P)
and 〈W ′, F ′,µ′〉 is a block of µ, then there is an acceptance-rejection cycle for µ in
µ′(F ′ ∪W ′) \µ(F ′ ∪W ′).

9. LATTICE STRUCTURE

We now present results on the lattice structure of our solution concepts. These results
have an interpretation in terms of the opposition and coincidence of agents’ preferences
for the various matchings in the solution: opposition because what is good for one side
of the market is bad for the other, and coincidence because there are certain matchings
that all agents on one side of the market find the most desirable. We first present our
results and then give an interpretation.

9.1 Preliminary definitions

Let X be a set and B a partial order on X —a transitive, reflexive, and antisymmetric
binary relation. Let A ⊆X . Denote by infB A the greatest lower bound and by supB A the
lowest upper bound on A in the order B . Say that the pair 〈X , B〉 is a lattice if, whenever
x , y ∈ X , both x ∧B y = infB {x , y } and x ∨B y = supB {x , y } exist in X . A subset A ⊆ X is a
sublattice of 〈X , B〉 if, whenever x , y ∈ A, both x ∧B y ∈ A and x ∨B y ∈ A.

A lattice 〈X , B〉 is distributive if, for all x , y , z ∈ X , x ∨B (y ∧B z ) = (x ∨B y )∧B (x ∨B z ).
Let 〈X , B〉 and 〈Y , R〉 be lattices. A map ψ : X → Y is a lattice homomorphism if, for all
x , y ∈ X , ψ(x ∧B y ) = ψ(x )∧R ψ(y ) and ψ(x ∨B y ) = ψ(x )∨R ψ(y ). A map ψ is a lattice
isomorphism if it is a bijection and a lattice homomorphism.

REMARK 9.1. The product of lattices, when endowed with the product order, is a lattice
(Topkis 1998, page 13). The lattice operations are the product of the component lattice
operations.

9.2 Partial orders

We introduce two partial orders on V . Both orders are such that a prematching ν is
smaller than a prematching ν ′ if all the firms are better off in ν ′ than in ν and all the
workers are better off in ν than in ν ′. In the first order, “better off” means that ν ′( f ) is
the optimal set of workers for f , out of ν ( f ) ∪ ν ′( f ), and similarly for workers. In the
second order, “better off” means simply that ν ′( f ) P( f ) ν ( f ), and similarly for workers.

The first partial order was introduced by Blair (1988) to show that S(P) has a lattice
structure under substitutable preferences. The second order is the standard one from
one-to-one theory; Blair showed that one does not obtain a lattice structure using this
order (even with substitutable preferences).

DEFINITION 9.2. Define the following partial orders on VF , VW and V .

(i) <B
F on VF by ν ′F <

B
F νF if and only if ν ′F 6= νF and, for all f in F , νF ( f ) = ν ′F ( f ) or

νF ( f ) =Ch (νF ( f )∪ν ′F ( f ), P( f )).
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(ii) <B
W on VW by ν ′W <B

W νW if and only if ν ′W 6= νW and, for all w in W , νW (w ) =
ν ′W (w ) or

νW ( f ) =Ch (νW (w )∪ν ′W (w ), P(w )).

(iii) The weak partial orders associated with <B
F and <B

W are denoted ≤B
F and ≤B

W , and
defined as: ν ′F ≤

B
F νF if νF = ν ′F or ν ′F <

B
F νF , and ν ′W ≤

B
W νW if νW = ν ′W or ν ′W <

B
W

νW .

(iv) ≤B
F on V by ν ′ ≤B

F ν if and only if νW ≤B
W ν ′W and ν ′F ≤

B
F νF . The strict version of

≤B
F on V is ν ′ <B ν if ν ′ ≤B ν and ν ′ 6= ν .

(v) ≤B
W on V by ν ′ ≤B

W ν if and only if ν ≤B
F ν
′.

DEFINITION 9.3. Define the following partial orders on VF , VW and V :

(i) ≤F on VF by ν ′F ≤F νF if νF ( f ) R( f ) ν ′F ( f ) for all f ∈ F . The strict version of ≤F on
VF is ν ′F <F νF if ν ′F ≤F νF and ν ′F 6= νF .

(ii) ≤W on VW by ν ′W ≤W νW if νW (w )R(w ) ν ′W (w ) for all w ∈W . The strict version of
≤W on VW is ν ′W <W νW if ν ′W ≤W νW and ν ′W 6= νW .

(iii) ≤F on V by ν ′ ≤F ν if and only if νW ≤W ν
′
W and ν ′F ≤F νF . The strict version of≤F

on V is ν ′ <F ν if ν ′ ≤F ν and ν ′ 6= ν .

(iv) ≤W on V by ν ′ ≤W ν if and only if ν ≤F ν ′.

Definitions 9.2 and 9.3 abuse notation in using each symbol (≤B
F , ≤F , ≤B

W , and ≤W )
for two different orders. The abuse of notation is not, we believe, confusing.

To simplify the notation in the sequel, let (≤B ,≤) ∈ {(≤B
F ,≤F ), (≤B

W ,≤W )}. All state-
ments that follow are true both with (≤B ,≤) = (≤B

F ,≤F ) and (≤B ,≤) = (≤B
W ,≤W ).

REMARK 9.4. ≤B is coarser than ≤, as ν ′ ≤B ν implies that ν ′ ≤ ν .

REMARK 9.5. 〈V ,≤F 〉 is a lattice (see Remark 9.1), and the lattice operations are

ν ∨F ν
′( f ) =

(

ν ( f ) if ν ( f )R( f ) ν ′( f )

ν ′( f ) if ν ′( f ) P( f ) ν ( f )

and

ν ∨F ν
′(w ) =

(

ν ′(w ) if ν (w )R(w ) ν ′(w )

ν (w ) if ν ′(w ) P(w ) ν (w ).

The operation ν ∧F ν ′ is defined symmetrically, giving f the worst of ν ( f ) and ν ′( f ), and
giving w the best of ν (w ) and ν ′(w ).

The pair 〈V ,≤W 〉 is a lattice and the lattice operations are analogous to ∨F and ∧F .

Blair’s order incorporates strong substitutability:
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PROPOSITION 9.6. If P(a ) is substitutable, then P B (a ) is strongly substitutable.

PROOF. Let b ∈Ch (S′ ∪b , P(a )) and S′ P B (a )S. Note that

b ∈Ch (S′ ∪b , P(a )) =Ch (Ch (S ∪S′, P(a ))∪b , P(a ))

=Ch (S ∪S′ ∪b , P( f )),

where the first equality is by definition of P B and the second equality is a property choice
rules. Finally, b ∈Ch (S∪S′∪b , P(a )) and substitutability imply that b ∈Ch (S′∪b , P(a )).�

Proposition 9.6 explains Blair’s results in the light of our results.

9.3 Lattice structure

With substitutable preferences, T is an increasing map under order ≤B . Tarski’s fixed
point theorem then delivers a lattice structure on E (P). With strongly substitutable
preferences, T is an increasing map under order ≤. Tarski’s fixed point theorem gives
a lattice structure on E (P) under order ≤. We discuss the implications below.

THEOREM 9.7. Let P be substitutable. Then

(i) 〈E (P),≤B 〉 is a nonempty lattice;

(ii) the T -algorithm starting at ν0 stops at inf≤B
F
E (P) and the T -algorithm starting at

ν1 stops at sup≤B
F
E (P).

Further, if P is strongly substitutable, 〈E (P),≤〉 is a nonempty lattice, inf≤B
F
E (P) =

inf≤F E (P), and sup≤B
F
E (P) = sup≤F

E (P).

See Section 14 for a proof.

THEOREM 9.8. Let P(F ) be substitutable and P(W ) be strongly substitutable. Then

(i) if ν ,ν ′ ∈ E (P) are such that ν ′(w )R(w ) ν (w ) for all w ∈W , then ν ( f )R( f ) ν ′( f ) for
all f ∈ F .

(ii) Further, let P(F ) be strongly substitutable. If ν ,ν ′ ∈ E (P) are such that ν ′( f ) R( f )
ν ( f ) for all f ∈ F , then ν (w )R(w ) ν ′(w ) for all w ∈W .

See Section 14 for a proof.
By definition of ≤B

F , ≤F , ≤B
W , and ≤W , we get inf≤F E (P) = sup≤W

E (P), inf≤W E (P) =
sup≤F

E (P), inf≤B
F
E (P) = sup≤B

W
E (P), and inf≤B

W
E (P) = sup≤B

F
E (P).

Theorem 9.7 implies Theorem 6.5. It also implies
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COROLLARY 9.9. If P(F ) is substitutable and P(W ) is strongly substitutable, then 〈SW (P),
≤B 〉 = 〈B (P),≤B 〉 = 〈S(P),≤B 〉 are nonempty lattices. Further, if P(F ) is strongly substi-
tutable, 〈SW (P),≤〉= 〈B (P),≤〉= 〈S(P),≤〉 are nonempty lattices.

Theorems 9.7 and 9.8 have an interpretation in terms of worker-firm “conflict” and
worker-worker (or firm-firm) “coincidence” of interests (Roth 1985).

First, Theorem 9.7 implies that there are two distinguished matchings in E (P). One
is simultaneously better for all firms, and worse for all workers, than any other matching
in E (P). The other is simultaneously worse for all firms, and better for all workers, than
any other matching in E (P). The lattice structure thus implies a coincidence-of-interest
property.

Second, Theorem 9.8 reflects a global worker-firm conflict of interest over E (P); for
any two matchings in E (P), if one is better for all firms it must also be worse for all
workers, and vice versa. Roth (1985) proved that Statement i in Theorem 9.8 holds in the
one-to-one model and in the many-to-one model. Roth also proved that Statement ii in
Theorem 9.8 holds in the one-to-one model. Here we extend Roth’s results, as workers’
preferences are trivially strongly substitutable in the many-to-one model, and all agents’
preferences are trivially strongly substitutable in the one-to-one model.6

In light of Theorem 6.1, Theorem 9.9 implies that 〈S(P),≤B
F 〉 is a lattice when prefer-

ences are substitutable—a result first proved by Blair (1988). Blair shows with an exam-
ple that 〈S(P),≤F 〉 may not be a lattice. Preferences in Blair’s example are not strongly
substitutable; we discuss Blair’s example in Section 9.5.

In the one-to-one model, the lattice-structure of 〈S(P),≤F 〉 has been known since at
least Knuth (1976) (Knuth attributes the result to J. Conway). Theorem 9.7 extends the
result to the many-to-many model, as preferences are trivially strongly substitutable in
the one-to-one model.

9.4 Further conflict/coincidence properties

Two additional features of many-to-one and one-to-one matchings merit attention.

9.4.1 Stronger coincidence-of-interest property Roth (1985) presents a stronger version
of the coincidence-of-interest property implicit in the result that 〈E (P),≤B

F 〉 is a lattice.
He proves that if µ and µ′ are pairwise-stable matchings in the many-to-one model, the
matching that gives each firm f its best subset out of µ( f ) ∪µ′( f ) is stable and worse
than both µ and µ′ for all workers.

Roth’s stronger coincidence-of-interest property does not extend to the many-to-
many model with strongly substitutable preferences. Example 5.2 in Blair (1988) is a
counterexample—we discuss this example in Section 9.5.

But note

PROPOSITION 9.10. Let P(F ) be substitutable. Let µ,µ′ ∈ S(P). Define the matching µ̂ by
µ̂( f ) = Ch (µ( f )∪µ′( f ), P( f )), for all f ∈ F . If µ̂(w ) ∈ {µ(w ),µ′(w )} for all w ∈W , then

6 By Proposition 9.6, we also extend Blair’s (1988) version of Roth’s result (Blair’s Lemmas 4.3 and 4.4).
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µ̂∈S(P). Further, if P(W ) is substitutable, then µ(w )R(w ) µ̂(w ) and µ′(w )R(w ) µ̂(w ) for
all w ∈W .

PROOF. The proof that µ̂∈S(P) is a minor variation of Roth’s (1985) proof of the coinci-
dence-of-interest property in the many-to-one model.

First, µ̂ is individually rational: both µ and µ′ are individually rational, so µ̂(w ) =
Ch (µ̂(w ), P(w )) for all w ; by definition of µ̂, µ̂( f ) =Ch (µ̂( f ), P( f )) for all f .

Second, there are no pairwise blocks of µ̂. Suppose (w , f ) is a pairwise block of
µ̂. Then w /∈ µ̂( f ), f ∈ Ch (µ̂(w ) ∪ f , P(w )), and w ∈ Ch (µ̂( f ) ∪w , P( f )). Without loss
of generality, let µ̂(w ) = µ(w ). So f /∈ µ(w ) and f ∈ Ch (µ(w ) ∪ f , P(w )). But w ∈
Ch (µ̂( f )∪w , P( f )) implies

w ∈Ch (Ch (µ( f )∪µ′( f ), P( f ))∪w , P( f )) =Ch (µ( f )∪µ′( f )∪w , P( f )).

By substitutability of P( f ), w ∈ Ch (µ( f )∪w , P( f )). Then f /∈ µ(w ) and f ∈ Ch (µ(w )∪ f ,
P(w )) imply that (w , f ) is also a pairwise block of µ.

So µ, µ′ ∈S(P) implies that there are no pairwise blocks of µ̂.
When P(W ) is substitutable, S(P) = E (P) and it is routine to verify that

µ̂(w )⊆V (w , µ̂)⊆V (w ,µ)∩V (w ,µ′).

Then µ, µ′ ∈ E (P) implies that µ(w )R(w ) µ̂(w ) and µ′(w )R(w ) µ̂(w ). �

Property µ̂(w ) ∈ {µ(w ),µ′(w )} obviously holds in the many-to-one model. Thus
Proposition 9.10 embeds Roth’s result for the many-to-one model. Seemingly, the many-
to-one-ness of the many-to-one model is behind Roth’s result—we cannot capture the
stronger coincidence-of-interest property in a many-to-many model with additional
structure on preferences.

9.4.2 Distributive property of lattice operations The set of stable matchings in the one-
to-one model is a distributive lattice (Knuth 1976). The distributive property of the one-
to-one model does not extend to our many-to-many model: In Blair’s (1988) Example
5.2, the set of stable many-to-many matchings is not a distributive lattice, and all agents’
preferences in Blair’s example satisfy strong substitutability (see Section 9.5).

We identify why the distributive property fails in the many-to-many model. The
problem is that the lattice operations (see Remark 9.5) in 〈V ,≤〉 may not preserve the
property that matchings in E (P) are matchings—not only prematchings. That is, if µ∨
µ′ ∈M and µ∧µ′ ∈M for all µ and µ′ in E (P), then 〈E (P),≤F 〉 is a distributive lattice.
This result does extend the one-to-one result.

Let us order V by set-inclusion; let ν ′ v ν if ν ′( f ) ⊆ ν ( f ) and ν (w ) ⊆ ν ′(w ) for all
f and w . Then 〈V ,v〉 is a lattice (see Remark 9.1). The lattice operations are t and u,
defined by (νtν ′)( f ) = ν ( f )∪ν ′( f ), and (νuν ′)( f ) = ν ( f )∩ν ′( f ) for all f , and (νtν ′)(w ) =
ν (w )∩ν ′(w ), and (ν uν ′)(w ) = ν (w )∪ν ′(w ) for all w .

Letψ :V →V be defined by

(ψν )(a ) =

(

U ( f ,ν ) if a = f ∈ F

V (w ,ν ) if a =w ∈W.
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THEOREM 9.11. Let P be strongly substitutable. The mapψ is a lattice homomorphism of
〈V ,≤〉 into 〈V ,v〉. Further, if µ∨µ′ ∈M and µ∧µ′ ∈M for all µ, µ′ ∈ E (P), then

(i) 〈E (P),≤〉 is a distributive sublattice of 〈V ,≤〉

(ii) ψ|E (P) is a lattice isomorphism of 〈E (P),≤〉 onto 〈ψE (P),v〉.

See Section 14 for a proof.
The partial order ≤ on V depends on the profile P of preferences. In Theorem 9.11,

we translate ≤ into an order that does not depend on P : set-inclusion. We interpret the
result as showing how the lattice structure on V and, under additional assumptions,
E (P), is inherited from the lattice structure of set inclusion.

The interest of Theorem 9.11 is, first, that it shows why distributivity fails in the
many-to-many model. Second, it shows how the distributive property in the one-to-one
model is inherited from the distributive property of set inclusion onV ; it is easy to verify
that the one-to-one model satisfies that µ∨µ′ ∈M and µ∧µ′ ∈M for all µ,µ′ ∈ E (P).
In fact the verification is carried out in Knuth (1976, page 56), as a first step in the proof
that 〈S(P),≤F 〉 is a distributive lattice.

Note that 〈E (P),≤F 〉 being a sub-lattice of 〈V ,≤F 〉means that the lattice operations
∨F and ∧F on 〈V ,≤F 〉 (see Remark 9.5) are also the lattice operations of 〈E (P),≤F 〉.
Martínez et al. (2001), assuming substitutable (and q-separable) preferences, show that
the stable matchings are not a lattice under ∨F and ∧F .

9.5 Examples 5.1 and 5.2 in Blair (1988)

We do not reproduce the examples here. We proceed to discuss the examples in light of
our results.

Blair presents Example 5.1 as an example where 〈S(P),≤〉 is not a lattice. In Exam-
ple 5.1 there are 13 firms and 12 workers; F = {1, 2, . . . , 13}, W =

�

a ,b , . . . ,q
	

. Firm 10’s
preference relation is not strongly substitutable:

P(10) : m p ,b np , m , . . . ,

where . . . means that there are other acceptable sets of workers not listed. Note that
{b , n , p} P(10) {m } and b ∈ Ch ({b , n , p} ∪ {b}, P(10)), but that b ∈ Ch ({m } ∪ {b}, P(10)) =
{m }.

Thus Blair’s Example 5.1 illustrates that, with non-strongly substitutable prefer-
ences, 〈E (P),≤〉may not be a lattice.

Blair presents Example 5.2 as an example where 〈S(P),≤B 〉 is not a distributive lat-
tice. Preferences in Example 5.2 are strongly substitutable—this is easy, if tedious, to
verify. Blair’s example thus illustrates that 〈E (P),≤〉 and 〈E (P),≤B 〉may not be distribu-
tive lattices (the lattice operations in 〈E (P),≤〉 and 〈E (P),≤B 〉might not coincide, but in
this example they do).

We show that Example 5.2 does not satisfy the property that µ∨µ′ ∈M and µ∧µ′ ∈
M for all µ,µ′ ∈ E (P). So the example does not satisfy the hypotheses of Theorem 9.11.
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In Example 5.2 there are 7 firms and 10 workers; F = {1, 2, . . . , 7}, W =
�

a ,b , . . . , j
	

.
Consider the matchings

1 2 3 4 5 6 7
µ1 b c d a e a f j h i g ,
µ2 b c d a e i a g h f j .

Then µ1 ∨µ2 is

1 2 3 4 5 6 7
µ1 ∨µ2 b c d a e i j h f g

a b c d e f g h i j
µ1 ∨µ2 24 1 1 1 2 6 7 5 3 4.

But µ1 ∨µ2 is not a matching, as 4∈µ1 ∨µ2(a )while a /∈µ1 ∨µ2(4).
Finally, we show that Blair’s Example 5.2 also violates Roth’s stronger conflict-of-

interest property. From µ1 and µ2, constructing matching µ̂ by µ̂( f ) =Ch (µ1( f )∪µ2( f ),
P( f )) for all f gives

1 2 3 4 5 6 7
µ̂ b c d a e i j h f g .

Now, µ̂ is blocked by the pair (1, a ), so µ̂ is not pairwise stable. Note that µ̂(a ) = {2} /∈
{µ1(a ),µ2(a )}. Thus Example 5.2 does not satisfy the hypotheses of Proposition 9.10.

10. SUMMARY

Table 1 summarizes our results. Each row shows results under some hypothesis on firms’
preferences. Each column shows results under some restriction on workers’ preferences.
As one moves down and right on the table, the restrictions are stronger. Hence all results
that hold in one entry, hold for all entries down and right.

Note that in the table we not denote the dependence of the solutions on the prefer-
ence profile.

11. PROOF OF THEOREM 6.1

The following proposition is immediate, but useful in some of our proofs.

PROPOSITION 11.1. A pair (B , f ) ∈ 2W × F blocks* µ if and only if, for all w ∈ B, there is
Dw ⊆µ(w ) such that

�

Dw ∪ f
�

P(w )µ(w )

and there is A ⊆µ( f ) such that
[A ∪ B ] P( f )µ( f ).

In words, (B , f ) blocks* µ if firm f is willing to hire the workers in B—possibly after
firing some of its current workers inµ( f )—and all workers w in B prefer f , possibly after
rejecting some of the firms in µ(w ).
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P(W )P(F )
Arbitrary Substitutable Strongly substitutable

Arbitrary
E ⊆S∗ ⊆S
SW⊆E
B ⊆E

E =S∗

E ⊆C (P B )
E = SPNE

No additional results

Substitutable

E =S, E 6= ;
P B strongly substituable
〈E ,≤B 〉 a lattice
T algorithm

E = SW= B
E ⊆ IRC
Roth (1985) opposition
of interest (1)

Strongly
substitutable

〈E ,≤〉 a lattice
Roth (1985) opposition
of interest (2)
ψ lattice homomorphism
Distributivity result

TABLE 1. Summary of Results. The empty entries in the table are completed by symmetry. An
entry lists the results—in addition to the results above-and-left of the entry—we obtain under
the corresponding restriction on preferences.

We present the proof of Theorem 6.1 in a series of lemmas. The first statement in
Theorem 6.1 follows from Lemmas 11.2 and 11.5. Item (i) of the theorem follows from
Lemmas 11.6 and 11.7. Item (ii) follows from Lemma 11.8, and Theorem 9.7.

LEMMA 11.2. S∗(P)⊆S(P).

PROOF. Let µ /∈S(P). We now prove that µ /∈S∗(P). If µ is not individually rational there
is nothing to prove; assume then that µ is individually rational. Because µ /∈ S(P), there
is (w , f )∈W × F such that w /∈µ( f ) (or f /∈µ(w )),

f ∈Ch (µ(w )∪{ f }, P(w )), (1)

and

w ∈Ch (µ( f )∪{w }, P( f )). (2)

Statements (1), (2), and w /∈µ( f ) imply that

Ch (µ(w )∪{ f }, P(w )) P(w )µ(w ) (3)

and

Ch (µ( f )∪{w }, P( f )) P( f )µ( f ). (4)

Let B = {w }, Dw =Ch (µ(w )∪{ f }, P(w ))∩µ(w ), and

A =Ch (µ( f )∪{w }, P( f ))∩µ( f ).
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We now prove that (B , f ) blocks* µ. Since B = {w }, (3) implies that

Dw =Ch (µ(w )∪{ f }, P(w ))∩µ(w )
=Ch (µ(w )∪{ f }, P(w )) \ { f }.

So (3) implies that

[Dw ∪{ f }] =Ch (µ(w )∪{ f }, P(w ))P(w )µ(w ),

which gives us the first part of the definition of block*. Also,

A =Ch (µ( f )∪{w }, P( f ))∩µ( f )
=Ch (µ( f )∪{w }, P( f )) \ {w }
=Ch (µ( f )∪{w }, P( f )) \ B.

So (4) implies that
[A ∪ B ] =Ch (µ( f )∪{w }, P( f )) P( f )µ( f ),

and we have the second part of the definition of block*. Thus, µ /∈S∗(P). �

REMARK 11.3. In general, S∗(P) 6=S(P).

We use Lemma 11.4 in many of our results, starting with Lemma 11.5.

LEMMA 11.4. If ν ∈ E (P), then ν is a matching and ν is individually rational.

PROOF. Let ν = (νF ,νW )∈ E (P).
Fix w ∈ νF ( f ). We prove that f ∈ νW (w ). The condition ν ∈ E (P) implies that

w ∈ νF ( f ) = (Tν )( f ) =Ch (U ( f ,ν ), P( f )). (5)

Thus w ∈U ( f ,ν ).
The definition of U ( f ,ν ) implies

f ∈Ch (νW (w )∪{ f }, P(w ))R(w ) νW (w ). (6)

Now,

Ch (νF ( f ), P( f )) =Ch (Ch (U ( f ,ν ), P( f )), P( f )) (7)

=Ch (U ( f ,ν ), P( f )) (8)

= νF ( f ). (9)

Equalities (7) and (9) follow from (5). Equality (8) is a simple property of choice sets:
Ch (Ch (S, P( f )), P( f )) =Ch (S, P( f )). Hence we have

νF ( f ) =Ch (νF ( f ), P( f )). (10)
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Now w ∈ νF ( f ) implies that Ch (νF ( f ), P( f )) =Ch (νF ( f )∪{w }, P( f )). So (10) implies that

f ∈V (w ,ν ). (11)

But
νW (w ) = (Tν )(w ) =Ch (V (w ,ν ), P(w )),

so
νW (w )⊆V (w ,ν ). (12)

But (11) and (12) give

V (w ,ν )⊇ νW (w )∪{ f } ⊇Ch (νW (w )∪{ f }, P(w )).

The definition of choice set implies

νW (w )R(w )Ch (νW (w )∪{ f }, P(w )). (13)

Statements (6), (13), and anti-symmetry of preference relations imply that f ∈ νW (w ).
Let f ∈ νW (w ). The proof that w ∈ νF ( f ) and

νF ( f ) =Ch (νF ( f ), P( f )) (14)

is entirely symmetric with the proof for workers above.
Thus, w ∈ vF ( f ) if and only if f = vW (w ). So, ν is a matching.
Statements (10) and (14) imply that ν is individually rational. �

LEMMA 11.5. E (P)⊆S∗(P).

PROOF. Let µ∈ E (P). By Lemma 11.4 we know that µ is an individually rational match-
ing. Fix f ∈ F , B ⊆W such that B 6= ;. We assume that for all w ∈ B there exists Dw ⊆
µ(w ) such that { f }∪Dw P(w )µ(w ). µ is individually rational, soµ(w ) =Ch (µ(w ), P(w )).
Then { f }∪Dw P(w )µ(w ) implies that

f ∈Ch (µ(w )∪{ f }, P(w )) (15)

for all w ∈ B . By the definition of U ( f ,µ), we have

B ⊆U ( f ,µ). (16)

Let A ⊆µ( f ). The condition µ∈ E (P) implies that µ( f ) = (Tµ)( f )⊆U ( f ,µ), so (16) gives

A ∪ B ⊆U ( f ,µ). (17)

Now, µ∈ E (P) and (17) imply

µ( f )R( f )Ch (A ∪ B , P( f ))R( f )[A ∪ B ], (18)

as µ( f ) =Ch (U ( f ,µ), P( f )).
Statements (15) and (18) show that there is no (B , f ) that blocks* µ. The proof that

there is no (w , A)∈W ×2F that blocks* µ is symmetric. Thus µ∈S∗(P). �
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LEMMA 11.6. If P(W ) is substitutable, then S∗(P)⊆E (P).

PROOF. Letµ∈S∗(P) and assume thatµ /∈ E (P), soµ 6= Tµ. We first prove that (Tµ)( f ) 6=
µ( f ) for some f yields a contradiction, and then that (Tµ)(w ) 6= µ(w ) for some w yields
a contradiction. Note that, by the asymmetric situation of firms and workers in the def-
inition of S∗(P), the proofs of the two statements are not analogous.

First assume that there exist f ∈ F such that

µ( f ) 6= (Tµ)( f ) =Ch (U ( f ,µ), P( f )) =C ⊆U ( f ,µ).

Let A =C∩µ( f ) and B =C \µ( f ). Becauseµ is an individually rational matching we have
µ(w ) = Ch (µ(w ), P(w )) = Ch (µ(w )∪ f , P(w )) for all w ∈ µ( f ). Hence µ( f ) ⊆U ( f ,µ), so
(Tµ)( f ) P( f )µ( f ) implies that B 6= ;.

Now,
A ∪ B =C P( f )µ( f ). (19)

Also, for all w ∈ B , w ∈U ( f ,µ); so f ∈ Ch (µ(w )∪ f , P(w )) by the definition of U ( f ,µ).
For any w ∈ B , let Dw =Ch (µ(w )∪ f , P(w ))∩µ(w ). Since f /∈µ(w )we have

{ f }∪Dw P(w )µ(w ). (20)

Statements (19) and (20) imply that (B , f ) blocks* µ, which contradicts µ∈S∗(P).
Hence, for all f ∈ F ,

µ( f ) = (Tµ)( f ). (21)

Now assume that there exists w ∈W such that

µ(w ) 6= (Tµ)(w ) =Ch (V (w ,µ), P(w )) =G ⊆V (w ,µ).

If f ∈G , then
w ∈Ch (µ( f )∪{w }, P( f )) (22)

by the definition on V (w ,µ). Because µ is an individually rational matching we have—
by the same argument as above—µ(w ) ⊆ V (w ,µ). We can assume that G * µ(w ); for, if
G ⊆µ(w ), then µ(w )⊆V (w ,µ) and the Choice Property7 imply that

G =Ch (V (w ,µ), P(w )) =Ch (µ(w ), P(w )) =µ(w ),

where the last equality follows because µ is an individually rational matching—but this
would contradict G 6=µ(w ), hence we can assume G *µ(w ).

Let f ∈G \µ(w ). Because µ is a matching, w /∈µ( f ). Now, (22) implies that

w ∈Ch (µ( f )∪{w }, P( f )) =C .

Let A =C ∩µ( f ) =C \ {w } and B = {w }. Then

C = [A ∪ B ] P( f )µ( f ). (23)

7If Ch (A, P(s ))⊆ B ⊆ A, then Ch (A, P(s )) =Ch (B , P(s )).
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Now, f ∈ G \ µ(w ), so that the substitutability of P(w ) implies that there exists Dw =
Ch (V (w ,µ), P(w ))∩µ(w ) such that

[ f ∪Dw ] P(w )µ(w ). (24)

Statements (23) and (24) imply that ( f ,{w }) blocks* µ, which contradicts µ ∈ S∗(P).
Hence, for all w ∈W ,

µ(w ) = (Tµ)(w ). (25)

Statements (21) and (25) imply that µ= Tµ. Hence µ∈ E (P). �

LEMMA 11.7. If P(W ) is substitutable then S∗(P)⊆C (P B ).

PROOF. Let µ∈S∗(P) and suppose that µ /∈C (P B ). Let F ′ ⊆ F , W ′ ⊆W with F ′ ∪W ′ 6= ;,
and µ̂∈M such that, for all w ∈W ′, and for all f ∈ F ′

µ̂(w )⊆ F ′ and µ̂( f )⊆W ′ (26)

µ̂(w )R B (w )µ(w ) (27)

µ̂( f )R B ( f )µ( f )

µ̂(s ) P B (s )µ(s ) for at least one s ∈W ′ ∪ F ′.

We need the following.

CLAIM. There exists f ∈ F ′ such that µ̂( f ) P B ( f ) µ( f ) if and only if there exists w ∈ W ′

such that µ̂(w ) P B (w )µ(w ).

PROOF OF CLAIM. Let µ̂( f ) P B ( f ) µ( f ). Because µ is individually rational, we have
µ̂( f ) * µ( f ), so let w ∈ µ̂( f ) \µ( f ). By (26), we have w ∈ µ̂( f ) ⊆W ′; but then w /∈ µ( f )
and (27) imply that

µ̂(w ) P B (w )µ(w ).

Similarly we show that if µ̂(w ) P B (w ) µ(w ) then there exists f such that µ̂( f )P B ( f )
µ( f ). �

By the claim, we can assume that there exists f ∈ F ′ such that µ̂( f ) 6= µ( f ). Let
B = µ̂( f ) \µ( f ) and A = µ̂( f )∩µ( f ). Then

A ∪ B = µ̂( f ) P B ( f )µ( f ) (28)

and B∩µ( f ) = ;. Let w ∈ B . Then f ∈ µ̂(w ) and f /∈µ(w ), which imply that µ̂(w ) 6=µ(w ).
Condition (27) implies that

f ∈ µ̂(w ) =Ch (µ(w )∪ µ̂(w ), P(w )).

By substitutability of P(w ), f ∈Ch (µ(w )∪ f , P(w )).
Now, w ∈ B was arbitrary, so together with (28), this implies that (B , f ) blocks* µ.

Thus µ /∈S∗(P). �
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LEMMA 11.8. If P is substitutable then S(P)⊆E (P).

PROOF. Let µ /∈ E (P). We prove that µ /∈ S(P). If µ is not individually rational there is
nothing to prove. Suppose then that µ is individually rational. Lemma 11.6 and µ /∈ E (P)
imply µ /∈ S∗(P). So, there is (B , f ) with B 6= ; that blocks* µ. This means that, for all
w ∈ B ,

f ∈Ch (µ(w )∪ f , P(w ))

and
B ⊆Ch (µ( f )∪ B , P( f )).

But P( f ) is substitutable, so there is w ′ ∈ B with

w ′ ∈Ch (µ( f )∪w ′, P( f )).

Thus µ /∈S(P). �

12. PROOFS OF THEOREMS 6.4 AND 6.5

The proof of Theorem 6.4 follows from Lemmas 12.1, 12.2, 12.3, 12.4, and 12.5. Theo-
rem 6.5 then follows from Theorem 9.7.

LEMMA 12.1. SW (P)⊆E (P).

PROOF. Let µ be a matching such that µ /∈ E (P). We prove that µ /∈ SW (P). If µ is not
individually rational there is nothing to prove. Suppose then that µ is an individually
rational matching.

Suppose, without loss of generality, that there is f ∈ F such that µ( f ) 6= Ch (U ( f ,µ),
P( f )). That µ is individually rational implies that µ( f ) ⊆U ( f ,µ) since, for all w ∈ µ( f ),
f ∈µ(w ), so

Ch (µ(w )∪ f , P(w )) =Ch (µ(w ), P(w )) =µ(w )3 f .

Let F ′ = { f } and W ′ = Ch (U ( f ,µ), P( f )) \ µ( f ). We construct µ′ ∈ M such that
〈W ′, F ′,µ′〉 is a setwise block of µ. Let µ′( f ) =Ch (U ( f ,µ), P( f )). For all w ∈W , let

µ′(w ) =







Ch (µ(w )∪ f , P(w )) if w ∈W ′

µ(w ) if w ∈
�

µ′( f )∩µ( f )
�

∪
�

µ′( f )∪µ( f )
�c

µ(w ) \ f if w ∈µ( f ) \µ′( f ).

The matching µ′( f ), for f /∈ F ′, is determined from the µ′(w )’s. Then µ′ is a matching
and W ′ = µ′(F ) \µ(F ). Note that µ( f ) ⊆U ( f ,µ) implies that f ∈ Ch (µ(w )∪ f , P(w )), so
f ∈µ′(w ) for all w ∈W ′. So F ′ =µ′(W ) \µ(W ).

First we verify that µ′ is individually rational: µ′( f ) = Ch (µ′( f ), P( f )), as µ′( f ) =
Ch (U ( f ,µ), P( f )); and µ′(w ) = Ch (µ′(w ), P( f )), as µ′(w ) = Ch (µ(w ) ∪ f , P( f )) for all
w ∈W ′.

Finally, µ( f ) ⊆ U ( f ,µ) implies that µ′( f ) P( f ) µ( f ) and µ′(w ) = Ch (µ(w ) ∪ f , P( f ))
implies that µ′(w ) P(w ) µ(w ), for all w ∈W ′. Thus the constructed 〈W ′, F ′,µ′〉 is a set-
wise block of µ, and thus µ /∈ SW (P). �
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LEMMA 12.2. B (P)⊆E (P).

PROOF. Let µ be a matching such that µ /∈ E (P). We prove that µ /∈ B (P). If µ is not indi-
vidually rational there is nothing to prove. Suppose then that µ is individually rational.

Suppose, without loss of generality, that there is f ∈ F such that µ( f ) 6= Ch (U ( f ,µ),
P( f )). Let F ′ = { f } and

W ′ =Ch (U ( f ,µ), P( f )) \µ( f ).

Construct µ′ as in the proof of Lemma 12.1. We prove that the objection 〈W ′, F ′,µ′〉 is
counterobjection-free. Recall that

µ′( f ) =Ch (U ( f ,µ), P( f )). (29)

Note that µ( f ) ⊆U ( f ,µ) (see the proof of Lemma 12.1). So (29) implies µ′( f ) P( f )
µ( f ). Similarly, W ′ ⊆U ( f ,µ) implies thatµ′(w ) =Ch (µ(w )∪ f ) P(w )µ(w ) for all w ∈W ′.
Hence 〈W ′, F ′,µ′〉 is an objection.

We now prove that there are no counterobjections to 〈W ′, F ′,µ′〉. Let 〈W ′′, F ′′,µ′′〉 be
such that µ′′ is a matching, F ′′ ⊆ F ′, W ′′ ⊆W ′, and µ′′(W ′′∪F ′′)\µ′(W ′′∪F ′′)⊆W ′′∪F ′′.

First, let F ′′ 6= ;. Then F ′′ = { f }. Statement (29) implies that µ′( f ) R( f ) A for all
A ⊆µ′( f ). But

µ′′( f ) \µ′( f )⊆W ′ ⊆µ′( f ).

So µ′( f )R( f )µ′′( f ). Thus 〈W ′′, F ′′,µ′′〉 is not a counterobjection.
Second, let F ′′ = ;. For all w ∈W ′′, w ∈U ( f ,µ). So

f ∈Ch (µ(w )∪ f , P(w )) =µ′(w ) (30)

(see the proof of Lemma 12.1). Also, µ′′(w )⊆ µ′(w ), as µ′′(W ′′) \µ′(W ′′)⊆ F ′′ 6= ;. Then
f /∈ µ′′(w ) and (30) imply that µ′(w ) P(w ) µ′′(w ). Thus 〈W ′′, F ′′,µ′′〉 is not a counterob-
jection. �

LEMMA 12.3. If P(F ) is substitutable and P(W ) is strongly substitutable, then E (P) ⊆
SW (P).

PROOF. The proof is similar to the proof of Lemma 12.5. Letµ∈ E (P). By Lemma 11.4,µ
is an individually rational matching. Suppose, by way of contradiction, that µ /∈ SW (P).
Let 〈W ′, F ′,µ′〉 be a setwise block of µ.

Fix f ∈ F ′, so µ′( f ) P( f ) µ( f ). The matching µ is individually rational, so µ′( f ) P( f )
µ( f ) implies that

Ch (µ( f )∪µ′( f ), P( f ))*µ( f ).

Fix w ∈ Ch (µ( f ) ∪ µ′( f ), P( f )) such that w ∈ µ′( f ) \ µ( f ). By substitutability of P( f ),
w ∈Ch (µ( f )∪w , P( f )). So

f ∈V (w ,µ). (31)

On the other hand, w ∈µ′( f ) \µ( f ) implies that w ∈W ′, so

µ′(w ) P(w )µ(w ). (32)
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Now, 〈W ′, F ′,µ′〉 is a setwise block, soµ′(w ) =Ch (µ′(w ), P(w )). Further,µ′ is a matching,
so f ∈ µ′(w ). Then f ∈ Ch (µ′(w ) ∪ f , P(w )). Strong substitutability of P(w ) and (32)
imply that

f ∈Ch (µ(w )∪ f , P(w )). (33)

But (31) and µ ∈ E (P) imply that µ(w )∪ f ⊆ V (w ,µ). But then (33) contradicts µ(w ) =
Ch (V (w ,µ), P(w )). �

LEMMA 12.4. If P(F ) is substitutable and P(W ) is strongly substitutable, then E (P) ⊆
B (P).

PROOF. The proof is similar to the proof of Lemma 12.5. Let µ ∈ E (P). By Lemma 11.4,
µ is an individually rational matching. Let 〈W ′, F ′,µ′〉 be an objection to µ.

First, if µ′(s ) 6= Ch (µ′(s ), P(s )) for some s ∈ F ′ ∪W ′, then 〈W ′, F ′,µ′〉 has a counter-
objection: let f ∈ F ′ be such that µ′( f ) 6= Ch (µ′( f ), P( f )). Let W ′′ = ;, F ′′ = { f }, and
let µ′′ be defined by µ′′( f ) = µ′( f ) for all f 6= f and µ′′( f ) = Ch (µ′( f ), P( f )). The def-
inition of µ′′(w ), for all w ∈ W , is implicit. Then µ′( f ) 6= Ch (µ′( f ), P( f )) implies that
µ′′( f ) P( f )µ′( f ). Hence 〈W ′′, F ′′,µ′′〉 is a counterobjection to 〈W ′, F ′,µ′〉. So µ∈ B (P).

Second, let µ′(s ) = Ch (µ′(s ), P(s )) for all s ∈ F ′ ∪W ′. We prove that 〈W ′, F ′,µ′〉 can-
not be an objection. Suppose, by the way of contradiction, that 〈W ′, F ′,µ′〉 is an objec-
tion to µ, so we can suppose—without loss of generality—that there is f ∈ F ′ such that
µ′( f ) P( f )µ( f ). The matching µ is individually rational, so µ′( f ) P( f )µ( f ) implies that

µ( f )*Ch (µ( f )∪µ′( f ), P( f )).

Let w ∈Ch (µ( f )∪µ′( f ), P( f )) be such that w ∈µ′( f ) \µ( f ). Now, substitutability of P( f )
implies that

w ∈Ch (µ( f )∪w , P( f )).

Thus, f ∈V (w ,µ).
On the other hand, w ∈ µ′( f ) \µ( f ) implies that w ∈ W ′. So µ′(w ) P(w ) µ(w ), as

〈W ′, F ′,µ′〉 is an objection. Then

f ∈µ′(w ) =Ch (µ′(w ), P(w )) =Ch (µ′(w )∪ f , P(w ))

and strong substitutability of P(w ) give f ∈ Ch (µ(w )∪ f , P(w )). But we proved that f ∈
V (w ,µ). So

µ(w ) 6=Ch (µ(w )∪ f , P(w ))⊆V (w ,µ).

This condition is a contradiction, since µ ∈ E (P) implies that µ(w ) =Ch (V (w ,µ), P(w )).
Thus 〈W ′, F ′,µ′〉 is not an objection, and µ∈ B (P). �

LEMMA 12.5. If P(F ) is substitutable and P(W ) is strongly substitutable, then E (P) ⊆
IRC (P).
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PROOF. Let µ ∈ E (P). By Lemma 11.4, µ is an individually rational matching. Suppose,
by way of contradiction, that 〈W ′, F ′,µ′〉 is an individually rational block of µ.

Without loss of generality, let µ′( f ) P( f )µ( f ), for some f ∈ F ′. Since µ is individually
rational,

Ch (µ( f )∪µ′( f ), P( f ))*µ( f ).

Let w ∈µ′( f ) \µ( f ) be such that

w ∈Ch (µ( f )∪µ′( f ), P( f )) =Ch (µ( f )∪µ′( f )∪w , P( f )).

By substitutability of P( f ), w ∈Ch (µ( f )∪w , P( f )). Thus

f ∈V (w ,µ). (34)

Now, f ∈µ′(w ) \µ(w ) implies

µ′(w ) P(w )µ(w ), (35)

as w ∈W ′ and µ′(w ) 6=µ(w ). But µ′ is individually rational, so

f ∈Ch (µ′(w ), P(w )) =Ch (µ′(w )∪ f , P(w )).

Then (35) and strong substitutability of P(w ) imply that f ∈Ch (µ(w )∪ f , P(w )). So

Ch (µ(w )∪ f , P(w )) P(w )µ(w ). (36)

But µ ∈ E (P) implies that µ(w ) = Ch (V (w ,µ), P( f )). By (34), µ(w ) ∪ f ⊆ V (w ,µ),
which contradicts (36). Hence there are no individually rational blocks of µ, and µ ∈
IRC (P). �

13. PROOFS OF THEOREMS 7.1 AND 8.2

13.1 Proof of Theorem 7.1

The proof of Theorem 7.1 follows from Lemmas 13.1 and 13.2.

LEMMA 13.1. Let P(W ) be substitutable. If µ ∈M is the outcome of an SPNE, then µ ∈
E (P).

PROOF. Let (η∗,ξ∗) be an SPNE, and letµ∈M be the outcome of (η∗,ξ∗). For all w ∈W ,

ξ∗w (η)∩{ f : w ∈η f }=Ch ({ f : w ∈η f }, P(w )).

For all f ∈ F , and all η− f , let

Y (η− f ) = {w : f ∈Ch ( f̃ : w ∈η f̃ ∪ f , P(w ))}.

So, by definition of SPNE, η∗f ∩Y (η∗− f ) =Ch (Y (η∗− f ), P( f )).
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Let (η,ξ) be the pair of strategies obtained from (η∗,ξ∗) by having each w not pro-
pose to firms that did not propose to w and each f not propose to workers who will
reject f . Thus, ξw (η) = ξ∗w (η)∩{ f : w ∈η f } and η f ∩Y (η∗− f ) =η

∗
f ∩Y (η∗− f ).

We show that (η,ξ) is an SPNE as well, and that its outcome is also µ. First, it is
immediate that its outcome is µ: η f = µ( f ) for all f , and for all w ∈ µ( f ), f ∈ ξw (η).
Second, given a strategy profile η for firms, each w is indifferent between proposing
ξ∗w (η) and ξw (η), as they both result in the same set of partners. For a firm f , Y (η∗− f ) =

Y (η− f ), which implies that η f =Ch (Y (η− f ), P( f )), and thus (η,ξ) is an SPNE. To see that

Y (η∗− f ) = Y (η− f ), note that w ∈ Y (η∗− f ) if and only if f ∈Ch ({ f̃ : w ∈η∗
f̃
}∪ f , P(w )). But

Ch ({ f̃ : w ∈η∗
f̃
}∪ f , P(w )) =Ch (Ch ({ f̃ : w ∈η∗

f̃
}, P(w ))∪ f , P(w ))

=Ch (µ(w )∪ f , P(w ))

=Ch ({ f̃ : w ∈η f̃ }∪ f , P(w )),

where the first equality is a consequence of substitutability of P(W ) (Blair 1988, Propo-
sition 2.3). Hence w ∈ Y (η∗− f ) if and only if

f ∈Ch ({ f̃ : w ∈η f̃ }∪ f , P(w )),

so Y (η∗− f ) = Y (η− f ).
Now we prove that µ∈ E (P). Let f ∈ F . Note that

Y (η− f ) =
�

w : f ∈Ch (µ(w )∪ f , P(w ))
	

,

so Y (η− f ) =U ( f ,µ). Now, by the definition of η f , µ( f ) =η f =Ch (U ( f ,µ), P(w )).
Let w ∈W . We first prove that

µ(w )⊆V (w ,µ). (37)

Let f ∈ µ(w ), so w ∈ µ( f ) = η f . But η f = Ch (Y (η− f ), P( f )), so η f = Ch (η f , P( f )).
Then w ∈ Ch (µ( f ) ∪ w , P( f )) = Ch (η f , P( f )), so f ∈ V (w ,µ); this proves (37). Sec-
ond, we prove that Ch (V (w ,µ), P(w )) ⊆ µ(w ), which together with (37) implies that
µ(w ) = Ch (V (w ,µ), P(w )). Let f ∈ Ch (V (w ,µ), P(w )). By (37), µ(w )∪ f ⊆ V (w ,µ). Sub-
stitutability of P(w ) implies that

f ∈Ch (µ(w )∪ f , P(w )). (38)

So w ∈U ( f ,µ). Suppose, by way of contradiction, that f /∈ µ(w ). Now, f /∈ µ(w ) implies
w /∈ µ( f ), so (38) implies µ( f ) ∪ f P(w ) µ( f ). But w ∈ U ( f ,µ), so µ( f ) ∪ f P(w ) µ( f )
contradicts µ( f ) = η f = Ch (U ( f ,µ), P(w )). The assumption f /∈ µ(w ) is then absurd.
This finishes the proof that µ(w ) = Ch (V (w ,µ), P(w )). We have also proved µ( f ) =
Ch (U ( f ,µ), P(w )), so µ∈ E (P). �
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LEMMA 13.2. If µ∈ E (P), then µ is the outcome of some SPNE.

PROOF. Define (η,ξ) by η f = µ( f ) and ξw (η) = Ch ({ f : w ∈ η f }, P(w )). Let µ ∈M be

the outcome of (η,ξ). We show that (η,ξ) is an SPNE, and that µ=µ.
Note that, for any f and w , { f̃ : w ∈η f̃ }∪ f =µ(w )∪ f . Then

{w : f ∈Ch ({ f̃ : w ∈η f̃ }∪ f , P(w ))}=
�

w : f ∈Ch (µ(w )∪ f , P(w ))
	

=U ( f ,µ).

But µ ∈ E (P), so η f = µ( f ) = Ch (U ( f ,µ), P( f )). Hence η f is optimal given η− f . By

definition of ξw , ξw (η) is optimal for w given any profile η. Hence (η,ξ) is an SPNE.
Now, f ∈ µ(w ) if and only if w ∈ µ( f ) = η f . So { f : w ∈ η f } = µ(w ). Then ξw (η) =

Ch (µ(w ), P(w )) = µ(w ), as µ(w ) ∈ E (P) implies that µ is individually rational (Lemma
11.4).

Hence w ∈ µ( f ) if and only if w ∈ η f = µ( f ), and f ∈ µ(w ) if and only if f ∈ ξw (η) =
µ(w ). So µ=µ. �

13.2 Proof of Theorem 8.2

Let 〈W ′, F ′,µ′〉 be a block of µ. Let w ∈W ′ be such that µ′(w ) P(w ) µ(w ). We prove that
there are f , f ′ ∈ F ′ and w ′ ∈W ′ such that:

• w 6=w ′, f 6= f ′

• f ∈µ′(w ) \µ(w ), w ′ ∈µ′( f ) \µ( f ), and f ′ ∈µ′(w ′) \µ(w ′)

• f wants to add w ′ and w ′ wants to add f ′, but w ′ does not want to add f and f ′

does not want to add w ′.

Now, µ′(w ) P(w )µ(w ) implies that

Ch (µ(w )∪µ′(w ), P(w ))R(w )µ′(w ) P(w )µ(w ).

But µ ∈ E (P) implies that µ is individually rational (Lemma 11.4); so µ(w ) R(w ) A for all
A ⊆µ(w ). Hence

Ch (µ(w )∪µ′(w ), P(w )) \µ(w ) 6= ;.

Let f ∈Ch (µ(w )∪µ′(w ), P(w ))\µ(w ). By substitutability of P(w ), f ∈Ch (µ(w )∪ f , P(w ));
hence w wants to add f .

On the other hand, f ∈ Ch (µ(w ) ∪ f , P(w )) implies that w ∈ U ( f ,µ). But f ∈
µ′(w ) \µ(w ) means that w ∈ µ′( f ) \µ( f ). In particular, w /∈ µ( f ); so, by Lemmas 11.5
and 11.2, w /∈Ch (µ( f )∪w , P( f )) =µ( f ), as µ∈ E (P) implies µ( f ) =Ch (U ( f ,µ), P( f )) and
µ( f )∪w ⊆U ( f ,µ). Hence f does not want to add w .

But µ′( f ) 6=µ( f ) and f ∈ F ′ imply µ′( f ) P( f )µ( f ). By an argument that is symmetric
to the one above, there is w ′ ∈ µ′( f ) \µ( f ) and f ′ ∈ µ′(w ) \µ(w ) such that f wants to
add w ′ and w ′ wants to add f ′, but w ′ does not want to add f , and f ′ does not want to
add w ′.
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Recursively, given wk ∈W ′ with µ′(wk ) P(wk ) µ(wk ) let f k+1, wk+1, and f k+1 be f ,
w ′, and f ′ obtained as above. Consider the sequence of alternating workers and firms
constructed: W ′ is a finite set, so there must exist k and l such that wk =w l . Say l < k ;
set ŵ0 =w l , and (ŵk ′ , f̂ k ′ ) = (wk ′+l , f k ′+l ) for k ′ = 0, 1, . . . , k − l . The resulting sequence
is an acceptance-rejection cycle for µ.

14. PROOFS OF THEOREMS 9.7, 9.8, AND 9.11

14.1 Proof of Theorem 9.7

We first establish some lemmas.

LEMMA 14.1. Let P be substitutable. Let µ and µ′ be pre-matchings. If µ≤B µ′ then, for
all w ∈W and f ∈ F , U ( f ,µ)⊆U ( f ,µ′) and V (w ,µ)⊇V (w ,µ′).

PROOF. We prove that V (w ,µ) ⊇ V (w ,µ′). The proof that U ( f ,µ) ⊆ U ( f ,µ′) is analo-
gous.

First, if V (w ,µ′) = {;}, then there is nothing to prove, as {;} = V (w ,µ′) ⊆ V (w ,µ).
Suppose that V (w ,µ′) 6= {;}, and let f ∈V (w ,µ′). Then, w ∈Ch (µ′( f )∪w , P( f )).

But µ≤B µ′, so the definition of ≤B implies that, for all f ∈ F , either µ′( f ) = µ( f ) so
w ∈ Ch (µ( f )∪w , P( f )), or µ′( f ) = Ch (µ′( f )∪µ( f ), P( f )). Then w ∈ Ch (µ′( f )∪w , P( f ))
implies that

w ∈Ch (µ′( f )∪w , P( f ))

=Ch (Ch (µ′( f )∪µ( f ), P( f ))∪w , P( f ))

=Ch (µ′( f )∪µ( f )∪{w }, P( f )).

The second equality above is from Proposition 2.3 in Blair (1988). (Blair proves that
if P is substitutable, then Ch (A ∪ B , P( f )) = Ch (Ch (A, P( f )) ∪ B , P( f )) for all A and B .)
Substitutability of P implies that w ∈ Ch (µ( f ) ∪w , P( f )). Then f ∈ V (w ,µ) and thus
V (w ,µ)⊇V (w ,µ′). �

LEMMA 14.2. Let P be strongly substitutable. Let µ and µ′ be pre–matchings. If µ ≤ µ′
then, for all w ∈W and f ∈ F , U ( f ,µ)⊆U ( f ,µ′) and V (w ,µ)⊇V (w ,µ′).

PROOF. We prove that V (w ,µ) ⊇ V (w ,µ′). The proof that U ( f ,µ) ⊆ U ( f ,µ′) is analo-
gous.

First, if V (w ,µ′) = {;}, then there is nothing to prove. Suppose that V (w ,µ′) 6= {;},
and let f ∈ V (w ,µ′). Then, w ∈ Ch (µ′( f )∪w , P( f )). Strong substitutability implies then
w ∈Ch (µ( f )∪w , P( f )), as µ′( f )R( f )µ( f ) because µ≤µ′. �

Let V ′ = {ν ∈V : ν (s )R(s ) ; for all s ∈ F ∪W }. We need to work on the set V ′ instead
of V because ν0 and ν1 are the smallest and largest, respectively, elements of V ′. Note
that T (V )⊆V ′, so there is no loss in working with V ′.
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LEMMA 14.3. If P is substitutable, then T |V ′ is increasing when V ′ is endowed with ≤B .
If P is strongly substitutable, then T |V ′ is increasing when V ′ is endowed with ≤.

PROOF. We show that T |V ′ is increasing when V ′ is endowed with order ≤B . That is,
whenever µ≤B µ′ we have (Tµ)≤B (Tµ′). The proof for ≤ follows along the same lines,
using Lemma 14.2 instead of 14.1.

Let µ ≤B µ′ and fix f ∈ F and w ∈W . Lemma 14.1 says that U ( f ,µ) ⊆U ( f ,µ′). We
first show that

Ch (U ( f ,µ′), P( f )) =Ch ([Ch (U ( f ,µ′), P( f ))∪Ch (U ( f ,µ), P( f ))], P( f )). (39)

To see this, let S ⊆ Ch (U ( f ,µ′), P( f )) ∪Ch (U ( f ,µ), P( f )). Then S ⊆ U ( f ,µ) ∪U ( f ,µ′) =
U ( f ,µ′), so Ch (U ( f ,µ′), P( f )) R( f ) S. But Ch (U ( f ,µ′), P( f )) ⊆ Ch (U ( f ,µ′), P( f )) ∪
Ch (U ( f ,µ), P( f )), so we have established (39).

Now, (Tµ′)( f ) = Ch (U ( f ,µ′), P( f )) and (Tµ)( f ) = Ch (U ( f ,µ), P( f )), so (39) implies
that

(Tµ′)( f ) =Ch ([(Tµ′)( f )∪ (Tµ)( f )], P( f ))).

The proof for (Tµ′)(w ) is analogous. �

Now T |V ′ :V ′→V ′ is increasing and V ′ is a lattice (Remark 9.1). We have T (V )⊆V ′
so E (P)⊆V ′, and E (P) equals the set of fixed points of T |V ′ . So Tarski’s fixed point theo-
rem implies that 〈E (P),≤B 〉 and 〈E (P),≤〉 are nonempty lattices. Item (ii) in Theorem 9.7
follows from standard results (Topkis 1998, Chapter 4).

This finishes the proof of Theorem 9.7.

14.2 Proof of Theorem 9.8

We first prove item (i).
Let ν , ν ′ ∈ E (P) be such that ν ′(w ) R(w ) ν (w ) for all w ∈ W . Suppose, by

way of contradiction, that there is some f ∈ F such that ν ′( f ) P( f ) ν ( f ). Let C =
Ch (ν ( f )∪ν ′( f ), P( f )), so C R( f ) ν ′( f ) P( f ) ν ( f ). But ν ∈ E (P) implies that ν ( f ) =
Ch (ν ( f ), P( f )) (Lemma 11.4), so C * ν ( f ). Hence there is w ∈ C \ ν ( f ); note that
w ∈ ν ′( f ). Now

w ∈C =Ch (ν ( f )∪ν ′( f )∪w , P( f ))

and the substitutability of P( f ) imply that w ∈Ch (ν ( f )∪w , P( f )). So f ∈V (w ,ν ).
Now, w ∈ ν ′( f ) \ ν ( f ) implies f ∈ ν ′(w ) \ ν (w ). Then ν ′(w ) R(w ) ν (w ) implies that

ν ′(w ) P(w ) ν (w ), as P(w ) is strict. But ν ′(w ) = Ch (ν ′(w ), P(w )) = Ch (ν ′(w ) ∪ f , P(w ))
by Lemma 11.4. So strong substitutability implies that f ∈ Ch (ν (w ) ∪ f , P(w )). Since
f /∈ ν (w ), we obtain ν (w ) ∪ f P(w ) ν (w ). This contradicts ν ∈ E (P), since we showed
f ∈V (w ,ν ) and ν ∈ E (P) imply ν (w ) =Ch (V (w ,ν ), P(w )).

To prove item (ii) in the theorem, note that when P(F ) is strongly substitutable the
model is symmetric, and the argument above holds with firms in place of workers, and
workers in place of firms. �
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14.3 Proof of Theorem 9.11

We first prove that 〈E (P),≤〉 is a sublattice of 〈V ,≤〉. That 〈E (P),≤〉 is distributive follows
then immediately. We need to verify that the lattice operations ∨ and ∧ in V are the
lattice operations in 〈E (P),≤〉.

Let ν1, ν2 ∈ E (P). Let ν = ν1∨ν2 inV . We prove that ν is the join of ν1, ν2 in 〈E (P),≤〉.
The proof for ν1 ∧ν2 is analogous.

By hypothesis ν is a matching; so

w ∈ ν ( f )→ f ∈ ν (w ).

We prove that ν ∈ E (P). Suppose, by way of contradiction, that there is f such that
(Tν )( f ) 6= ν ( f ). Without loss of generality, say that ν ( f ) = ν1( f ) R( f ) ν2( f ). Since ν1 ∈
E (P), ν1 is individually rational (Lemma 11.4), so f ∈ Ch (ν1(w ), P(w )) = Ch (ν1(w )∪ f ,
P(w )) for all w ∈ ν1( f ). For all w , on the other hand, ν1(w ) R(w ) ν (w ). So strong sub-
stitutability gives f ∈ Ch (ν (w )∪ f , P(w )) for all w ∈ ν1( f ). Thus ν1( f ) ⊆U ( f ,ν ). Since
(Tν )( f ) =Ch (U ( f ,ν ), P( f )) and ν1 is individually rational, (Tν )( f ) \ν ( f ) 6= ;.

Let w ∈ (Tν )( f ) \ ν ( f ). By substitutability, w ∈ Ch (ν1( f )∪w , P( f )). Strong substi-
tutability and ν1( f )R( f ) ν2( f ) then imply w ∈Ch (ν2( f )∪w , P( f )). So

f ∈V (w ,ν i ) (40)

for i = 1, 2.
On the other hand w ∈ (Tν )( f ) implies w ∈U ( f ,ν ), so

f ∈Ch (ν (w )∪ f , P(w )). (41)

Let i be such that ν (w ) = ν i (w ). Then (40) and ν i ∈ E (P) imply ν i (w )∪ f ∈V (w ,ν i ).
But we assumed w /∈ ν ( f ), so f /∈ ν i (w ), as ν is a matching. Then ν i (w )∪ f 6= ν i (w ),

which contradicts ν i ∈ E (P), given (41) and ν (w )∪ f ∈V (w ,ν i ).
For the rest of the theorem, we need a lemma.

LEMMA 14.4. Let P be strongly substitutable. For all f and w , for any ν and ν ′ in V ,
U ( f ,ν ∨ ν ′) =U ( f ,ν )∪U ( f ,ν ′), U ( f ,ν ∧ ν ′) =U ( f ,ν )∩U ( f ,ν ′), V (w ,ν ∨ ν ′) = V (w ,ν )∩
V (w ,ν ′), and V (w ,ν ∧ν ′) =V (w ,ν )∪V (w ,ν ′).

PROOF. We prove only that U ( f ,ν ∨ ν ′) = U ( f ,ν ) ∪U ( f ,ν ′) and that V (w ,ν ∨ ν ′) =
V (w ,ν )∩V (w ,ν ′). The proof of the other statements is symmetric.

We first prove that U ( f ,ν ∨ν ′)⊆U ( f ,ν )∪U ( f ,ν ′). Let w ∈U ( f ,ν ∨ν ′), so f ∈Ch ((ν ∨
ν ′)(w )∪ f , P(w )). Now, (ν ∨ ν ′)( f ) equals either ν ( f ) or ν ′( f ). If (ν ∨ ν ′)(w ) = ν (w ), then
f ∈Ch (ν (w )∪ f , P(w )); so w ∈U ( f ,ν ). Similarly, if (ν ∨ν ′)(w ) = ν ′(w ), then w ∈U ( f ,ν ′).
This proves that U ( f ,ν ∨ν ′)⊆U ( f ,ν )∪U ( f ,ν ′).

Second, we prove that U ( f ,ν ) ∪U ( f ,ν ′) ⊆ U ( f ,ν ∨ ν ′). Let w ∈ U ( f ,ν ), so f ∈
Ch (ν (w ) ∪ f , P(w )). Now ν (w ) R(w ) (ν ∨ ν ′)(w ), so strong substitutability implies f ∈
Ch ((ν ∨ ν ′)(w )∪ f , P(w )). Hence w ∈U ( f ,ν ∨ ν ′). This proves that U ( f ,ν )∪U ( f ,ν ′) ⊆
U ( f ,ν ∨ν ′). So, U ( f ,ν ∨ν ′) =U ( f ,ν )∪U ( f ,ν ′).



Theoretical Economics 1 (2006) Many-to-many matchings 271

We now prove that V (w ,ν ∨ ν ′) = V (w ,ν ) ∩ V (w ,ν ′). First we prove V (w ,ν ∨ ν ′) ⊆
V (w ,ν )∩V (w ,ν ′). Let f ∈V (w ,ν ∨ν ′), so

w ∈Ch ((ν ∨ν ′)( f )∪w , P( f )). (42)

Without loss of generality, say (ν∨ν ′)( f ) = ν ( f )R( f ) ν ′( f ). Then (ν∨ν ′)( f ) = ν ( f ) implies
that f ∈V (w ,ν ). Statement (42) and strong substitutability imply that w ∈Ch (ν ′( f )∪w ,
P( f )), as (ν ∨ ν ′)( f ) R( f ) ν ′( f ). Thus f ∈ V (w ,ν ), and we obtain V (w ,ν ∨ ν ′)⊆ V (w ,ν )∩
V (w ,ν ′).

Finally, we prove that V (w ,ν )∩V (w ,ν ′)⊆ V (w ,ν ∨ν ′). Let f ∈ V (w ,ν )∩V (w ,ν ′), so
w ∈ Ch (ν ( f )∪w , P( f )) and w ∈ Ch (ν ′( f )∪w , P( f )). Now, (ν ∨ν ′)(w ) equals either ν (w )
or ν ′(w ), so either way w ∈Ch ((ν ∨ν ′)( f )∪w , P( f )). Hence f ∈V (w ,ν ∨ν ′). �

Lemma 14.4 implies immediately that ψ is a lattice homomorphism: Let ν ′,ν ∈ V .
For any f and w ,

(ψ(ν ∨ν ′))( f ) =U ( f ,ν ∨ν ′) =U ( f ,ν )∪U ( f ,ν ′) = (ψν )( f )∪ (ψν ′)( f )
(ψ(ν ∨ν ′))(w ) =V (w ,ν ∨ν ′) =V (w ,ν )∩V (w ,ν ′) = (ψν )( f )∩ (ψν ′)( f ).

Soψ(ν ∨ν ′) =ψν tψν ′. Thatψ(ν ∧ν ′) =ψν uψν ′ is also trivial from Lemma 14.4.
We now show that ψ|E (P) is an isomorphism onto its range. Let ν , ν ′ ∈ E (P). Let

ψν = ψν ′. Then for all f , U ( f ,ν ) =U ( f ,ν ′) so (Tν )( f ) = (Tν ′)( f ). Similarly (Tν )(w ) =
(Tν ′)(w ) for all w . So Tν = Tν ′. Then ν , ν ′ ∈ E (P) implies ν = ν ′, as v = Tν and v ′ = Tν ′.
Henceψ is one-to-one, asψν =ψν ′ implies ν = ν ′.
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