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TESTING MODELS WITH MULTIPLE EQUILIBRIA

BY QUANTILE METHODS

FEDERICO ECHENIQUE AND IVANA KOMUNJER

Abstract. This paper proposes a method for testing complementarities between

explanatory and dependent variables in a large class of economic models. The pro-

posed test is based on the monotone comparative statics (MCS) property of equi-

libria. Our main result is that MCS produces testable implications on the (small

and large) quantiles of the dependent variable, despite the presence of multiple

equilibria. The key features of our approach are: (1) we work with a nonparamet-

ric structural model of a continuous dependent variable in which the unobservable

is allowed to be correlated with the explanatory variable in a reasonably general

way; (2) we do not require the structural function to be known or estimable; (3)

we remain fairly agnostic on how an equilibrium is selected. We illustrate the

usefulness of our result for policy evaluation within Berry, Levinsohn, and Pakes’s

(AER, 1999) model.
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1. Introduction

In many conventional economic models, equilibrium uniqueness comes at a cost of

strong and often untenable assumptions. Consider, for example, general equilibrium

models: the uniqueness conditions with some natural economic meaning imply the

strong weak axiom, which in turn cannot be expected to hold beyond single-agent

economies (Arrow and Hahn, 1971). Therefore it is not surprising to find equilib-

rium multiplicity present in a variety of contexts, ranging from general equilibrium

models in microeconomics, oligopoly models and network externalities in industrial

organization, to non-convex growth models in macroeconomics or models of statisti-

cal discrimination in labor economics.

Performing comparative statics with multiple equilibria is a challenge. How changes

in explanatory variables affect dependent variables depends on the way a particular

equilibrium is selected. Unfortunately, the theoretical literature offers little guid-

ance on equilibrium selection.1 As a consequence, policy analysis seems impossible

as policy effects may well vary across different equilibria. More to the point, without

equilibrium selection, it is hard to identify the structure underlying economic mod-

els when multiple equilibria are present. And with no knowledge of the structure,

we can say little about general comparative statics effects. We should emphasize

that we are concerned with testing for the existence of a comparative statics effect;

the counterfactual prediction of the effects of policies remains virtually impossible

without substantial information about equilibrium selection.

In this paper, we restrict our attention to economic models that exhibit comple-

mentarities between explanatory and dependent variables. In such models, despite

the possible presence of multiple equilibria, a monotone comparative statics (MCS)

prediction holds: there is a smallest and a largest equilibrium, and these change

monotonically with explanatory variables (Milgrom and Roberts, 1994; Villas-Boas,

1Consider Kreps (1990), for example: “There are ... lots of Nash equilibria to this game. Which

one is the ‘solution’? I have no idea and, more to the point, game theory isn’t any help. Some

(important) sorts of games have many equilibria, and the theory is of no help in sorting out whether

any one is the ‘solution’ and, if one is, which one is.”
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1997). The paper’s main contribution is to show how MCS arguments translate into

observable restrictions on the conditional quantiles of the dependent variable.

Our framework is as follows: similar to Jovanovic (1989), we start with an under-

lying economic model relating dependent and explanatory variables. We disturb the

model by adding an unobservable disturbance term that captures individual hetero-

geneity, or other unaccounted random features. The assumptions we impose on the

resulting structure are fairly weak: we allow for unknown structural function, un-

known equilibrium selection, and reasonably general correlation between the distur-

bance and the explanatory variable. Our main result is that MCS produces testable

implications on the (small and large) quantiles of the dependent variable.2 The result

does not assume, nor require estimating, an equilibrium selection procedure.3

The intuition behind is fairly simple. Consider a model in which there are com-

plementarities between explanatory and dependent variables. When the generated

equilibrium is unique, then the model can be globally implicitly solved and the re-

sulting reduced form is such that the dependent variable increases in the explanatory

variable. This property translates into first order stochastic dominance among distri-

butions: all conditional quantiles of the dependent variable are increasing functions

of the explanatory variable. When the model generates multiple equilibria, the above

implicit function arguments fail to hold globally. It remains, however, the MCS prop-

erty of the extremal equilibria. By focusing on regions in which the monotonicity

of equilibria holds, we still obtain that tail (small and large) conditional quantiles

of the endogenous variable increase in the explanatory variable. Testing for comple-

mentarities is thus possible by examining the behavior of extreme conditional tails

of the dependent variable.

Our method applies to a large class of economic models with continuous dependent

variables. These are: models of individual decision making in which the equilibrium

2An early test for MCS can be found in Athey and Stern (1998) in the context of firms’ choice

of organizational form. This prior work, however, does not address equilibrium problems.
3Understandably, estimating the structural parameters requires additional parametric assump-

tions on the equilibrium selection.
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values are the solutions of an extremum problem, and one-dimensional equilibrium

models where equilibria are fixed points. Since the dependent variable is continuous,

our findings complement those developed by the growing literature on discrete games

with multiple equilibria (Bresnahan and Reiss, 1990, 1991; Berry, 1992; Tamer, 2003;

Ciliberto and Tamer, 2004; Aguirregabiria and Mira, 2007).4

The next section discusses equilibrium multiplicity in Berry, Levinsohn, and Pakes’s

(1999) influential empirical model of price-setting with differentiated products. In

Section 3 we introduce the setup, and present our results. We conclude in Section 4

with a discussion and possible extensions of our approach.

2. Example

We now present a simplified version of Berry, Levinsohn, and Pakes’s (1995) model

of price competition with differentiated products. We use this model for two pur-

poses: first, to illustrate the challenges posed by equilibrium multiplicity, even in

popular and well-behaved economic models. Second, to argue that our methods

provide useful tools for policy analysis in these models. Concretely, we discuss the

analysis of the Japanese “Voluntary Export Restraint” (VER) policy for automobile

exports published in Berry, Levinsohn, and Pakes (1999) (BLP hereafter).

In our version of the BLP model there are two firms, each producing one good.

Firm 1 is foreign and Firm 2 is a home firm. Following BLP, we model the VERs

as (tax) increases in firms’ marginal costs. Firm i sets the price pi of its prod-

uct and obtains profits Πi(pi, p−i, V ER) = (pi − ci − λVERi)Di(pi, p−i), where

Di(pi, p−i) is the demand for Firm i’s good when its competitor sets a price p−i,

ci is i’s marginal cost, VERi is a dummy variable for the VER, and λ is the cor-

responding tax per unit of i’s production. The firms are assumed to choose prices

p∗i ∈ [0, p̄ ] which—given the price p−i set by their competitor—maximize their prof-

its: p∗i = argmaxpi∈[ 0,p̄ ]Πi(pi, p−i, VERi). Only Firm 1 (the foreign firm) is subject

to the VER and we denote by VER = VER1 the VER dummy.

4Unlike in these papers, however, our methods can only be applied to discuss comparative statics

effects, and are silent about other structural features of the model.
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Let p∗1 = βc
1(p2, VER) and p∗2 = βc

2(p1, 0) denote the best responses (reactions) of

Firms 1 and 2 as determined by profit maximization. In our application, the existence

of maximizers p∗i directly follows from the continuity of Πi and compactness of [0, p̄ ];

in general, however, the maximizers need not be unique so we allow the best responses

βc
i to be correspondences (or set-valued functions). Hereafter, we denote βi the best

response function that Firm i selects from βc
i ; by the maximum theorem we can take

βi to be continuous.

2.1. BLP Model with Multiple Equilibria. We focus our analysis on the com-

posed best response function for foreign firm (Firm 1): β1(β2(p1, 0), VER). The

equilibrium price p = p∗1 set by Firm 1 is determined by the fixed-point condition:

(1) β1 (β2(p, 0), VER) − p = 0.

Without additional restrictions on the demand functions, a solution p to the above

equilibrium condition need not be unique. Not only are the known conditions for

uniqueness very strong (Gabay and Moulin, 1980; Caplin and Nalebuff, 1991) there

is a sense in which games generally tend to have large numbers of equilibria. In a

model of randomly generated games, McLennan (2005) shows that the mean number

of equilibria grows exponentially with the number of strategies. Games of strategic

complements, which are especially relevant for our paper, tend to have particularly

large numbers of equilibria (Takahashi, 2005).

As pointed out by Berry, Levinsohn, and Pakes (1995, 1999), the BLP model in

particular is not guaranteed to have a unique equilibrium. For example, Milgrom and

Roberts (1990) establish uniqueness for the linear demand, CES, logit, or translog

models (under additional parameter constraints). Simple departures from these mod-

els result in multiple equilibria for p. Echenique and Komunjer (2007b) make this

point in the context of a logit model with conditional heteroskedasticity.

We now argue that, despite equilibrium multiplicity, it is still possible to eval-

uate the impact of the VER on the prices in Equation (1). If VER and prices

are complements, then any selection from βc
1 is monotone increasing in VER. To
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see this, note that ∂2Π1(p1, p2, VER)/∂p1 ∂VER = −λ∂D1(p1, p2)/∂p1 has the same

sign as λ provided the demand functions Di are everywhere decreasing in pi, i.e.

∂Di(pi, p−i)/∂pi < 0. When λ > 0, Π1 has strictly increasing differences (is strictly

supermodular) in (p1, VER). Every selection from the best response p∗1 = βc
1(p2, VER)

is then monotone increasing in VER (by Milgrom and Shannon’s (1994) monotone se-

lection theorem). Hence, the comparative statics effects take the form of a monotone

comparative statics (MCS) prediction: if the implicit tax on exports λ is positive,

then the VER will cause the extremal price equilibria to increase. Figure 1 illus-

trates this effect. Evaluating the price impact of VER in the BLP framework is then

equivalent to testing for the presence of MCS.

There are two difficulties in testing for MCS. First, we need to work with a stochas-

tic version of the model (1). In presence of unobserved heterogeneity, the observed

prices will no longer be discretely distributed over equilibrium sets. Instead, they

will have mixture distributions (in Section 3 we show how such mixtures arise). Since

we allow for unknown equilibrium selection, the exact probabilities in the mixture

remain unknown. This is the source of the second difficulty: certain equilibrium se-

lections may induce smaller observations with the VER than without it thus working
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against the positive effect of the VER. For example, assume that the price of Firm

1’s product is like the one in Figure 2. Here, the average foreign car price decreases

in presence of the VER. This simple example shows that MCS has no general im-

plications on the conditional mean of prices given VER. All we have to work with

is the MCS property: that in the presence of the VER the smallest equilibrium and

the largest equilibrium have increased.

2.2. Observable Implications of MCS. Write y ≡ ln p, x ≡ VER and let r(y, x) ≡

ln
(

β1 (β2(exp y, 0), x)
)

− y. Then, the equilibrium values for y solve the equation:

(2) r(y, x) = 0.

We first obtain a stochastic version of the model based on the equilibrium condition

(2). Let Y be a scalar random variable whose realizations correspond to the log-prices

y = ln p, let X be the VER dummy with realizations x. Consider the structural model

r(Y,X) = U , in which U is a scalar disturbance term. Different realizations of U

induce values of Y that deviate from the exact equilibrium condition. The continuity

and limit behavior of r (which we discuss in Section 3.1) guarantee that the disturbed

equilibrium condition r(y, x) = u always has at least one solution.

We now study the comparative statics effects on the log-prices Y following the

introduction of the VER based on the model r(Y,X) = U . For this, first note that,

since β1 is increasing in x, so is r. This property (which we later label Assumption S2)

states that X and Y are complements. The existence of complementarities between

the VER and the log-prices is the starting point of our comparative statics analysis.

Our main result provides simple conditions under which the effect of extremal

equilibria will prevail for large (and small) values of the dependent variable. The

conditions are simple and do not restrict the equilibrium selection rule. When they

are satisfied, the effect of VER on extremal equilibria translates into testable impli-

cations on some large (and small) enough quantile of the distribution of log-prices.

The conditions (found in Assumptions S3/S3’) restrict the dependence of U on X,

and the tail behavior of U . The first of those properties is an identification condition:
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we use it to prevent the variations in U from exactly canceling out with an increase

in X. This condition is easily satisfied if U and X are independent, for example.

Independence is, however, stronger than needed; Section 4.1.2 contains examples in

which U and X are correlated in a reasonably general way. The role of the second

condition is to ensure that any increase in X eventually translates into an increase of

large enough conditional quantiles of Y given X. Its key feature is to only restrict the

distribution of U given X without placing assumptions on the equilibrium selection

procedure. Broadly speaking, this condition rules out heavy-tailed distributions;

Section 3.2 contains a detailed discussion on the distributions that we allow for.

3. Structural Model and Results

3.1. Structure. We consider a structural equation given by:

(3) r(Y,X) = U,

where r : R × R → R is specified by economic theory.5 The variables that enter the

structural model in (3) are: a dependent variable Y ∈ R, an explanatory variable

X ∈ X ⊆ R, and a disturbance to the system U ∈ R. When the structural function r

is parameterized by a finite dimensional parameter θ in Θ, one can write r(Y,X, θ) =

U in Equation (3). We assume that X and Y are observable, but U is not; U can be

thought of as unaccounted heterogeneity in the model.

We have in mind the structural equations derived from two classes of economic

models. One class predicts equilibrium values y based on a first-order condition

r(y, x) = 0; these are single-person decision models, such as models solved by a

social planner. A second class predicts equilibrium values y based on a fixed-point

condition r(y, x) = ρ(y, x) − y = 0, as in the BLP model in Section 2.

Given the function r, the structural econometric model is built by introducing the

disturbance term U in the underlying economic model. Different realizations of U

5As in Matzkin (1994, 2005), we consider structural equations in which U is additively separable.

The methods developed here are not suited for the non-separable problem r̃(Y,X,U) = 0. In such

cases the framework in Echenique and Komunjer (2007a) may still be applied.
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induce values of Y that deviate from the equilibria predicted by the economic model.

The disturbance U has a clear interpretation as the extent to which a realized Y

violates the exact (undisturbed) equilibrium condition.

When Equation (3) determines Y as a function Y = m(X,U), the distribution

of the disturbance U conditional on the explanatory variable X, denoted FU |X , de-

termines unambiguously the conditional distribution of Y , denoted FY |X . We say

that FY |X is generated by the structure S = (r, FU |X). On the other hand, when

Equation (3) has multiple solutions, a complete specification of the structure must

include a rule that selects a particular realization y from the set of solutions. Such

an equilibrium-selection rule can depend on the realized values of X and U .

We assume that for any x in the support X of X, FU |X=x has a strictly positive

density fU |X=x on R. The variable X can be discrete or continuous. Let the equilib-

rium set as the set of solutions to (3) when X = x and U = u: let (x, u) ∈ X × R

and Exu = {y ∈ R : r(y, x) = u}. We work with the following assumption.

Assumption S1. (i) The function r : R ×X → R is continuous; (ii) for any x ∈ X ,

limy→−∞ r(y, x) = +∞ and limy→+∞ r(y, x) = −∞; (iii) for any (x, u) ∈ X ×R, Exu is

a finite set. We write Exu = {ξ1xu, ..., ξnxxu} (ξ1xu 6 . . . 6 ξnxxu) with nx = Card(Exu).

Assumptions S1.i and S1.ii are standard. S1.ii is akin to an Inada condition; in

particular, S1.i and S1.ii imply, by the Intermediate Value Theorem, that a solution

to Equation (3) always exists. Assumption S1.iii requires r not to be constant over

any subintervals. By using suitable arguments from differential topology, S1.iii can be

shown to hold generically (see Mas-Colell, Whinston, and Green (1995) for examples

of these arguments). That the number of equilibria only depends on the explanatory

variable X is not a serious restriction; it can simply be satisfied by duplicating

elements of the equilibrium set until its cardinality no longer depends on U .

We now show that the BLP example in Section 2 satisfies all our assumptions.

Given that the best-response functions βi are continuous, so is r (Assumption S1.i).

That the demand functions Di are everywhere positive implies the limit conditions
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on r in S1.ii.6 Finally, when the distribution of U is absolutely continuous, the set

of solutions to r(y, x) = u will be finite with probability 1 (Assumption S1.iii).

We specify the selection rule as follows: let Pxu be a probability distribution

over Exu, which assigns probabilities {π1x, . . . , πnxx} to outcomes {ξ1xu, . . . , ξnxxu},

such that π1x > 0 and πnxx > 0. For a given x, different realizations u can affect

the support of Pxu, but not the probabilities assigned to different outcomes in the

support. For example, Pxu might assign equal probabilities across all elements of

Exu. The conditional distribution of Y is then obtained as follows.

Proposition 1. Assume S1 holds, and fix a selection rule PXU . Then, for any

x ∈ X there are distribution functions FiY |X=x(y) =
∫ +∞

−∞
1I(ξixu 6 y)fU |X=x(u)du,

for 1 6 i 6 nx, such that, j > i implies that FjY |X=x first-order stochastically

dominates FiY |X=x. And, for any y ∈ R, FY |X=x(y) =
∑nx

i=1 πixFiY |X=x(y).

When multiple equilibria exist, FY |X is generated by the structure S = (r, FU |X ,PXU),

which now includes the additional element PXU . Proposition 1 shows that under S

the conditional distribution of the dependent variable has a mixture form. When

equilibrium is unique, i.e. when the structural function r is monotone decreasing,

the results of Proposition 1 reduce to the usual expression of the image distribution

FY |X of Y given X: F̄Y |X=x(y) = FU |X=x(r(y, x)), where we use F̄Y |X ≡ 1 − FY |X to

denote the conditional distribution tail of Y .

In general, the structure S may not be known. We work with a class of struc-

tures that share a qualitative feature: they exhibit complementarities between the

explanatory variable X and the dependent variable Y .

Assumption S2. r(y, x) is monotone increasing in x on R.

Assumption S2 says that X and Y are complements. Such complementarity usu-

ally follows from a supermodularity property of the primitive model. An example is

6Note that, if Di(pi, p) > 0 for all (pi, p−i) then, p̂i < ci+λVERi implies that Πi(p̂i, p−i, V ER) <

0 = Πi(ci +λVERi, p−i, V ER). So βi(p−i,VERi) > ci +λVERi, for all values of p−i. As y → −∞,

β1 (β2(exp y, 0),VER) → β1 (β2(0, 0),VER) > c1 and so r(y, x) → +∞. Moreover, for any value of

p−i, βi(p−i,VERi) 6 p̄. So β1 (β2(exp y, 0),VER) remains bounded as y → +∞ and r(y, x) → −∞.
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the BLP model in Section 2, in which Assumption S2 follows from the strict super-

modularity of firms’ profits in their own prices and the VER. The key feature of S2

is that it implies the MCS property: the extremal equilibria of r(y, x) = 0 increase

with x (Figure 1). We now review briefly some of the many economic models that

fall into our framework.

3.1.1. Individual decision maker. Consider models of individual decision making, in

which the dependent variable is one-dimensional, and determined through the first-

order condition of an optimization problem. An important class of such models are

the ones solved by a social-planning problem, such as growth and macroeconomic

models in Barro and Sala-I-Martin (2003) and Ljungqvist and Sargent (2004). Other

examples include models of firms’ investment choices used for testing if investment

is sensitive to Tobin’s q (Hayashi, 1982; Hayashi and Inoue, 1991).

3.1.2. One-dimensional equilibrium. Consider one-dimensional equilibrium models

where equilibria are fixed points. For example, in a two-player game one can compose

the two players’ best-response functions, similarly to how we dealt with BLP’s model

in Section 2. As a consequence, duopoly models generally have the structure we

need. Cournot n-firm oligopoly models also reduce to a one-dimensional equilibrium

model by an aggregation procedure as described by Amir (1996). One can thus

examine if entry of additional firms to a market causes a decrease in prices as in Amir

and Lambson (2000). Additional examples can be found in overlapping-generations

models, and two-good general equilibrium models.

3.2. Main Result. The presence of complementarities between X and Y is the

basis of our main result: we show that an increase in x implies an increase in all

the sufficiently large (and small) quantiles of FY |X=x. The result will follow from

combining Assumption S2 with restrictions on U .

Consider x1 and x2 in X with x1 < x2. Let n1 = nx1
and n2 = nx2

. How does

the MCS property translate into observable implications on F̄Y |X=x1
and F̄Y |X=x2

?

Recall that F̄Y |X = 1 − FY |X is the conditional distribution tail of Y . Let π1i = πix1
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and π2j = πjx2
. Using the mixture result in Proposition 1 and focusing on the largest

equilibria, we then have:

F̄Y |X=x1
(y)

F̄Y |X=x2
(y)

=
F̄n1Y |X=x1

(y)

F̄n2Y |X=x2
(y)

∑n1

i=1 π1i[F̄iY |X=x1
(y)/F̄n1Y |X=x1

(y)]
∑n2

j=1 π2j[F̄jY |X=x2
(y)/F̄n2Y |X=x2

(y)]

6
F̄n1Y |X=x1

(y)

F̄n2Y |X=x2
(y)

1

π2n2

,(4)

where the second inequality follows because π2n2
> 0, F̄jY |X=x2

(y)/F̄n2Y |X=x2
(y) > 0,

and because stochastic dominance implies F̄iY |X=x1
(y) 6 F̄n1Y |X=x1

(y).

The upper bound in Equation (4) involves the probability of the largest equilibrium

π2n2
—on which we place no restrictions other than being positive—as well as the ratio

of the distributions F̄n1Y |X=x1
and F̄n2Y |X=x2

. These distributions are unknown and

depend on the locations of the largest equilibria; hence they are difficult to control.

A careful change of variables, however, transforms the problem so that (in the limit)

the behavior of their ratio depends solely on the properties of r and FU |X .

Lemma 2. Under S1 and S2, and given (y0, x) ∈ R × X , we have 1I(ξnxxu 6 y) =

1I(u 6 re(y, x)) for any y > y0, where re(y, x) is the non-increasing envelope of

r(y, x) on [y0, +∞), i.e. re(y, x) = inf{q(y) : q is non-increasing on [y0, +∞) and

q(y) > r(y, x) for all y ∈ [y0, +∞)}.

The idea in Lemma 2 is to consider a non-increasing transformation re which

coincides with r around the largest equilibrium (see Figure 3). For y > y0 then:

(5)
F̄n1Y |X=x1

(y)

F̄n2Y |X=x2
(y)

=

∫ re(y,x1)

−∞
fU |X=x1

(u)du
∫ re(y,x2)

−∞
fU |X=x2

(u)du
=

FU |X=x1
(re(y, x1))

FU |X=x2
(re(y, x2))

.

Now, how the increase in the largest equilibria translates into FY |X=x1
and FY |X=x2

,

depends on two factors: (i) the limit behavior or re(y, x1) and re(y, x2) as y grows,

and (ii) the limit behavior of the distribution FU |X . On (i), recall that, by S2, r(y, x)

is monotone increasing in x. Hence r(y, x1) 6 r(y, x2), which given the continuity

and limit conditions in S1 implies re(y, x1) 6 re(y, x2) for all y ∈ [y0, +∞). We allow

for two cases. Each case requires an assumption on FU |X .
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u

y2

r(y2,x)
= re(y2,x)

y1

r(y1,x)

re(y1,x)

yy0

Figure 3: Plots of y 7→ r(y, x) (dashed line) and y 7→ re(y, x) (solid line).

Assumption S3. (i) lim
y→+∞

[r(y, x1)/r(y, x2)] = λ with λ > 1; (ii) for λ > 1,

lim
u→−∞

FU |X=x1
(λu)/FU |X=x1

(u)=0; (iii)FU |X=x1
(u)/FU |X=x2

(u) is bounded asu→−∞.

Assumption S3’. (i) lim
y→+∞

[r(y, x1) − r(y, x2)] = δ with δ < 0; (ii) for δ < 0,

lim
u→−∞

FU |X=x1
(u+δ)/FU |X=x1

(u)=0; (iii)FU |X=x1
(u)/FU |X=x2

(u) is bounded asu→−∞.

In S3.i, we control the limit ratio of r(y, x1) to r(y, x2); in S3’.i, we control the

difference between r(y, x1) and r(y, x2), as in the BLP example in Section 2.7 As-

sumption S3.ii prevents the left tail of the distribution FU |X=x1
from being too heavy.

Letting V ≡ −U , S3.ii can be restated as: limv→+∞ F̄V |X=x1
(λv)/F̄V |X=x1

(v) = 0 for

any λ > 1, where F̄V |X ≡ 1 − FV |X denotes the tail of the conditional distribution

of V given X. Put in words, Assumption S3.ii requires that the distribution of −U

be rapidly varying at +∞. Rapid variation is a well-known condition in the statis-

tics of extreme values, and is satisfied by a large variety of distributions whose tail

behavior ranges from moderately heavy (log-normal, heavy-tailed Weibull) to light

(exponential, Gamma, normal). Assumption S3’.ii is more restrictive; it prevents

the left tail of FU |X=x1
from decaying at a rate slower than (or equal to) that of

an exponential. S3.ii’ is satisfied in distributions such as the normal or light-tailed

7We have limy→+∞[r(y, 0) − r(y,VER)] = limp1→+∞ ln
(

β1 (β2(p1, 0), 0)/β1 (β2(p1, 0),VER)
)

=

ln
(

β1 (β2(p̄, 0), 0)/β1 (β2(p̄, 0),VER)
)

≡ δ < 0, since β1 is increasing in VER for any value of p2.
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Weibull. Both S3.ii and S3’.ii exclude the distributions with power-like decaying tails

(Student-t, Pareto). Finally, Assumption S3.iii (S3’.iii) ensures that FU |X=x2
does

not decrease towards 0 faster than FU |X=x1
. This property is trivially satisfied when

U is independent of X, and accommodates some interesting cases where U and X

are dependent (see Section 4.1.2).

Assumption S3 implies that the last term in Equation (5) converges to 0 as y grows.

Indeed, let λ1 ∈ (1, λ): then by S3.i there is y1 ∈ R such that r(y, x1) 6 λ1r(y, x2)

whenever y > y1 and hence re(y, x1) 6 λ1r
e(y, x2). As FU |X is increasing, we have:

lim
y→+∞

FU |X=x1
(re(y, x1))

FU |X=x2
(re(y, x2))

6 lim
y→+∞

FU |X=x1
(λ1r

e(y, x2))

FU |X=x2
(re(y, x2))

= lim
y→+∞

[

FU |X=x1
(λ1r

e(y, x2))

FU |X=x1
(re(y, x2))

]

A

[

FU |X=x1
(re(y, x2)))

FU |X=x2
(re(y, x2))

]

B

.(6)

By S1.ii, r goes to −∞ as y gets large, and so does its envelope re; hence the term

B in (6) remains bounded. Using the rapid variation in S3.ii, the term A goes to 0

as y increases, and so does the product A × B. As a result,

(7) lim
y→+∞

FU |X=x1
(re(y, x1))

FU |X=x2
(re(y, x2))

= 0.

Similarly, under Assumption S3’.i, d(y) = r(y, x1) − r(y, x2) converges to δ < 0. Let

δ1 ∈ (δ, 0) and y′
1 ∈ R be such that, for y > y′

1, we have d(y) < δ1. Hence, de(y) 6 δ1

where de(y) = re(y, x1) − re(y, x2). Noting that:

lim
y→+∞

FU |X=x1
(re(y, x1))

FU |X=x2
(re(y, x2))

6 lim
y→+∞

[

FU |X=x1
(re(y, x2) + δ1)

FU |X=x1
(re(y, x2))

]

A

[

FU |X=x1
(re(y, x2)))

FU |X=x2
(re(y, x2))

]

B

,

and using the same reasoning as previously, we again get the limit result in Equation

(7). Combining the latter with Equations (4) and (5) then shows that:

(8) lim
y→+∞

F̄Y |X=x1
(y)

F̄Y |X=x2
(y)

= 0.

The statement in (8) is crucial. It says that for large enough values of y, x1 6 x2

implies that the corresponding conditional distributions are ordered. This ordering

of large enough conditional quantiles of Y given X holds under very weak restrictions
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on the equilibrium selection; recall that we only needed the probability of the largest

equilibrium to be positive. We have thus shown:

Theorem 3. Assume S1, S2, and either S3 or S3’ hold. Fix a selection rule PXU .

Let (x1, . . . , xN) ∈ XN be such that: x1 6 . . . 6 xN . Then, there exists ȳN ∈ R

such that for all y > ȳN , F̄Y |X=x1
(y) 6 . . . 6 F̄Y |X=xN

(y). Equivalently, there exists

ᾱN ∈ (0, 1) such that for all α ∈ [ᾱN , 1), F−1
Y |X=x1

(α) 6 . . . 6 F−1
Y |X=xN

(α).

The previous analysis has focused on quantiles with probabilities close to one, but

an analogous result continues to hold for probabilities close to zero.

4. Discussion

Theorem 3 derives observable implications of models with complementarities be-

tween the dependent variable Y and the explanatory variable X, which are valid

despite the possible presence of multiple equilibria. These implications come in the

form of order restrictions on the extreme (high and low) quantiles of Y conditional

on X. We now discuss important features and possible limitations of the results of

Theorem 3 when used for testing the presence of MCS.

4.1. Main Features. We first discuss the applicability of our results.

4.1.1. Robustness to Identification Failures. We have shown that the MCS property

has implications for the conditional quantiles of Y given X. Given a sample of

observations on the dependent and explanatory variables, these quantiles are by def-

inition identified and consistently estimable using standard nonparametric methods.

In particular, no additional restrictions on the structural function r are needed for

estimation. Consequently, the results of Theorem 3 can be used to test for comple-

mentarities whether or not the structural function r is identified.8

4.1.2. Unobserved Heterogeneity. Given that Theorem 3 does not require the struc-

tural function r to be identified or estimable, its results are fairly robust to departures

8Primitive conditions for identification of the structural function r are discussed in Chesher

(2003), Newey and Powell (2003), and Matzkin (2005), for example.
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from independence or mean independence conditions between the latent disturbance

U and the explanatory variable X. As a consequence, our testable implications apply

even in models in which U is endogenous. In particular, under the assumptions of

Theorem 3, the individual heterogeneity U can be correlated with the explanatory

variable X in a reasonably general way.

Say that conditional on X, U is normally distributed with mean µ(X) and vari-

ance σ2. When µ(x) is non-increasing in x, a simple application of L’Hôpital’s rule

shows that Assumptions S3.ii and S3.iii hold. A simple example would be the one

in which X and U are jointly normally distributed with a non-positive correlation

coefficient. A positive correlation between X and U , under which Assumption S3.iii

fails, prevents the econometrician from learning anything about MCS property. The

intuition behind is simple: following an increase in X, U can in those cases increase

so as to decrease the extremal equilibria.

In addition to being correlated with the explanatory variable, we allow U to be

heteroskedastic conditional on X. Say that given X, U is normally distributed with

mean 0 and variance σ2(X). If σ2(x) is non-decreasing in x, then Assumption S3.iii

holds. Therefore a normal disturbance whose conditional variance increases with the

equilibrium level satisfies our Assumption S3.

4.2. Limitations. We now caution for possible limitations of our approach.

4.2.1. Tail Observations and Robustness to Outliers. Theorem 3 suggests that one

can use observations from the extreme (high and low) quantiles of Y conditional on

X in order to test for the presence of MCS. Such a test shall obviously be affected by

the presence of outliers. When the latter are caused by mismeasurements, methods

proposed in Chen, Hong, and Tamer (2005), for example, can be used to filter the

errors prior to applying the test. Unless outliers are easy to detect, one should be

careful when considering very large (or small) quantiles of the dependent variable. In

particular, the results of Theorem 3 lend themselves to the study of cases where X can

take some relatively small number of values for which large numbers of observations
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of Y are available. Evaluations of policy effects, such as those following the VER,

are one such example: typically X then takes on two values.

4.2.2. Continuous Explanatory Variable. The cutoff level ȳN in Theorem 3 is con-

ditional on a realization of the sample of explanatory variables, (x1, . . . , xN) ∈ XN .

This is not a problem in applications in which the explanatory variables are treated as

given. In some situations, however, an unconditional version of Theorem 3 is needed.

The latter follows easily when the explanatory variables are discrete: it suffices to

apply the reasoning in Section 3.2 to all the points in X . When the explanatory

variables are continuous, we need to include an extra step which will ensure that x’s

do not get too close: given a random sample (X1, . . . , XN) drawn from FX , consider

the joint distribution of the N − 1 spacings between the consecutive order statistics

(XN
1 , . . . , XN

N ). Fix any ε > 0, and let δN > 0 be such that the probability of all

spacings being greater than δN , is greater or equal than 1−ε. Applying the reasoning

in Section 3.2 to x and x + δN we get the following corollary to Theorem 3:

Corollary 4. Assume S1, S2, and either S3 or S3’ hold. Fix a selection rule PXU .

Given ε > 0, there exists ȳN ∈ R such that for all y > ȳN , Pr{F̄Y |XN

1

(y) 6 . . . 6

F̄Y |XN

N

(y)} > 1−ε. Equivalently, there exists ᾱN ∈ (0, 1) such that for all α ∈ [ᾱN , 1),

Pr{F−1
Y |XN

1

(α) 6 . . . 6 F−1
Y |XN

N

(α)} > 1 − ε.

In a sense, Corollary 4 gives a stochastic version of the orderings in Theorem 3.

4.2.3. Test Implementation. Finally, the conditional distributions (and quantiles) of

the dependent variable are typically unknown and need to be estimated from the

data. A statistical test of the orderings in Theorem 3 and its Corollary 4 can then

be constructed by deriving the asymptotic distribution of the conditional quantile

estimators—the key is to derive the latter by imposing assumptions on the distribu-

tions FU |X while maintaining our agnosticism about the equilibrium selection PXU .

When using the asymptotics, however, one needs to control the speed at which the

probability ᾱN increases (or decreases) relative to the sample size N . See Echenique

and Komunjer (2007a) for results, albeit in a somewhat different framework.
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Appendix A. Proofs

Proof of Proposition 1. For any (y, x) ∈ R×X , FY |X=x(y) =
∫ +∞

−∞
Pxu(y)fU |X=x(u)du

with Pxu(y) =
∑nx

i=1 πix1I(ξixu 6 y), where 1I denotes the standard indicator function:

For any event A in B where B is the Borel σ-algebra on R, 1I(A) = 1 if A is true,

and 0 otherwise. Combining all of the above we get:

FY |X=x(y) =
nx
∑

i=1

πix

∫ +∞

−∞

1I(ξixu 6 y)fU |X=x(u)du.

For any x ∈ X and any 1 6 i 6 nx, let FiY |X=x(y) =
∫ +∞

−∞
1I(ξixu 6 y)fU |X=x(u)du for

all y ∈ R. Then FiY |X=x(y) : R → R is right-continuous, limy→−∞ FiY |X=x(y) = 0,

limy→+∞ FiY |X=x(y) = 1, and FiY |X=x is nondecreasing in y. Hence, FiY |X=x’s are

distribution functions and the conditional distribution of the dependent variable can

be written as in Proposition 1. Moreover, for any (y, x) ∈ R×X we have FiY |X=x(y)−

FjY |X=x(y) =
∫ +∞

−∞
1I(ξixu 6 y < ξjxu)fU |X=x(u)du > 0 whenever ξjxu > ξixu, i.e.

FjY |X=x(y) 6 FiY |X=x(y) whenever j > i. So, FjY |X=x first-order stochastically

dominates FiY |X=x for any j > i. �

Proof of Lemma 2. Fix (y0, x) ∈ R×X : continuity and limit conditions on r(y, x) in

S1 then ensure that the envelope re(y, x) is well defined on [y0, +∞). Now consider

y > y0. That 1I(ξnxxu 6 y) = 1I(u 6 re(y, x)) follows from showing that re(ξnxxu, x) =

r(ξnxxu, x), as re is non-increasing and ξnxxu is the largest equilibrium. We proceed

in two steps. First, we show that for all y > ξnxxu we have r(ξnxxu, x) > r(y, x). If

that were not the case then there would exist a y′ > ξnxxu such that r(ξnxxu, x) 6

r(y′, x). But this is incompatible with ξnxxu being the largest equilibrium: we would

have u 6 r(y′, x), so given the limit condition S1.ii on r at +∞ there would be an

equilibrium larger that ξnxxu. Second, we show that re(ξnxxu, x) = r(ξnxxu, x). By

definition of re, we have re(ξnxxu, x) > r(ξnxxu, x), so we need to rule out that the

strict inequality holds. We again reason by contradiction: assume that re(ξnxxu, x) >

r(ξnxxu, x). From the first step we know that r(ξnxxu, x) > r(y, x) for all y > ξnxxu.

Then, consider the function which coincides with re(y, x) for y < ξnxxu and with
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min {re(y, x), r(y, x)} for y > ξnxxu. This function is non-increasing, larger than r,

and smaller than re at ξnxxu, which is impossible by the definition of re. �


