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Abstract

We develop an axiomatic theory of random choice that builds on Luce’s

(1959) model to incorporate a role for perception. We capture the role of

perception through perception priorities; priorities that determine whether an

object or alternative is perceived sooner or later than other alternatives. We

identify agents’ perception priorities from their violations of Luce’s axiom of

independence from irrelevant alternatives (IIA). The direction of the violation

of IIA implies an orientation of agents’ priority rankings. We adjust choice

probabilities to account for the effects of perception, and impose that adjusted

choice probabilities satisfy IIA. So all violations of IIA are accounted for by

the perception order. The theory can explain some very well-documented

behavioral phenomena in individual choice.
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1 Introduction

We study the role of perception in individual stochastic choice. Perception is cap-

tured through priority orders, which determine whether an alternative, or object of

choice, is perceived sooner or later than other alternatives. The perception priority

order could represent differences in familiarity, or salience, of the objects of choice.

Our main contribution is to identify a perception priority order from an agent’s

violations of independence from irrelevant alternatives (IIA), the rationality axiom

behind Luce’s (1959) model of choice. We attribute any violation of IIA to the role

of perception, and use these violations to back out a perception order. Our model,

a perception-adjusted Luce model (PALM), reduces to Luce’s when perception plays

no role.

In PALM, an agent makes choices as if she were following a sequential procedure.

In the procedure, the agent considers different alternatives in sequence, following a

perception priority order. The probability of choosing an alternative depends on

the probability of not choosing an alternative that has been perceived before. The

probability of choosing an alternative also depends on relative utility, just as in

Luce’s model. If none of the alternatives is chosen, then the outside option will be

chosen. The sequential nature of PALM allows us to explain violations of stochastic

transitivity and regularity and choice overload (see Section 5).

We use stochastic choice data to construct a perception priority order. We start

from a primitive stochastic choice, and when the choice satisfies certain axioms, we

can construct a PALM model. The perception priority order comes from the ob-

served violations of Luce’s IIA. Luce’s IIA says that the relative choice probabilities

of alternative a over b should not be affected by adding a third alternative c. So

suppose that we have a violation of IIA, and that adding c changes the probability
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of choosing a relative to that of choosing b. What can we conclude about percep-

tion? We claim that a decrease in the relative probability of choosing a over b is an

indication that a has higher perception priority than b.

The reasoning is as follows. Suppose a has the highest perception priority and

c has the lowest perception priority among a, b, and c. Adding c has the following

two effects. First, since c directly competes with a and b, as in Luce’s model c

proportionately decreases the probabilities of choosing a and b if we ignore the

effect of perception (Luce effect). Second, when a has a higher perception priority

than b, then the very fact that a is chosen with lower probability means that b has

a higher chance of being perceived. So there is a second effect of adding c, and

it favors choosing b (a perception effect). Taking both effects into account means

that adding c provokes a larger decrease in the probability of choosing a than in

the probability of choosing b. This means that the resulting violation of Luce’s IIA

takes the form of a decrease in the relative probability of choosing a over b.1

The second idea in our construction is to use the perception priority order to

define a hazard rate. The hazard rate is the probability of choosing an object,

conditional on not choosing any of the objects with higher perception priority. So

hazard rates incorporate the effects of perception. We impose two axioms. The first

requires that the perception priority be complete and transitive. The second axiom

is imposed on hazard rates, and says that hazard rates must satisfy the IIA. Since

hazard rates are obtained from choices by accounting for priority, and hazard rates

equal the primitive choice probability where priority does not matter, our axiom

means that perception explains all the deviations from IIA.

The resulting model of choice is what we call PALM, the perception-adjusted

Luce model. In PALM, an agent who is faced with a choice problem considers

the different alternatives in order of their priority. Each time one alternative is

considered, it is chosen with probability dictated by an underlying Luce model. So

the probability that a given alternative is chosen depends both on its utility (as in

1Our strategy for identifying priority from violations of IIA is why the resulting order can be
called a perception priority. It follows from the role of perception in our theory of choice.
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Luce) and on its priority in perception.

Despite having a tight axiomatic characterization, PALM is quite flexible and can

accommodate many behavioral phenomena: Section 5 has the details. In particular,

PALM can violate the regularity axiom and stochastic transitivity. We also use

PALM to explain choice overload. An increase in the number of objects can lead

to an increased probability of not making a choice (i.e., an increased probability of

choosing the outside option), when the objects are similar to each other.

It is instructive to see how PALM can accommodate violations of regularity.

Doyle et al. (1999) is a representative experiment with evidence in favor of the

attraction effect, a well-known violation of regularity. Doyle et al. present customers

with a choice of baked beans. The first choice is between two types of baked beans:

a and b; a is Heinz baked beans, while b is a local cheap brand called Spar. In the

experiment, b was chosen 19% of the time. The authors then introduced a third

option, c, a more expensive version of the local brand Spar. After c was introduced,

b was chosen 33% of the time. This pattern (i.e., an increase in the probability of

choosing b) of choices cannot be explained by Luce’s model; indeed it cannot be

explained by any model of random utility. It can, however, be explained by PALM.

Suppose that perception is related to the familiarity of the brand of beans. Since

a is the well-known Heinz brand, it is likely to be the highest priority alternative.

Also, b and c have the same perception priority because they are the same brands.

Given this perception priority, if the utility of a is large enough, PALM produces the

attraction effect in Doyle et al.’s experiment. As we explained above, the addition

of c in principle hurts the choice probabilities of both a and b. However, while a

does not benefit from b’s potential decrease, b does benefit from the decrease in the

probability of choosing a because b has lower priority than a (a perception effect).

The magnitude of this positive effect depends on the utility of a; if the utility of a is

large enough, then the indirect positive effect overcomes the direct negative effect,

and that is how PALM produces an increase in the probability of choosing b. This

increase in the probability of choosing b is a violation of regularity.
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2 Primitives and Luce’s model

Let X be a countable and nonempty set of alternatives, and A be a set of finite

and nonempty subsets of X. Suppose that A includes all sets with two and three

elements. We model an agent who makes a probabilistic choice from A0 ≡ A∪{x0},

with A ∈ A . The element x0 6∈ X represents an outside option that is always

available to the agent. Choosing the outside option can be interpreted as the agent

not making a choice. Let X0 ≡ X ∪ {x0}.

Definition: A function ρ : X0 ×A → [0, 1] is called a stochastic choice function if

∑
a∈A0

ρ(a,A) = 1

for all A ∈ A . A stochastic choice function ρ is nondegenerate if ρ(a,A) ∈ (0, 1) for

all A ∈ A and a ∈ A0.

We write ρ(B,A) for
∑

b∈B ρ(b, A), and say that ρ(∅, A) = 0.

Definition: A stochastic choice function ρ satisfies Luce’s independence of irrele-

vant alternatives (IIA) axiom at a, b ∈ X0 if, for any A ∈ A with a, b ∈ A0,

ρ(a, {a, b})
ρ(b, {a, b})

=
ρ(a,A)

ρ(b, A)
.

Moreover, ρ satisfies IIA if ρ satisfies IIA at a, b for all a, b ∈ X0.

Luce (1959) proves that, if a non-degenerate stochastic choice function satisfies

IIA, then it can be represented by the following model (also referred to as multino-

mial logit):

Definition: ρ satisfies the (extended) Luce’s model if there exists u : X0 → R++

such that for any A ∈ A and a ∈ A0,

(1) ρ(a,A) =
u(a)∑

a′∈A u(a′) + u(x0)
.

Luce presented his model with no outside option. Here we allow for an outside
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option, and use the version of Luce’s model in which not choosing in A is possible.

Luce’s model satisfies a monotonicity property: ρ(x,A) ≥ ρ(x,B), if A ⊂ B.

This property is called regularity.

2.1 PALM

Perception priority. We capture the role of perception through a weak order

%. The idea is that when a � b, then a tends to be perceived before b, and when

a ∼ b, then a and b are perceived simultaneously. We should mention that other

interpretations of % are possible. One can, for example, think that all alternatives

are perceived simultaneously, but considered in order.

A PALM decision maker is described by two parameters: a weak order % and

a utility function u. She perceives each element of a set A sequentially according

to the perception priority %. Each perceived alternative is chosen with probability

described by µ, a function that depends on utility u according to Luce’s formula (1).

Formally, the representation is as follows.

Definition: A perception-adjusted Luce model (PALM) is a pair (u,%) of a weak

order % on X, and a function u : X0 → R++ such that for any A ∈ A and a ∈ A,

ρ(a,A) = µ(a,A)
∏

α∈A/%:α�a

(
1− µ(α,A)

)
,(2)

where

µ(a,A) =
u(a)∑

b∈A u(b) + u(x0)
.

The notation A/ % is standard: A/ % is the set of equivalence classes in which

% partitions A. That is, (i) if A/ %= {αi}i∈I , then ∪i∈Iαi = A; and (ii) for any

x, y ∈ A, x ∼ y if and only if x, y ∈ αi for some i ∈ I. The notation α � a means

that x � a for all x ∈ α. Luce’s model is a special case of PALM, in which a ∼ b

for all a, b ∈ X.

For any PALM (u,%), we denote by ρ(u,%) the stochastic choice defined through (2).
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(When there is no risk of confusion, we write ρ instead of ρ(u,%).)

The PALM has a procedural interpretation. First consider the highest-priority

alternatives in A, and choose each of them with probability given by µ(·, A); these

probabilities obey a Luce formula. This means that if α is the set of highest-priority

elements of A, then each a ∈ α is chosen with probability µ(a,A). With probability

1 − µ(α,A) none of the elements in α is chosen. If none of the elements of α are

chosen, then move on to the second-highest priority alternatives, and choose each

of them with the Luce probability specified by µ. And so on and so forth.

For example, consider the menu A = {x, y, z} with x � y � z. In the PALM,

the agent first looks at x and chooses x with “Luce probability” µ(x,A). With

probability 1− µ(x,A), x is not chosen, and the agents moves on to consider y, the

second-highest priority element. She chooses y with probability µ(y, A). This means

that the probability of choosing y is µ(y, A)
(
1 − µ(x,A)

)
. Finally, the probability

of choosing z is equal to µ(z, A)
(
1 − µ(x,A)

)(
1 − µ(y, A)

)
. If, instead of having

x � y � z, we have that x ∼ y � z then the probability of choosing z is equal to

µ(z, A)
(
1 − µ(x,A) − µ(y, A)

)
. The idea captured by x ∼ y is that x and y are

perceived, and considered, simultaneously. So the probability of choosing an option

that has higher priority than z is µ(x,A) + µ(y, A).

Note that x � y means that the agent considers x before y, but it does not mean

that the agent completely ignores y. Therefore, x is chosen with probability µ(x,A)

instead of µ(x, {x}) since she is aware of all x, y, z. We are certainly not modelling

agents who miss or ignore y and z even when there are only three alternatives.

3 Axioms

We introduce the revealed perception priority order derived from ρ, and the resulting

hazard rate function. The hazard rate function will be a “perception adjusted”

random choice function. It coincides with the random choice function except where

violations of Luce’s IIA are present. When there are violations of Luce’s IIA, they
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will be attributed to the role of perception. So in our model the hazard rate will

satisfy IIA, even when the primitive stochastic choice violates IIA.

Revealed perception priority. We denote by %∗ the revealed priority relation

that we obtain from the data in ρ. To define %∗, first we identify the direct revealed

priority relation %0 from ρ. The revealed priority relation %∗ is defined as the

transitive closure of %0.

We shall attribute all violations of IIA to the role of perception. That is, we

require that a ∼0 b when IIA holds at a and b. In other words, when two alternatives

a and b do not exhibit a violation of IIA then we impose that they are equivalent

from the view point of perception: they have the same perception priority.

In contrast, if a and b are such that IIA fails at a and b, meaning that there

is some third alternative whose presence affects the relative probability of choosing

a over b, then we shall require that a and b are strictly ordered by �0. We shall

require that either a �0 b or that b �0 a. Which of the two orderings, a �0 b or

b �0 a, is determined by the nature of the violation of IIA.

Suppose that IIA fails at a and b because there is some c such that

(3)
ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

.

In words, the presence of c lowers the probability of choosing a relative to the

probability of choosing b. When does adding an option hurt one alternative relatively

more than another? We claim that this happens when a has higher priority than b.

The reason is that by adding c we are “muddying the waters.” We are making the

choice between a and b less clear than before, and thus diluting the advantage held

by the high priority a over the low priority b.

As we explained in the introduction, we seek to model perception through an

order in which alternatives are considered. Adding c to {a, b} would in principle

decrease the probability of choosing both a and b because c competes with a and b;

but when a has higher priority than b, then the sole fact that a’s choice probability
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decreases implies that choosing b becomes more likely. The reason is that b is

only chosen when a is not chosen, so the decrease in the probability of choosing

a increases the probability of choosing b. Of course, by adding c we may also be

decreasing the probability of choosing b because c and b are in competition, so the net

effect on the probability of choosing b is not determined. However, we do know that

ρ(a,{a,b})
ρ(b,{a,b}) >

ρ(a,{a,b,c})
ρ(b,{a,b,c}) . And thus the direction of violation of Luce’s IIA is dictated

by perception priority.

Definition: Let a and b be arbitrary elements in X.

(i)

a ∼0 b if
ρ(a, {a, b})
ρ(b, {a, b})

=
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X;

(ii)

a �0 b if
ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X such that c �0 a and c �0 b, and if there is at least one such c. We

write a %0 b if a ∼0 b or a �0 b.

(iii) Define %∗ as the transitive closure of %0: that is, a %∗ b if there exist c1, . . . , ck ∈

X such that

a %0 c1 %
0 · · · ck %0 b.

The binary relation %∗ is called the revealed perception priority derived from ρ.

It is important to note that

ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

does not always imply that a � b. It will imply that a � b only when c has either

more or less priority than both a and b. When c is inbetween, then its presence may

also disproportionally hurt b, as it has higher priority than b.2

2To illustrate, consider the case a � c � b. As we explained before, adding c to {a, b} has
negative effects on the choice probabilities of both a and b because c competes with a and b. It also
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We shall impose the following condition on ρ:

Axiom (Weak Order) The relation %∗ derived from ρ is a weak order.

Hazard rate. The second important component of our analysis is the hazard rate

function. The hazard rate is the probability of choosing an object, conditional on

not choosing any of the objects with higher perception priority.

Definition (Hazard Rate): For all A ∈ A and a ∈ A, define

q(a,A) =
ρ(a,A)

1− ρ(Aa, A)
,

where Aa = {b ∈ A|b �∗ a}. For the outside option, we also define q(x0, A) =

1−
∑

a∈A q(a,A). Here q is called ρ’s hazard rate function.

It is important to note that the Hazard Rate function q can be defined indepen-

dent of the Weak Order axiom. In fact, In Appendix A.4, we show that Weak Order

and the next axiom on q, Hazard Rate IIA, are independent.

We ascribe all violations of IIA to the role of perception, and the hazard rate is

the tool that we use to that purpose.

Axiom (Hazard Rate IIA) The hazard rate function q satisfies Luce’s IIA; that

is, for any a, b ∈ X0, and A ∈ A with a, b ∈ A0,

q(a, {a, b})
q(b, {a, b})

=
q(a,A)

q(b, A)
.

has a positive effect on b because b will be chosen only after a is not chosen, and a is not chosen
with higher probability after we add c. However, when a � c � b, then c also directly hurts b (but
not a) because b will be chosen only after c is not chosen. Therefore, when a � c � b, we can have

ρ(a, {a, b})
ρ(b, {a, b})

<
ρ(a, {a, b, c})
ρ(b, {a, b, c})

.

In particular, when either a ∼ c � b or a � c � b and the utility of c is large enough, we will have

ρ(a, {a, b})
ρ(b, {a, b})

<
ρ(a, {a, b, c})
ρ(b, {a, b, c})

.

Observe that the definition of �0 involves c ∈ X such that c �0 a and c �0 b. The subtlety in the
definition of �0 is to rule out the case a ∼ c � b.
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The idea behind Hazard Rate IIA is that all violations of Luce’s IIA are explained

by the perception priority order. The definition of q implies that

(4)
q(a,A)

q(b, A)
=
ρ(a,A)

ρ(b, A)

ρ(Ab, A)

ρ(Aa, A)
.

(Where Aa = A0 \ Aa and Ab = A0 \ Ab.) If Luce’s IIA is violated, we must have a

change in the “relative probability” of choosing a over b: ρ(a,A)
ρ(b,A)

6= ρ(a,{a,b})
ρ(b,{a,b}) . Hazard

Rate IIA implies that the “relative hazard rate” stays the same, q(a,{a,b})
q(b,{a,b}) = q(a,A)

q(b,A)
.

This means that the far-right term of (4), ρ(Ab,A)

ρ(Aa,A)
, must change as well.

Now, if a ∼∗ b then Aa = Ab, and Hazard Rate IIA implies the Luce IIA formula

for a and b. Therefore Hazard Rate IIA only differs from Luce’s IIA for alternatives

that are strictly ordered by perception priority.

So suppose that a has higher priority than b, and that the relative probability of

choosing a over b is smaller when the choice set is A∪ {c} than when the choice set

is A. Hazard Rate IIA means that the perception priority explains the change in

relative probabilities: we must have a compensating decrease in the probability of

choosing an element that is perceived before b, relative to the probability of choosing

an element that is perceived before a. The explanation is that a was “hurt” relative

to b because the choice of a or b depends in part on the probability of choosing an

element with higher perception priority, and the addition of c decreased the relative

probability of choosing an element with higher priority than b.

In other words, the relative probability of choosing a over b decreased, and there-

fore Luce’s IIA was violated, because the probability of choosing an element that is

perceived before b increased relative to the probability of choosing an element that

is perceived before a. Hazard Rate IIA means that the only permissible violations of

Luce’s IIA are those that can be explained in this fashion by the perception priority

order.
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4 Theorem

Before stating the theorem, we also define an additional technical condition called

“richness”. Richness requires that X has infinitely many alternatives. We do not

need this condition to prove the sufficiency of the axioms: that the axioms imply a

PALM representation. We need it to prove the necessity of the axioms, in particular,

the result that %=%∗.

Richness: Let X = {ai}i∈Z. For any i ∈ Z, ai � ai+1, and for any pair ai, aj ∈ X

with ai � aj, there is ak ∈ X with ak � ai or aj � ak.
3

Theorem 1 If a nondegenerate stochastic choice function ρ satisfies Weak Order

and Hazard Rate IIA, then there is a PALM (u,%) such that %∗=% and ρ = ρ(u,%).

Conversely, for a given PALM (u,%), if % satisfies Richness, then ρ(u,%) satisfies

Weak Order and Hazard Rate IIA, and %=%∗.

The proof of the theorem is in Section 7. The sufficiency of the axioms for

the representation is straightforward. The converse of Theorem 1 states, not only

that PALM satisfies the axioms, but that % must coincide with %∗. The perception

priority is thus identified from data on stochastic choice. Therefore, u is unique up to

multiplication by a positive scalar. The bulk of the proof is devoted to establishing

that %=%∗.

4.1 Discussion of the Outside Option

It is useful to compare how Luce and PALM treat the outside option, the probability

of not making a choice from a set A.

For PALM, the utility of the outside option is:

(5) u(x0) =
∑
a∈A

u(a)

(
1∑

a∈A q(a,A)
− 1

)
.

3We can prove Theorem 1 when X is finite by slightly modifying the revealed perception priority
order �∗. See Appendix A.2.
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In (extended) Luce’s model, the utility of the outside option has a similar ex-

pression. Indeed,

(6) û(x0) =
∑
a∈A

u(a)

(
1∑

a∈A ρ(a,A)
− 1

)
,

with ρ in place of the hazard rates q.

It is interesting to contrast the value of u(x0) according to Equation (5) with

what one would obtain from Equation (6). Given a PALM model (u,%), we can

calculate û(x0) from ρ(u,%) by application of Equation (6). If we do that, we obtain

1. û(x0) ≥ u(x0),

2. and û(x0) = u(x0) when a ∼ b for all a, b ∈ A.

The inequality û(x0) ≥ u(x0) reflects that there are two sources behind choosing

the outside option in PALM. One source is the utility u(x0) of not making a choice;

this is the same as in Luce’s model with an outside option. The second source is due

to the sequential nature of choice in PALM. When we consider an agent that chooses

sequentially, following the priority order %, then it is possible that we exhaust the

elements in A without making a choice. When that happens, it would seem to inflate

(or bias) the value of the outside option; as a result we get that û(x0) ≥ u(x0). For

example, when the utility of the outside option is zero, the outside option will not

be chosen in Luce’s model. However, in PALM, the outside option will be chosen

with positive probability because of the second source behind choosing the outside

option.

5 Behaviors Consistent with PALM

5.1 Choice Overload

The outside option in PALM allows us to capture various behavioral phenomena.

One example is “choice overload:” the idea that a subject may be inclined to make
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no choice when presented with many alternatives. The paper by Iyengar and Lepper

(2000) is a well known study of choice overload. Iyengar and Lepper run an experi-

ment where subjects had to choose among a large set of nearly identical alternatives.

They find that a large fraction of subjects make no choice whatsoever, and that the

fraction of subjects who make no choice increases from 26% to 40% as the number

of alternatives increases. These results are easily captured by PALM.

Let A = {a1, . . . , an} be a menu with n elements, each of which provide the same

Luce utility; so u(a1) = u(a2) = . . . = u(an) > 0. Suppose that the n elements in

A are strictly ordered by the perception priority %, and that u(x0) = 0. Then the

probability of choosing the outside option is

ρ(x0, A) = (1− 1/n)n,

which is monotone increasing in n. In other words, the probability of not making a

choice in A increases as the cardinality of A increases. Moreover, ρ(x0, A) goes from

about 25% to 1
e
≈ 37% as n increases, consistent with the numbers 26% and 40% in

the Iyengar and Lepper experiment.

5.2 Violation of Regularity

Regularity is often assumed in the literature of random choice. However, violations

of regularity are widely documented in the literature. For example, as we discussed

in the introduction using the experimental result of Doyle et al. (1999), the attraction

effect is a well-known violation of regularity.4

The following proposition shows that when a third alternative z is added to a

menu {x, y} we can obtain an increase in the probability of choosing y over x when

the utility of x is large enough.

4The attraction effect is first documented in Huber et al. (1982) and later confirmed by many
studies such as Simonson (1989), Simonson and Tversky (1992), and Herne (1997).
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Proposition 1: If x � y % z and u(x) is large enough, then

ρ(y, {x, y, z}) > ρ(y, {x, y}).

Proof of Proposition 1: We have

ρ(y, {x, y, z}) > ρ(y, {x, y}) ⇔ q(y, {x, y, z})(1− q(x, {x, y, z})) > q(y, {x, y})(1− q(x, {x, y}))

⇔ u(x) >
√

(u(y) + u(z) + u(x0))(u(y) + u(x0))

�

More generally, we can show that ρ(y, A∪ {z}) > ρ(y, A) holds as long as y % z

and the sum of the utilities of alternatives in A that have higher perception priorities

than y is large enough.5

5.3 Comparing High Perception Priority with High Utility

and Violations of Stochastic Transitivity

All other aspects being equal, an increase in the utility or an increase in the per-

ception priority of a given alternative will lead to an increase in the probability of

choosing that alternative. In this subsection, we discuss which increase will lead to

a higher increase in the probability of choosing that alternative.

To illustrate, assume a menu A = {a1, . . . , an} with a1 � a2 � . . . � an. If the

utilities of all the alternatives are the same, then PALM predicts that ρ(ai, A) >

ρ(ai+1, A) for all i. As the utility of u(ai+1) becomes larger than u(ai), the proba-

bility ρ(ai+1, A) becomes closer to ρ(ai, A). In order to study how the effect of the

perception priority on random choice can be diminished by utilities, let us calculate

the lower bound of the utility of ai+1 such that ρ(ai, A) = ρ(ai+1, A). For simplicity,

5Appendix A.3 discusses a modification of PALM which avoids the outside option. In the
modification of PALM, whenever the agent chooses no alternative, she repeats the sequential
procedure of PALM until she chooses some alternative. Using this modification, we illustrate that
the outside option does not really play a role in explaining violations of regularity and stochastic
transitivity, but the sequential procedure does.
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let u(x0) = 0 and u(aj) = u(ai) for all j 6= i+ 1. Then we have

ρ(ai, A) = µ(ai, A)
∏
k<i

(1− µ(ak, A)) = ρ(ai+1, A) = µ(ai+1, A)
∏
k<i+1

(1− µ(ak, A));

if and only if
u(ai+1)

u(ai)
=

√
(n− 3)2 + 4(n− 1)− (n− 3)

2
.

For example, when n = 2,

√
(n−3)2+4(n−1)−(n−3)

2
≈ 1.6. Therefore, when only ai and

ai+1 are available, the utility of ai+1 must be about 60% higher than that of ai to

achieve ρ(ai, A) = ρ(ai+1, A). Similarly, when n = 3, u(ai+1) must be about 40%

higher than u(ai) to achieve ρ(ai, A) = ρ(ai+1, A). Moreover, when n is large, since√
(n−3)2+4(n−1)−(n−3)

2
≈ 1 + 1

n
, the utility of ai+1 must be about 100

n
% higher than

that of ai to achieve ρ(ai, A) = ρ(ai+1, A). Interestingly, since (1 + 1
n
)n ≈ e, u(xn)

must be about e− 1 ≈ 1.71 times higher than u(a1) to achieve p(a1, A) = p(an, A).

By the above argument, it is not difficult to see how PALM allows violations

of stochastic transitivity.6 Consider three alternatives x, y, z with x � y � z. Let

1.5u(x) = u(y) and 1.5u(y) = u(z) and u(x0) = 0. By the above argument,

ρ(x, {x, y}) > ρ(y, {x, y}) since x � y and 1.6u(x) > u(y). Similarly, ρ(y, {y, z}) >

ρ(z, {y, z}) since y � z and 1.6u(y) > u(z). However, ρ(x, {x, z}) < ρ(z, {x, z})

since 1.6u(x) < u(z) = 2.25u(x).

6 Related Literature

Section 5 explains how PALM relates to the relevant empirical findings. We now

proceed to discuss the relation between PALM and some of the most important

theoretical models of stochastic choice.

There is a non-axiomatic literature proposing models that can explain violations

of regularity, IIA, and stochastic transitivity. Rieskamp et al. (2006) is an excellent

6Violations of stochastic transitivity are well documented in lab experiments. For example, see
Tversky (1969) and Loomes et al. (1991).
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survey. Examples are Tversky (1972), Roe et al. (2001) and Usher and McClelland

(2004). The latter two papers propose decision field theory, which allows for viola-

tions of regularity. The recent paper by Natenzon (2010) presents a learning model,

in which an agent learns about the utility of the different alternatives, and makes

a choice with imperfect knowledge of these utilities. Learning is random, hence

choice is stochastic. Natenzon’s model can explain violations of regularity as well

as the well-known violations of IIA, the similarity effect (Tversky (1972)) and the

compromise effect (Simonson (1989)).

We shall not discuss these papers here, and focus instead on the more narrowly

related axiomatic literature in economics.

1) The benchmark economic model of rational behavior for stochastic choice is

the random utility model. The random utility model is described by a probability

measure over preferences over X; ρ(x,A) is the probability of drawing a utility that

ranks x above any other alternative in A. The random utility model is famously

difficult to characterize behaviorally: see the papers by Falmagne (1978), McFadden

and Richter (1990), and Barberá and Pattanaik (1986).

As we have seen in Section 5, there are instances of PALM that violate the

regularity axiom. A random utility model must always satisfy regularity. Thus

PALM is not a special case of random utility. Moreover, Luce’s model is a random

utility model, and a special case of PALM. So the class of PALM and random utility

models intersect, but they are distinct.

2) The recent paper by Gul et al. (2014) presents a model of random choice in

which object attributes play a key role. Object attributes are obtained endogenously

from observed stochastic choices. Their model has the Luce form, but it applies

sequentially; first for choosing an attribute and then for choosing an object. In

terms of its empirical motivation, the model seeks to address the similarity effect.

Gul, Natenzon and Pesendorfer’s model is a random utility model (in fact they

show that any random utility model can be approximated by their model). There-

fore, there are instances of PALM that cannot coincide with the model in Gul et al.
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(2014). (Importantly, PALM can explain violations of the regularity axiom.) On

the other hand, Luce’s model is a special case of their model and of PALM. So the

two models obviously intersect.

3) Manzini and Mariotti (2014) study a stochastic choice model where attention

is the source of randomness in choice. In their model, preferences are deterministic,

but choice is random because attention is random. Manzini and Mariotti’s model

takes as parameters a probability measure g on X, and a linear order �M . Their

representation is then

ρ(a,A) = g(a)
∏

a′�Ma

(1− g(a′)).

In PALM, perception is described by the (non-stochastic) perception priority relation

%. Choice is stochastic because it is dictated by utility intensities, similarly to Luce’s

model. In Manzini and Mariotti, in contrast, attention is stochastic, but preference

is deterministic. It turns out that, Manzini and Mariotti’s model is also a random

utility model. Therefore, they do not allow for violations of regularity.

Manzini and Mariotti’s representation looks superficially similar to ours, but

the models are in fact different to the point of not being compatible, and seek to

capture totally different phenomena. Manzini and Mariotti’s model implies that IIA

is violated for any pair x and y, so their model is incompatible with Luce’s model.

PALM, in contrast, has Luce as a special case. Appendix A.1 shows that the two

models are disjoint. Any instance of their model must violate the PALM axioms,

and no instance of PALM can be represented using their model. So their model and

ours seek to capture completely different phenomena.

4) A closely related paper is Tserenjigmid (2013). In this paper, an order on

alternative also matters for random choice, and the model can explain the attraction

and compromise effects. The source of violations of IIA is not perception, but instead

a sort of menu-dependent utility.

5) Fudenberg et al. (2015) considers a decision maker who make a random choice

18



to maximize expected utility minus some cost. In their model, because of the cost

function, the decision maker’s choice is random. Versions of their model can ac-

commodate the attraction effect, and the compromise effect. Their model also can

describe choice overload.

6) Some related studies use the model of non-stochastic choice to explain some of

the experimental results we describe in Section 5. This makes them quite different,

as the primitives are different. The paper by Lleras et al. (2010) is important to

mention. (See also Masatlioglu et al. (2012) for a different model of attention and

choice.) They attribute violations of IIA to the role of attention. They elicit revealed

preference (not perception priority, but preference) in a similar way to ours. When

the choice from {x, y, z} is x and the choice from {x, z} is z, then they conclude

that x is revealed preferred to z (this is in some sense, the opposite of the inference

we make). The main difference is that in their model alternatives are completely

ignored if they are not in the decision maker’s consideration set. On the other hand,

in our model, the decision maker is aware of all alternatives, but she considers (or

perceives) them sequentially.

7) Ravid (2015) studies a random choice model of the following sequential pro-

cedure. First, an agent picks an option at random from the choice set; the option

becomes “focal.” Second, she compares the focal option to each other alternative in

the set. Third, the agent chooses the focal option if it passes all binary comparisons

favorably. Otherwise, the agent draws a new focal option with replacement. Ravid

(2015) characterizes the procedures by an relaxation of IIA termed Independence

of Shared Alternatives (ISA). His model is also consistent with choice overload and

violations of regularity, IIA, and stochastic transitivity.

19



7 Proof of Theorem 1

7.1 Necessity

We start by proving the converse statement. Let (u,%) be a PALM in which %

satisfies Richness. Let %∗ be derived revealed perception priority from ρ(u,%). We

shall first prove that %∗=%. The next lemma is useful throughout this section.

Lemma 1 If c � a � b, or a � b � c, then
ρ(a, {a, b, c})
ρ(b, {a, b, c})

<
ρ(a, {a, b})
ρ(b, {a, b})

.

Proof: Let a � b.

Case 1: c � a � b.

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ρ(a, {a, b})
ρ(b, {a, b})

=

(
µ(a, {a, b, c})(1− µ(c, {a, b, c}))

µ(b, {a, b, c})(1− µ(c, {a, b, c}))(1− µ(a, {a, b, c}))

)
(

µ(a, {a, b})
µ(b, {a, b})(1− µ(a, {a, b}))

)
=

(1− µ(a, {a, b}))
(1− µ(a, {a, b, c}))

[u(a)

u(b)
/
u(a)

u(b)

]
< 1,

where the last strict inequality is by Luce’s regularity on µ; that is, µ(a, {a, b}) =

u(a)
u(a)+u(b)+u(x0)

> µ(a, {a, b, c}) = u(a)
u(a)+u(b)+u(c)+u(x0)

.

Case 2: a � b � c.

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})

µ(b, {a, b, c})(1− µ(a, {a, b, c}))

/ µ(a, {a, b})
µ(b, {a, b})(1− µ(a, {a, b}))

=
1− µ(a, {a, b})

1− µ(a, {a, b, c})
< 1;

where the last strict inequality is by Luce’s regularity on µ. �

First, we prove that a ∼ b if and only if a ∼∗ b. Then, we prove that a � b if

and only if a �∗ b.

Lemma 2 a ∼ b if and only if a ∼∗ b.

Proof of Lemma 2:
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Step 1: If a ∼ b, then a ∼0 b.

Proof of Step 1: Fix c ∈ X to show ρ(a,{a,b,c})
ρ(b,{a,b,c})/

ρ(a,{a,b})
ρ(b,{a,b}) = 1.

Case 1: a ∼ b % c.

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})
µ(b, {a, b, c})

/µ(a, {a, b})
µ(b, {a, b})

=
u(a)

u(b)

/u(a)

u(b)
= 1.

Case 2: c � a ∼ b.

ρ(a, {a, b, c})
ρ(b, {a, b, c})

/ρ(a, {a, b})
ρ(b, {a, b})

=
µ(a, {a, b, c})(1− µ(c, {a, b, c}))
µ(b, {a, b, c})(1− µ(c, {a, b, c}))

/µ(a, {a, b})
µ(b, {a, b})

=
u(a)

u(b)

/u(a)

u(b)
= 1.

�

Step 2: If a � b, then a �0 b.

Proof of Step 2: By Richness, there is c with c � a � b or a � b � c. In either

case, by Lemma 1, ρ(a,{a,b,c})
ρ(b,{a,b,c}) <

ρ(a,{a,b})
ρ(b,{a,b}) . Hence, a �0 b. �

Step 3: If a %0 b, then a % b.

Proof of Step 3: We show that if a 6% b, then a 6%0 b. Let a 6% b. Then by

completeness, b � a. First, by Step 2, we have a �0 b. Second, by Richness, there

is c with c � b � a or b � a � c. Then, by Lemma 1, we have ρ(b,{a,b,c})
ρ(a,{a,b,c}) <

ρ(b,{a,b})
ρ(a,{a,b}) .

Moreover, since c 6∼ b and c 6∼ a, Step 2 shows that c �0 a and c �0 b. Hence,

a 6�0 b. So we have a 6%0 b. �

Step 4: If a ∼∗ b, then a ∼ b.

Proof of Step 4: Let a ∼∗ b. By the definition of ∼∗, a %∗ b and b %∗ a. Then

a %∗ b implies that there exist c1, . . . , ck such that a = c1 %0 c2 %0 . . . %0 ck = b.

By Step 3 and the transitivity of %, we have that a % b. Similarly, b %∗ a implies

that b % a. Thus a ∼ b. �

In the following, we prove that a � b if and only if a �∗ b.
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Lemma 3 If a �∗ b, then a � b.

Proof: Let a �∗ b. It suffices to consider the following two cases.

Case 1: a �0 b. Suppose, towards a contradiction, a 6� b. By the completeness of

%, b % a. Note that a �0 b implies a �0 b, so a � b by Step 1 of Lemma 2. Then

b � a. By Richness there is c such that c � b � a or b � a � c. In either case,

ρ(a,{a,b,c})
ρ(b,{a,b,c})/

ρ(a,{a,b})
ρ(b,{a,b}) > 1 by Lemma 1, in contradiction with a �0 b.

Case 2: By the definition of �∗, there exist c1, . . . , ck ∈ X such that a �0 c1 �0

· · · �0 ck �0 b (at least one strict relation). Then, by Step 3 of Lemma 2 and Case

1, a � c1 � · · · � ck � b (at least one strict relation). Hence, by transitivity, a � b.

�

The next lemma shows the converse.

Lemma 4 If a � b, then a �∗ b.

Proof: Let X = {ai}i∈Z. By Richness, for any i ∈ Z, ai � ai+1, and for any pair

ai, aj ∈ X with ai � aj, there is ak ∈ X such that ak � ai or aj � ak. We shall

prove that for any ai, aj, if ai � aj, then ai �∗ aj. To simplify the exposition, we

use the following notation in this proof: a ` b if a � b and there is no c ∈ X with

a � c � b.

Case 1: ai ` aj.

It suffices to show that ai �0 aj. Take any at ∈ X such that ai 6∼0 at and aj 6∼0 at

(by Richness such at exists). By Lemma 2, ai 6∼ at and aj 6∼ at. Therefore, either

at � ai or aj � at. Since ai � aj, then at � ai � aj or ai � aj � at. In either case,

by Lemma 1,
ρ(ai,{ai,aj ,at})
ρ(aj ,{ai,aj ,at})/

ρ(ai,{ai,aj})
ρ(aj ,{ai,aj}) < 1. Thus ai �0 aj. Hence, ai �∗ aj.

Case 2: ai 6` aj. Since there is only a finite number of alternatives between ai, aj, we

can find a sequence a1, . . . , am ∈ {ai+1, . . . , aj−1} such that a ` a1 ` . . . ` am ` aj.

By the argument in Case 1, ai �0 a1 �0 . . . �0 am �0 aj. Therefore, ai �∗ aj. �
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7.2 Sufficiency

In this section, we prove sufficiency. Choose a nondegenerate stochastic choice

function ρ that satisfies the axioms in the theorem. Let %∗ be the derived revealed

perception priority.

Step 1: there exists u : X0 → R++ such that q(a,A) = u(a)∑
a′∈A u(a

′)+u(x0)
.

Proof of Step 1: Since q satisfies Luce’s IIA and
∑

a∈A0
q(a,A) = 1, by Luce’s

theorem (Luce (1959)), there exists u : X0 → R such that q(a,A) = u(a)∑
a′∈A u(a

′)+u(x0)
.

Since ρ is nondegenerate, u(a) > 0 for any a ∈ X0. �

Step 2: ρ = ρ(u,%∗).

Proof of Step 2: Choose any A ∈ A . Since %∗ is a weak order, therefore the

indifference relation ∼∗ is transitive. Then, the set of equivalence classes A/%∗ is

well defined and finite. That is, there exists a partition {α1, α2, . . . αk} of A such

that aj �∗ ai for all ai ∈ αi and aj ∈ αj with j > i and ai ∼∗ ai′ for all ai, ai′ ∈ αi.

Define pi ≡ ρ(αi, A) =
∑

a′∈αi ρ(a′, A). Then for a ∈ αi, q(a,A) = ρ(a,A)
1−

∑
j>i pj

.

Therefore,

∑
a∈αi

q(a,A) =
∑
a∈αi

ρ(a,A)

1−
∑

j>i pj
=

∑
a∈αi ρ(a,A)

1−
∑

j>i pj
=

pi

1−
∑k

j=i+1 pj
.

Hence,

1−
∑
a∈αi

q(a,A) = 1− pi

1−
∑k

j=i+1 pj
=

1−
∑k

j=i+1 pj − pi
1−

∑k
j=i+1 pj

=
1−

∑k
j=i pj

1−
∑k

j=i+1 pj
.

Therefore, for any s ∈ {1, . . . , k},

k∏
i=s+1

(1−
∑
a∈αi

q(a,A)) =
k∏

i=s+1

1−
∑k

j=i pj

1−
∑k

j=i+1 pj
=

1−
∑k

j=s+1 pj

1
= 1− ρ(Aa, A).

For all a ∈ A and A ∈ A , define µ(a,A) = q(a,A) .

Choose a ∈ A. Without loss of generality assume that a ∈ αs. Then, ρ(a,A) =
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q(a,A)(1−ρ(Aa, A))=µ(a,A)(1−ρ(Aa, A))=µ(a,A)
∏k

i=s+1(1−
∑

a′∈αi µ(a′, A)) ≡

ρ(u,%∗)(a,A). �

A Appendix: Supplements

A.1 Relation to Manzini and Mariotti

The model of Manzini and Mariotti (2014) is specified by a probability measure g

on X, and a linear order �M . Their representation is then

ρ(a,A) = g(a)
∏

a′�Ma

(1− g(a′)).

Superficially, this representation looks similar to ours, but it is actually very

different: It is incompatible with our model, in the sense that the set of stochastic

choices that satisfy our model is disjoint from the set of stochastic choices in Manzini

and Mariotti’s model. We now proceed to prove this fact.

Let ρ have a Manzini and Mariotti (2014) representation as above and let X

have at least three elements. Suppose, towards a contradiction that it also has a

representation using our model.

We are going to prove that the two models differ in a strong sense, because we

are going to show that there is no subset of X of three elements on which the two

models can coincide.

Let a, b, c ∈ X. The preference relation �M is a linear order. Suppose, without

loss of generality, that a �M b �M c. Given the Manzini-Mariotti representation,

then

ρ(a, {a, b, c}) = ρ(a, {a, b}) = ρ(a, {a, c}) = g(a),

and

ρ(b, {a, b, c}) = ρ(b, {a, b}) = g(b)(1− g(a)).
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We have assumed that ρ has a PALM representation given by some (u,%). Now

consider how a, b, c are ordered by %.

There are seven cases to consider; each one of these cases end in a contradiction.

1. a % b and a % c: Since u(c) > 0, ρ(a, {a, b, c}) = µ(a, {a, b, c}) < ρ(a, {a, b}) =

µ(a, {a, b}).

2. b % a and b % c: Since u(c) > 0, ρ(b, {a, b, c}) = µ(b, {a, b, c}) < ρ(b, {a, b}) =

µ(b, {a, b}).

3. c � a % b: Since u(c) > 0, ρ(a, {a, b, c}) = µ(a, {a, b, c})(1 − µ(c, {a, b, c})) <

µ(a, {a, b, c}) < µ(a, {a, b}) = ρ(a, {a, b}).

4. c � b � a: Since u(c) > 0, ρ(b, {a, b, c}) = µ(b, {a, b, c})(1 − µ(c, {a, b, c})) <

µ(b, {a, b, c}) < ρ(b, {a, b}) = µ(b, {a, b}).

A.2 Finite X

Here we consider the case where X is finite. In order to obtain the necessity part of

Theorem 1, we will modify %∗ in the following way:

Definition: Let a and b be arbitrary elements in X.

(i)

a ∼0 b if
ρ(a, {a, b})
ρ(b, {a, b})

=
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X;

(ii)

aPb if
ρ(a, {a, b})
ρ(b, {a, b})

>
ρ(a, {a, b, c})
ρ(b, {a, b, c})

,

for all c ∈ X such that c �0 a and c �0 b, and if there is at least one such c.

(iii) a �0 b if aPb and a′Pb′ for any a′, b′ with a′ ∼0 a and b′ ∼0 b. We write a %0 b

if a ∼0 b or a �0 b.

(iv) Define %∗ be the transitive closure of %0; that is, a %∗ b if there exist c1, . . . , ck ∈
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X such that

a %0 c1 %
0 · · · ck %0 b.

The binary relation %∗ is called the revealed perception priority derived from ρ.

Now we can prove Theorem 1 when X is finite. Partition X into equivalence

classes for �: Let X = ∪ni=1αi with ai � ai+1 for any ai ∈ αi and ai+1 ∈ αi+1.

Richness*: n ≥ 3, |α1 ∪ αn| ≥ 3, and there are a ∈ α1, b ∈ αn, and c /∈ α1 ∪ αn
such that u(a) ≥ u(b) + u(c) + u(x0); i.e., ρ(a, {a, b, c}) ≥ 1

2
.

Theorem 2 If a nondegenerate stochastic choice function ρ satisfies Weak Order

and Hazard Rate IIA, then there is a PALM (u,%) such that %∗=% and ρ = ρ(u,%).

Conversely, for a given PALM (u,%), if % satisfies Richness*, then ρ(u,%) satis-

fies Weak Order and Hazard Rate IIA, and %=%∗.

Proof: The sufficiency part of Theorem 2 is identical to that of Theorem 1. For

the necessity part of Theorem 2, we only need to prove that �∗=�.

Lemma 1*: If c � a � b, or a � b � c, then ρ(a,{a,b})
ρ(b,{a,b}) >

ρ(a,{a,b,c})
ρ(b,{a,b,c}) .

The proof of Lemma 1* is identical to the proof of Lemma 1 of Theorem 1.

Lemma 2*: If a ∼ b, then a ∼0 b.

The proof of Lemma 2* is identical to the proof of Step 1 of Lemma 2.

Lemma 3*: If a 6∼ b, then a �0 b.

Take any a, b with a � b. Since |α1 ∪ αn| ≥ 3 by Richness*, there is c such that

c � a or b � c. Then ρ(a,{a,b})
ρ(b,{a,b}) 6=

ρ(a,{a,b,c})
ρ(b,{a,b,c}) .

First, by Lemmas 2*-3*, we have ai ∼0 bi, aj ∼0 bj, and ai 6∼0 aj for any

ai, bi ∈ αi and aj, bj ∈ αj. Then Lemma 1* implies that aiPai+1 for any ai ∈ αi and

ai+1 ∈ αi+1. Consequently, by the definition of �0, we have that ai �0 ai+1 for any

ai ∈ αi and ai+1 ∈ αi+1. Since �∗ is the transitive closure of �0, we have ai �∗ aj
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for any ai ∈ αi and aj ∈ αj with i < j. Finally, the following lemma concludes the

proof of �∗=�.

Lemma 4*: aj 6�0 ai for any ai ∈ αi and aj ∈ αj with i < j.

Take any ai ∈ αi, aj ∈ αj with i < j.

Case 1. i 6= 1.

Take any a1 ∈ α1. Since a1 � ai � aj, by Lemma 1*, we have
ρ(aj ,{aj ,ai})
ρ(ai,{aj ,ai}) <

ρ(aj ,{aj ,ai,a1})
ρ(ai,{aj ,ai,a1}) . Therefore, we cannot have ajPai. Consequently, aj 6�0 ai.

Case 2. j 6= n.

Take any an ∈ αn. Since ai � aj � an, by Lemma 1*, we have
ρ(aj ,{aj ,ai})
ρ(ai,{aj ,ai}) <

ρ(aj ,{aj ,ai,an})
ρ(ai,{aj ,ai,an}) . Therefore, we cannot have ajPai. Consequently, aj 6�0 ai.

Case 3. i = 1 and j = n.

By Richness*, there is a ∈ α1, b ∈ αn, and c /∈ α1 ∪ αn such that u(a) ≥

u(b) + u(c) + u(x0). It turns out that, u(a) ≥ u(b) + u(c) + u(x0) implies ρ(a,{a,b})
ρ(b,{a,b}) >

ρ(a,{a,b,c})
ρ(b,{a,b,c}) . Therefore, we cannot have bPa. Finally, since a, a1 ∈ α1 and b, an ∈ αn,

by the definition of �0, an 6�0 a1.

�

A.3 A modification without the outside option

In this section we show that by modifying PALM, we can dispense with the outside

option. In the modified model, whenever the agent chooses no alternative, she

repeats the sequential procedure of PALM until she chooses some alternatives. This

modified PALM is represented by the following representation:

ρ(a,A) =
µ(a,A)

∏
α∈A/%:α�a

(
1− µ(α,A)

)∑
b∈A µ(b, A)

∏
α∈A/%:α�b

(
1− µ(α,A)

)
where

µ(a,A) =
u(a)∑
b∈A u(b)

.

27



Let us now show that this modified PALM can rationalize violations of regularity.

In fact, we obtain the following observation which is very similar to Proposition 1.

Observation 1: If x � y � z and u(x) is large enough, then

ρ(y, {x, y, z}) > ρ(y, {x, y}).

Proof of Observation 1: We have ρ(y, {x, y, z}) > ρ(y, {x, y}) iff

µ(y, {x, y, z})(1− µ(x, {x, y, z}))
µ(x,{x, y, z})+µ(y,{x, y, z})(1−µ(x,{x, y, z})) + µ(z,{x, y, z})(1−µ(x,{x, y, z}))(1−µ(y,{x, y, z}))

>
µ(y, {x, y})(1− µ(x, {x, y}))

µ(x, {x, y})+µ(y, {x, y})(1−µ(x, {x, y}))
iff

u(y)(1− µ(x, {x, y, z}))
u(x)+u(y)(1−µ(x, {x, y, z})) + u(z)(1−µ(x, {x, y, z}))(1−µ(y, {x, y, z}))

>
u(y)(1− µ(x, {x, y}))

u(x)+u(z)(1−µ(x, {x, y}))
.

By direct calculations, we obtain that ρ(y, {x, y, z}) > ρ(y, {x, y}) iff

u2(x) > u(y)
(
u(y) + u(z)

) u(x) + u(z)

u(x) + u(y) + u(z)
.

Since 1 > u(x)+u(z)
u(x)+u(y)+u(z)

, if u(x) >
√
u(y)

(
u(y) + u(z)

)
, then we have ρ(y, {x, y, z}) >

ρ(y, {x, y}). Therefore, when u(x) is large enough, we can have violations of regu-

larity.

�

The above observation illustrates that the outside option does not really play a

role in explaining violations of regularity, but the sequential procedure does. We

leave the axiomatic characterization of the modification as an open question.
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A.4 Independence of Axioms

We shall prove that Weak Order and Hazard Rate IIA are independent.

Weak Order does not imply Hazard Rate IIA: We shall find ρ that satisfies

Weak Order, but violates Hazard Rate IIA. Consider the following ρ on X: there

exists a function u : X0 → R++ such that u(a) 6= u(b) for some a, b ∈ X, and for all

A ∈ A and a ∈ A0,

ρ(a,A) =


u(a)∑

b∈A0
u(b)

when |A| ≤ 3,

1
|A|+1

when |A| ≥ 4.

Since Luce’s IIA is satisfied at any menu A with |A| ≤ 3, a ∼0 b for all a, b ∈ X.

Therefore, Weak Order is satisfied. Moreover, since q(a,A) = ρ(a,A), Hazard Rate

IIA is equivalent to Luce’s IIA. However, Luce’s IIA is violated at all a, b with

u(a) 6= u(b) since

ρ(a, {a, b})
ρ(b, {a, b})

=
u(a)

u(b)
6= ρ(a,A)

ρ(b, A)
= 1 when a, b ∈ A and A ≥ 4.

Hazard Rate IIA does not imply Weak Order: We now shall find ρ that

violates Weak Order, but satisfies Hazard Rate IIA.

Take any X = {ai}i∈Z∪{x} and � on X such that for each i ∈ Z, ai � ai+1 and

neither ai � x nor x � ai. Consider the following ρ on X: there exists a function

u : X0 → R++ such that for all A ∈ A,

ρ(a,A) = µ(a,A)
∏
b�a

(
1− µ(b, A)

)
for any a ∈ A \ {x}

and

ρ(x,A) = µ(x,A), where µ(a,A) =
u(a)∑

b∈A u(b) + u(x0)
.

The following four steps will prove that Weak Order is violated.

Step 1. Note that ai 6∼0 x for any ai ∈ X \ {x} since
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ρ(ai, {ai, x})
ρ(x, {ai, x})

=
u(ai)

u(x)
6= ρ(ai, {ai, ai−1, x})
ρ(x, {ai, ai−1, x})

=
u(ai)(1− µ(ai−1, {ai, ai−1, x}))

u(x)
.

Step 2. Note that ai �0 ai+1 for each i since

ρ(ai, {ai, ai+1})
ρ(ai+1, {ai, ai+1})

=
u(ai)

u(ai+1)(1− µ(ai, {ai, ai+1}))

>
ρ(ai, {ai, ai+1, x})
ρ(ai+1, {ai, ai+1, x})

=
u(ai)

u(ai+1)(1− µ(ai, {ai, ai+1, x}))

and for any t ∈ Z with either t ≥ 2 or t ≤ −1,

ρ(ai, {ai, ai+1})
ρ(ai+1, {ai, ai+1})

=
u(ai)

u(ai+1)(1− µ(ai, {ai, ai+1}))

>
ρ(ai, {ai, ai+1, ai+t})
ρ(ai+1, {ai, ai+1, ai+t})

=
u(ai)

u(ai+1)(1− µ(ai, {ai, ai+1, ai+t}))
.

Step 3. Note that neither ai �0 x nor x �0 ai for any ai ∈ X \ {x} since ai+1 6∼0 x,

ai+1 6∼0 ai, and

ρ(ai, {ai, x})
ρ(x, {ai, x})

=
u(ai)

u(x)
=
ρ(ai, {ai, ai+1, x})
ρ(x, {ai, ai+1, x})

=
u(ai)

u(x)
.

Step 4. Note that ai+k 6�0 ai for each i and k ≥ 1 since and x 6∼0 ai, x 6∼0 ai+k, and

ρ(ai, {ai, ai+k})
ρ(ai+k, {ai, ai+k})

=
u(ai)

u(ai+k)(1− µ(ai, {ai, ai+k}))

>
ρ(ai, {ai, ai+k, x})
ρ(ai+k, {ai, ai+k, x})

=
u(ai)

u(ai+k)(1− µ(ai, {ai, ai+k, x}))
.

Therefore, �∗ is complete and transitive on X \ {x} with ai �∗ aj for all i < j,

but neither ai �∗ x nor x �∗ ai for each i ∈ Z. In other words, Weak Order is

violated.

We now shall prove that Hazard Rate IIA is satisfied. Since ρ is a PALM with
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(�, u) on X \ {x}, Hazard Rate IIA is satisfied on X \ {x}. We will now prove that

Hazard Rate IIA is satisfied at any menu A ∪ {x}.

First, note that (A ∪ {x})a = {b ∈ A ∪ {x} : b �∗ a} = {b ∈ A : b �∗ a} = Aa =

{b ∈ A : b � a} and (A ∪ {x})x = ∅. Therefore,

q(a,A ∪ {x}) =
ρ(a,A ∪ {x})

1− ρ(Aa, A ∪ {x})
= µ(a,A ∪ {x}) as in the PALM,

and

q(x,A ∪ {x}) = ρ(x,A ∪ {x}) = µ(x,A ∪ {x}).

Therefore, Hazard Rate IIA is satisfied at A ∪ {x}.
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