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Abstract. Agents with different discount factors disagree about some in-

tertemporal tradeoffs, but they will also agree sometimes. We seek to un-

derstand precisely the nature of their agreements and disagreements.

A group of agents is identified with a set of discount factors. We char-

acterize the comparisons that a given interval of discount factors will agree

on, including what all discount factors in the interval [0, 1] will agree on.

Our result is analogous to how all risk-averse and monotone agents agree on

mean-preserving spreads. Motivated by a maxmin representation, we also

characterize the comparisons that are consistent with some set of discount

factors, when the set is not known or exogenously given. In other words,

we describe the Pareto comparisons that are consistent with a society, or

group, of exponentially discounting agents.

(Chambers) Department of Economics, Georgetown University
(Echenique) Division of the Humanities and Social Sciences, California Insti-
tute of Technology
Most of the results in this paper appeared first in the working paper version of “On multiple
discount rates” (see Caltech SSWP 1418; first posted May 2016). We are grateful to Luke
Boosey, Simone Cerreia-Vioglio, Vijay Krishna, Efe Ok, Phil Reny, Itai Sher, Tomasz Strza-
lecki, and participants of numerous seminars and conferences where we have presented the
paper, for comments. We are also grateful to two anonymous referees and especially an asso-
ciate editor who suggested new results. Echenique thanks the National Science Foundation
for its support through the grants SES-1558757 and CNS-1518941.

1



2

1. Introduction

A group of agents with different discount factors will disagree sometimes,

and agree at others. Some intertemporal tradeoffs will be desirable to all agents

in the group, while some tradeoffs will only be desirable to a strict subset of

agents. The point of this paper is to characterize these areas of agreement and

disagreement.

A collection of agents is modeled through a set D ⊆ (0, 1). Each of the

agents discounts utility exponentially. So δ ∈ D evaluates a stream x as∑∞
t=0 δ

txt. Given a set D, the Pareto ordering on X is defined by x �D y iff∑∞
t=0 δ

txt ≥
∑∞

t=0 δ
tyt for all δ ∈ D.

We consider two types of questions in the paper. First, when D is given

exogenously, we want to characterize, or describe, the ordering �D. Second,

given an ordering � over X, we want to understand when there exists a D ⊆
(0, 1) such that �=�D.

Our interest in this topic stems from the recent debate about which discount

factor to use for evaluating plans to abate global warming.1 The results are

useful and particularly compelling due to the disagreement among experts on

the appropriate discount rate to utilize in debates on global warming. Given

a set of experts who disagree on the discount rates, which policy decisions

will they agree on? Conversely, given information on which policy changes are

acceptable, and which are unacceptable, when can these decisions be traced

to disagreements over the discount rate?

Our first approach to the question takes the set of discount factors as given.

In this exercise, we would like a simple condition on pairs of streams which

would allow us to conclude directly whether one stream is at least as good

as the other for all discount factors in the set. For simplicity, we assume

that the discount factors of the members of the group correspond to a closed

interval in [0, 1]. We emphasize that we study a closed interval for reasons

of analytical convenience; we could also investigate the implications for more

general sets (finite unions of closed intervals). The structure for the unit

1The academic debate surrounding the influential Stern report stems from disagreements
over the discount rate. See Nordhaus (2007).



THE PARETO COMPARISONS OF A GROUP OF EXPONENTIAL DISCOUNTERS 3

interval is particularly easy to understand; whereas the more general structure

is notationally quite cumbersome.

Let us now discuss exactly what we do. One method of determining a

ranking between two streams would be to simply check, for each discount factor

in the set, whether one stream is at least as good as the other. By contrast, we

provide a “dual” method, whereby one stream is at least as good as another

if and only if the first can be (approximately) obtained from the second by a

sequence of transformations. In many ways, the exercise here is analogous to

the classical results on risk aversion and mean preserving spreads.2 A lottery is

preferred to another by all risk averse expected utility maximizers if and only

if the first can be (approximately) arrived at from the second by a sequence

of elementary mean-preserving spreads.3

We are not the first to investigate this type of question, and there is a

substantive literature axiomatizing Pareto relations for intertemporal choice.

It is a very classical question in the finance literature. See, for example, Pratt

and Hammond (1979); Bøhren and Hansen (1980); Ekern (1981); Trannoy and

Karcher (1999); Foster and Mitra (2003); Bastianello and Chateauneuf (2016)

describe and axiomatize these objects for different classes of discounters, and

different domains of consumptions streams.4 In particular, Bøhren and Hansen

(1980); Trannoy and Karcher (1999); Foster and Mitra (2003); Bastianello and

Chateauneuf (2016) consider related problems, but come up with a “primal”

axiomatization, whereas ours is “dual” in a formal sense. Our characterization

is closer in spirit to the papers on mean-preserving spreads, Rothschild and

Stiglitz (1970) and Blackwell (1953), than to the work on intertemporal choice.

Our decomposition results from a natural recursive application of three ba-

sic properties of discounting. For any discounter, shifting a util from tomorrow

to today is better than doing nothing. This tells us that a stream in which

2The literature initiated in economics by Rothschild and Stiglitz (1970). The mathematical
results go back at least to Blackwell (1953), where an experiment in that context is a lottery
over lotteries.
3In fact, there is a clear technical connection with these works as well, which we will explain
below.
4Our results rely on an application of the Hausdorff moment problem. Other applications in
economics include Hara (2008) and Minardi and Savochkin (2016), who use the continuous
version.
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tomorrow’s utility is −1 and today’s is 1, and all other generations have 0

utility is better than an environment in which all generations have 0 utility.

But now, by discounting, we also know that the stream in which tomorrow’s

utility is −1 and today’s is 1 is at least as good as the stream where tomor-

row’s utility is 1 and the day after tomorrow’s is −1. Using the linearity (in

streams) of the discounting structure, this allows us to claim that the stream

in which −1 is consumed today and −1 unit the day after tomorrow, with 2

units tomorrow, is better than a utility of 0 throughout. By applying these

operations recursively, we get many streams which should dominate the null

stream. Our contribution is to show that any stream at least as good as the

null stream can be arrived at, arbitrarily closely, by applying such operations

a finite number of times.

Our second approach assumes that discount factors are not exogenously

specified, but rather identifies the collective conditions satisfied by all Pareto

relations generated by exponential discounters. That is, we elicit a list of

properties which are satisfied by a relation if and only if that relation could

be the Pareto relation for some collection of exponential discounters. We

establish that a certain weakening of a stationarity axiom of Koopmans (1960)

is the driving force behind Pareto relations. Our stationarity axiom imagines a

constant stream of payoffs; constancy of a stream reflects a sequence of payoffs

which is “time-invariant.” This constant stream is to be understood as a kind

of baseline alternative. Our property roughly states that a stream is at least

as good as the constant stream if and only if a delayed version of the stream

(where the initial segment is replaced by the baseline outcome) is also at least

as good as the constant stream.5

Together with a standard additivity axiom (all exponential discounters have

additive preferences over util streams, hence so does a Pareto relation) and

some other mild technical conditions, this property effectively characterizes the

implications of the Pareto model for some closed and nonempty set of discount

factors. In line with the exogenous discount factor analysis, we also seek to

5Technically, the stationarity property also requires mixtures of the delayed stream and the
constant stream to be considered.
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understand when this set of discount factors is an interval. A characterization

of such interval relations is available, via a tradeoff axiom that we introduce.

The tradeoff property considers a certain type of “bad” stream, or at least

one which is not good, in the sense that one would not choose to add it to a

status quo. Now, this stream is one which can be “shifted forward,” bringing

the bad outcome earlier in time. In principle, an agent would be willing to do

this in the case that the bad stream is also simultaneously deflated by a small

enough amount. The tradeoff axiom states that a certain deflator cannot be

considered small for this particular stream. This certain deflator is one which

would not be considered small enough to deflate for a loss of one deflated util

today to be replaced by a gain of one full util tomorrow.

Our second approach is partly motivated by a characterization of maxmin

style preferences. Specifically, we provide a new characterization of maxmin

preferences (related to our previous characterization in Chambers and Echenique

(2018)). This characterization is based on an axiom, default independence,

which is novel to this context but is closely related to an axiom found in

Cerreia-Vioglio, Dillenberger, and Ortoleva (2015). Roughly, the axiom states

that if a stream is preferred to a constant stream, then this ranking is pre-

served under the mixing operation. It restricts the independence axiom to

hold only in the case where the less preferred stream is completely smooth.

We could view “smoothing” as a possible motivation of a social planner. Thus,

this axiom restricts the independence axiom to hold only when mixing with

the less preferred stream presents no opportunity for “smoothing.”

This axiom allows us to provide an alternative characterization of the maxmin

model studied in Chambers and Echenique (2018). It is easily shown that any

relation has a largest additive subrelation. In the case of our maxmin result,

this largest additive subrelation takes the form of a “Pareto dominance” re-

lation with some D. So, we additionally seek to understand the properties

satisfied by such Pareto relations. In a sense, the maximal additive subrela-

tion can be understood as the set of all comparisons amongst streams where

smoothing plays no role.

Finally, we investigate a general class of binary relations over streams of

utils. Given a binary relation, we ask whether there is a “maximal” subrelation
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that belongs to the class of Pareto relations for some set of discount factors.

The exercise generalizes our findings for the maxmin preferences described

above. For example, suppose we were given a complete ranking over util

streams. We would want to know whether this ranking over streams “could be”

a social welfare ranking for some collection of exponential discounters, and if

so, what the set of discount factors is. The maximal subrelation serves as such

a collection of discount factors. One stream which dominates another for every

discounter in the (endogenously derived set) would be deemed better for the

preference relation, by the standard Pareto property. Hence, this maximal set

constitutes the entire class of potential exponential discounters whose opinions

might be reflected in a deliberation on util streams.

The paper proceeds linearly, discussing each of the preceding results sequen-

tially. Proofs are in an appendix.

2. The Model

We study the problem of choosing among intertemporal streams of utils.

The objects of choice are sequences of real numbers x = (xt)
∞
t=0. These are

restricted to lie in a set of bounded sequences X ⊆ `∞. Interpret a sequence x

as a stream of utils, meaning that xt is the utility received at time t. For some

of the results in our paper, we shall take X = `1, the space of all absolutely

summable sequences. For other results we shall assume that X = `∞.

A binary relation �⊂ X ×X is an ordering if it is reflexive and transitive.

It is a weak order if, in addition, it is complete.

A collection of agents is modeled through a set D ⊆ (0, 1) of discount factors.

Each of the agents discounts utility exponentially. So δ ∈ D evaluates a stream

x as
∑∞

t=0 δ
txt.

Given a collection of agents with discount factors D, the Pareto ordering on

X is the relation �D⊆ X ×X defined by x �D y iff
∑∞

t=0 δ
txt ≥

∑∞
t=0 δ

tyt for

all δ ∈ D.

We consider two types of questions in the paper. First, when D is given

exogenously, we want to characterize, or describe, the ordering �D. Second,

given an ordering � over X, we want to understand when there exists a D ⊆
(0, 1) such that �=�D.
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2.1. Notational conventions. The sequence (1, 1, . . .), which is identically

1, is denoted by 1. When θ ∈ R is a scalar we often abuse notation and use

θ to denote the constant sequence θ1. If x is a sequence, we denote by (θ, x)

the concatenation of θ and x: the sequence (θ, x) takes the value θ for t = 0,

and then xt−1 for each t ≥ 1. Similarly, the sequence

(θ, . . . , θ︸ ︷︷ ︸
T times

, x)

takes the value θ for t = 0, . . . , T − 1 and xt−T for t ≥ T .

The notation for inequalities of sequences is: x ≥ y if xt ≥ yt for all t ∈ N,

x > y if x ≥ y and x 6= y, and x� y if xt > yt for all t ∈ N.

Finally, for δ ∈ (0, 1), let m(δ) denote the sequence in `1 where m(δ)t = δt.

3. The Pareto relation with exogenous D.

First we seek to understand the comparisons of streams that all discount

factors must agree on: the Pareto relation when the set of discount factors is

D = [0, 1].

Given that we allow for δ = 1, we work with X = `1. Our set of choice

objects is the set of absolutely summable sequences. Observe that �[0,1] is

well-defined as
∑

t δ
txt ∈ R for all δ ∈ [0, 1] and x ∈ `1.

We can gain some insight as to the structure of �[0,1] from three seemingly

trivial observations:

(1) (1, 0, 0, . . .) �[0,1] 0

(2) If x �[0,1] 0, then x �[0,1] (0, x) �[0,1] 0

(3) If x �[0,1] y, then (x− y) �[0,1] 0.

Statement 1 is simply a very weak implication of the claim that all expo-

nential discounters like more consumption to less. Statement 2 is the essence

of discounting: if a stream is “good,” in the sense that it is at least as good

as 0, then shifting its start date back a period cannot improve on the stream,

but also cannot render the stream a “bad.” Finally, statement 3 reflects that

discounting is linear in consumption streams.

Let us work out some recursive implications of these statements. State-

ments 1 and 2 imply that (1, 0, 0, . . .) �[0,1] (0, 1, 0, 0, . . .). Then statement 3
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implies that (1,−1, 0, . . .) �[0,1] 0. This is a first-order implication of impa-

tience; let us work out a second-order implication: using 2, (1,−1, 0, . . .) �[0,1]

(0, 1,−1, 0, 0, . . .), from which 3 implies (1,−2, 1, 0, 0, . . .) �[0,1] 0. Observe

that (1,−2, 1, 0, 0, . . .) �[0,1] 0 reflects “convexity” of the discount function, or

the idea that mean preserving spreads (in time) are desirable. One can go

further and work out a third-order expression, and a fourth-order expression,

and so forth. All such statements are implications of an idea we refer to as

recursive impatience.

So far we have not yet used that x �[0,1] 0 implies (0, x) �[0,1] 0, but it is

easy to see what happens when we do: the fact that (1,−2, 1, 0, . . .) �[0,1] 0

implies that (0, 1,−2, 1, 0, . . .) �[0,1] 0.

By pursuing all the implications of recursive impatience, we shall (essen-

tially) exhaust all the situations in which x �[0,1] y. To this end, define a class

of vectors, which we call alternating binomial coefficients: For s, t ∈ N, let

η(s, t) ∈ l∞ be defined as η(s, t)i = (−1)(i−s)
(
t
i−s

)
for all i ∈ {s, . . . , s + t}

and η(s, t)i = 0 otherwise. For example, η(0, 1) = (1,−1, 0, . . .) is a trans-

fer of one util from time t = 1 to t = 0. Our previous discussion of re-

cursive impatience implies that η(0, 1) �[0,1] 0. We shift the transformation

η(0, t) by s units of time to obtain η(s, t): for example, η(5, 1) is a transfer

of consumption on date t = 6 to t = 5. For a few examples, observe that

η(0, 0) = (1, 0, . . .), η(2, 0) = (0, 0, 1, 0, . . .), η(1, 1) = (0, 1,−1, 0, . . .), and

η(2, 3) = (0, 0, 1,−3, 3,−1, 0, . . .).

If we continue, reasoning by induction, our discussion of recursive impa-

tience, we obtain that for all s, t ∈ N, η(s, t) �[0,1] 0. In other words, the im-

plications of the four basic statements about discounting is that for all s, t ∈ N,

η(s, t) �[0,1] 0. Except for the case in which t = 0, each η(s, t) can be identi-

fied with shifting an unambiguously good stream backward one unit in time.

For example, η(0, 2) = (1,−2, 1, 0, . . .) �[0,1] 0 reflects the fact η(0, 1) �[0,1]

(0, η(0, 1)). Equivalently, (1,−1, 0, . . .) �[0,1] (0, 1,−1, 0, . . .). More generally,

for all t > 0, η(s, t) �[0,1] 0 reflects that η(s, t− 1) �[0,1] (0, η(s, t− 1)).

The main result of this section is that the statements derived inductively,

using recursive impatience, from statements (1)-(3), essentially exhaust all of

the ways in which we may have x �[0,1] y, When x �[0,1] y, then (x − y) can
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be expressed as a (limit of) nonnegative linear combination of streams of the

form η(s, t). Hence, y must arise from x by adding subtracting a lump sum

to period zero, and then constructing a sequence of shifts of unambiguously

good streams backwards in time.

Define an elementary transformation of order s (for s ∈ {0, . . .}) to be a

vector of the form λη(s, t) for some t and λ > 0.

Theorem 1. y �[0,1] x if and only if for each ε > 0, there is a finite collection

of elementary transformations {λiη(si, ti)} for which

‖(y − x)−
∑
i

λiη(si, ti)‖1 ≤ ε.

Let us define `1(k) ≡ {x ∈ `1 : x(l) = 0 when l > k}. So, `1(k) is the subset

of streams for which consumption is zero from generation k + 1 onwards.

Proposition 2. For x, y ∈ `1(k), x �[0,1] y if and only if for each s, t such

that s + t ≤ k, there is an elementary transformation λ(s,t)η(s, t) such that

y − x =
∑
{(s,t):s+t≤k} λ(s,t)η(s, t).

Remark 3. According to Proposition 2, determining whether y �[0,1] x amounts

to solving for the consistency of a finite list of linear inequalities and is hence

computationally quite simple.

The ordering �[0,1] and Theorem 1 presume that one allows for all δ ∈ [0, 1],

but it is possible to extend the theorem.6 Namely, suppose that it is agreed

that the discount factor must lie in a compact interval [a, b] ⊆ [0, 1]. This

would be the case, for example, if there were a lower bound on discounting

future generations. More generally, an exogenous D is often described as an

interval; for example the US Office of Management and Budget recommends

between 1% and 7%, for the discount rate when evaluating “intergenerational

benefits and costs.”

In the three statements discussed above, properties 1 and 3 would remain

unchanged. However, property 2 would be replaced. Consider what happens

when x dominates 0 for all δ ∈ [a, b]. Instead of (0, x) �[0,1] 0, we can actually

6We thank Itai Sher for suggesting this question. Observe that Foster and Mitra (2003)
perform a similar exercise.



10 CHAMBERS AND ECHENIQUE

say more: we can say that (0, x) �[a,b] ax. Further, instead of x �[0,1] (0, x),

we can say more: we can say that bx �[a,b] (0, x). So, we would replace 2 with

the statement that x �[a,b] 0 implies

bx �[a,b] (0, x) �[a,b] ax.

Otherwise, the induction argument remains the same. We investigate this fur-

ther in Section 3.1, in the context of bounded sequences (rather than absolutely

summable sequences).

The following example illustrates Theorem 1.

Example 4. Consider the stream x = (1, 4, 2,−7, 6,−2, 0, 0, . . .). We claim

that x �[0,1] 0. To see this, observe that shifting back the consumption bun-

dle (1, 0, 0, . . .) back two units in time results in x − (1, 0, 0,−1, 0, . . .) =

(0, 4, 2,−6, 6,−2, 0, . . .) = x2. Impatience implies that x �[0,1] x2. Shift-

ing the sequence (0, 0, 2,−4, 2, 0, . . .) back one unit in time results in x2 −
(0, 0, 2,−6, 6,−2, . . .) = (0, 4, 0, 0, . . .) = x3. So x2 �[0,1] x3. Finally, subtract-

ing 4 units of consumption from period 1 results in x3 − (0, 4, 0, 0, . . .) = 0.

Thus x �[0,1] x2 �[0,1] x3 �[0,1] 0.

In term of the transformations in Theorem 1,

(x− 0) = 4η(1, 0) + η(0, 1) + η(2, 1) + η(3, 1) + 2η(2, 3).

3.1. The Pareto ordering �[a,b] when X = `∞. The previous discussion

assumed that X = `1, and that D was any closed interval in [0, 1]. We now

turn to X = `∞; a common choice set in applications of intertemporal choice.

There is obviously a difficulty here in dealing with the case of δ = 1. We focus

on understanding �[a,b] for any 0 ≤ a < b < 1.

The starting point is the observation that for any δ ∈ [a, b] and any s, t ∈ N:

(δ − a)s(b− δ)t ≥ 0.

The general formula for this expression is a bit messy, but it works out to:

(δ − a)s(b− δ)t ≡
s∑

m=0

t∑
n=0

(
s

m

)(
t

n

)
(−1)t+s−m−nas−mbnδm+t−n.
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Such a polynomial is of degree s+ t. For any i ∈ {0, . . . , s+ t}, it is possible

to determine the coefficient on δi. The explicit formula for this object is:

η(i; s, t, a, b) ≡
∑

{(m,n)∈N2:m−n=t+i,0≤m≤s,0≤n≤t}

(
s

m

)(
t

n

)
(−1)t+s−m−nas−mbn.

The explicit functional form of this object is not important. What is impor-

tant is that it determines an element of η(s, t, a, b) ∈ `∞(N) via [η(s, t, a, b)]i ≡
η(i; s, t, a, b) for i ∈ {0, . . . , s+ t} and [η(s, t, a, b)]i = 0 otherwise. These coef-

ficients generalize the transformations in Theorem 1.

Let m(δ) ∈ `1 (a summable sequence) be given by m(δ) = (1, δ, δ2, . . .).

What we have just shown is that for any s, t ≥ 0 and any δ ∈ [a, b], η(s, t, a, b) ·
m(δ) ≥ 0. Consequently, for any finite list of pairs (s1, t1), . . . , (sK , tK), λk ≥
0, and δ ∈ [a, b], we have

K∑
k=1

λkη(sk, tk, a, b) ·m(δ) ≥ 0.

The set of such vectors will be denoted cone(a, b), and is the smallest convex

cone containing each η(s, t, a, b) as (s, t) ∈ N2.

It turns out that a kind of converse is true.

Theorem 5. x �[a,b] y iff for every ε > 0, every positive integer K, and every

{m1, . . . ,mK} ⊆ `1, there is z ∈ cone(a, b) for which for all k ∈ {1, . . . , K},
we have |mk · (x− (y + z))| < ε.

Corollary 6. If x �[a,b] y then there is a sequence zn ∈ cone(a, b) such that

zn converges pointwise to x− y.

4. The Pareto relation with endogenous D.

We now turn to an analysis of the orderings � for which there exists D ⊆
(0, 1) with �=�D. Thus, D is endogenously determined from �.

4.1. A list of axioms. We proceed to introduce a collection of axioms rele-

vant to the analysis.

4.1.1. Standard axioms. We state some basic axioms that are either commonly

used in the literature, or variations on commonly-used axioms. Then we say
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a few words about what they mean in our context, and why they might be

considered reasonable impositions.

The letters x, y and z refer to streams in X; θ is a constant stream. Unbound

variables are universally quantified.

• Monotonicity : x ≥ y implies x � y, and for any constant θ,θ′, θ � θ′

iff θ ≥ θ′.

• Convexity : For all λ ∈ [0, 1], if x � z and y � z, then λx+(1−λ)y � z.

• Additivity : x � y implies x+ z � y + z.

• Homotheticity : For all x, y ∈ X and all α ≥ 0, if x � y, then αx � αy.

• Continuity : {y ∈ X : y � x} and {y ∈ X : x � y} are closed.

• Complete: For all x, y ∈ X, x � y or y � x.

The convexity axiom imposes a preference for “smoothing” utility across

time. In an intergenerational context, such a preference would naturally result

from equity considerations. Note that, in the standard intertemporal choice

model with discounted utility, smoothing is a consequence of the concavity of

the utility function. There is no such concavity in our model. The streams

under consideration are already measured in “utils” per period of time, and

the standard intertemporal choice model is linear in utils. Our convexity

axiom says that smoothing may be intrinsically desirable. This interpretation

appears already in Marinacci (1998).

Translation invariance is usually understood as the requirement that there

are no utility comparisons made across periods. It allows for the possibility

that the “scale” of utility across periods matters. Note that Translation In-

variance imposes separability across time (in the sense that if xt = yt and

x′t = y′t for all t ∈ E ⊆ N, while xt = x′t and yt = y′t for all t ∈ Ec = N \ E,

then x � y implies x′ � y′).

We do not have much to say about Continuity, Non-degeneracy or Homo-

theticity. These axioms are very well known, and have no special meaning in

our context.

4.1.2. Novel axioms. Our first novel axioms are versions of the Koopmans

(1960) stationarity property. Koopmans requires that a stream x is at least

as good as y if and only if this preference holds when an identical payoff is

appended to the first period of each stream. Our axiom weakens Koopmans’,
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in that they apply only when y is a constant stream (i.e. smooth) and when

the payoff appended is equal to the constant in y.

Stationarity: For all t ∈ N and all λ ∈ [0, 1],

x � θ iff λx+ (1− λ)(θ, . . . , θ︸ ︷︷ ︸
t times

, x) � θ.

Generally speaking, stationarity requires certain choices to be time-invariant.

It requires that the comparison between two streams remains the same whether

it is made today or in the future. We impose a form of stationarity that re-

quires time-invariance of comparisons with constant, or smooth, streams. The

reason is that postponing the decision has a natural interpretation in the case

of smooth streams.

Suppose that a policy maker has to choose between two streams, x and a

constant stream θ. Think of θ as a baseline, or status quo. The baseline θ is

constant, and delivers θ in every period, so (θ, x) is the same as staying with

the θ policy for one period and then switching to x. A postponed version of this

decision problem would be to choose between (θ, x) and θ. The idea behind

stationarity is that the two decision problems are equivalent: one should choose

x over θ if and only if one would choose (θ, x) over θ.

A stronger version of stationarity (such as Koopmans’) would demand that

any decision is preserved if postponed. If our policy maker chooses x over

y, then she would be required to choose (θ, x) over (θ, y) for any θ; that is,

independently of history. But it is easy to imagine reasons for the decision to

be reversed, and (θ, y) chosen over (θ, x).7 Since (θ, y) is different from y we

can imagine situations where θ in period 0 may “enhance” the value of y, for

example if θ is a large positive value, and the stream y starts out poorly. The

difference with our axiom, in which y is required to be the constant stream θ,

is that (θ, y) is different from y. So in our case, we can justify the axiom by

saying that if a policy maker is willing to switch from θ to x today, then she

must be willing to switch tomorrow. Note that the argument does not rely

on (θ, y) being a single-period postponement of y. The same would be true of

7See also Hayashi (2016).
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(θ, θ, y), or of any stream that eventually changes from the stream that gives

θ in every period.

In our axiom, since we compare x to θ, we can think of θ as a status quo (as

in, for example Bewley’s model of choice). A decision maker who is willing to

switch from the status quo θ in one period, should be willing to switch after

postponing the decision by consuming the the status quo for any given number

of periods.

Finally, our stationarity axiom says more. Not only must the comparison of

x and θ be the same as that between (θ, x) and θ, but this must also be true of

the comparison of any lottery λx+ (1− λ)(θ, x) and θ. In particular, the only

basis for choosing between λx+ (1−λ)(θ, x) and θ must be the comparison of

x with θ, because the only basis for comparing (θ, x) and θ is the comparison

between x and θ. The meaning is that there is no additional smoothing (or

“hedging”) motive in the comparisons of x with θ, now or in the future.

The following axiom, compensation, is a technical non-triviality axiom. Its

purpose is to ensure that the future is never irrelevant. It is similar in spirit

to Koopmans’ sensitivity axiom (Postulate 2 of Koopmans (1960)).

Compensation: For all t there are scalars θ̄t, θt, and θt, with θ̄t > θt > θt,

such that

(θt, . . . , θt︸ ︷︷ ︸
t times

, θ̄t, . . .) � θt.

Compensation says that for any t there must exists three numbers: θ̄t >

θt > θt, such that the worse outcome θt for t periods is compensated by a

better outcome θ̄t for all periods t+ 1, . . ., relative to the smooth stream that

gives the intermediate value θt in every period. Think of θt − θt < 0 as a loss

for t periods. The loss could be small in magnitude, as we are free to choose

θt. The axiom says that there is a permanent gain θ̄t − θt > 0 (permanent in

the sense that it obtains in every period after t), that compensates for the loss

in the finite period. Think of compensation as ensuring that δ > 0.

The next axiom is a weak expression of impatience. Roughly, it states that

whenever θ < 1 then the benefits of receiving 1 in every period, compared to

receiving θ in every period, must accrue after some finite amount of time. In
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contrast, when the axiom is not true, the benefit of receiving 1 > θ are only

enjoyed in the limit, at time=∞.8

Continuity at infinity: If, for all T , (1, ..., 1︸ ︷︷ ︸
T times

, 0, . . .) 6� θ, then θ � 1.

Our final axiom was suggested to us by an anonymous associate editor. It

is similar in spirit to the “negative certainty independence” axiom of Cerreia-

Vioglio, Dillenberger, and Ortoleva (2015). It states that a specific type of

weakening of the independence axiom should be satisfied. Specifically, suppose

that x is at least as good as a constant stream θ. Then the usual conclusion

of the independence axiom should follow. We suggest this may make sense as

the mixture of the constant stream θ with any other stream does not present

any complementarity in terms of “consumption smoothing.”

Default Independence: If x � θ, then for all λ ∈ [0, 1], λx + (1 − λ)z �
λθ + (1− λ)z.

4.2. A maxmin result. As motivation for our main result (Theorem 9) we

present a theorem on maxmin preferences where �D arises naturally and en-

dogenously.9

Theorem 7. An ordering � satisfies completeness, continuity, monotonicity,

default independence, stationarity, continuity at infinity, and compensation iff

there is D∗ ⊂ (0, 1), closed, such that x � y iff

min{(1− δ)
∞∑
t=0

δtxt : δ ∈ D∗} ≥ min{(1− δ)
∞∑
t=0

δtyt : δ ∈ D∗}.

Moreover, in that case, �D∗⊆� is maximal in the sense that if �′ is any

additive relation for which �D∗⊆�′⊆�, then �′=�D∗.

8Similar axioms were introduced by Villegas (1964) and Arrow (1974) with the purpose of
obtaining countably additive priors. The axiom plays the exact same role in our analysis,
see the use of property 5 in Lemma 16.
9The result and its proof were suggested to us by an anonymous associate editor. The first
statement of the theorem is analogous to a result in Chambers and Echenique (2018), but
with a different characterization based on default independence. The main novelty here is
the emergence of a maximal �D∗

, the (typically) incomplete Pareto relation.



16 CHAMBERS AND ECHENIQUE

Remark 8. A few observations are in order. The set of additive orderings is

closed under unions, so every ordering � possesses a largest additive subre-

lation �∗. It is easy to see that this relation is characterized by x �∗ y iff

for all z, x + z � y + z. The same property holds for subrelations satisfying

the classical independence axiom. Thus, �D∗ is the binary relation defined

by the independence property: x �D∗ y iff λx + (1 − λ)z � λy + (1 − λ)z

for all λ ∈ [0, 1] and all z. For this reason it maximally captures additive

comparisons. In our context we have shown further that this largest additive

subrelation has an exponential form.

Second, the technique for obtaining exponential discounting is the same as

in Theorem 9, and isolated in Lemma 16 below.

The preceding result suggests that we should also be interested in the prop-

erties satisfied by �D, as these are relations which are generated as “maximal

additive subrelations.” Such relations can be understood as characterizing all

rankings which are not based on “smoothing” justifications. Theorem 9 char-

acterizes orderings �D. Theorem 11 presents a general result on the existence

of maximal subrelations.

4.3. A characterization of �D. We wish to understand the common proper-

ties of all orderings that are the Pareto relation for some society of individuals

who are exponential discounters. In terms of Theorem 7, we wish to under-

stand the maximal additive relations which are subrelations of the “maxmin”

rankings discovered there.

Our next result is our main theorem for endogenous D; it says that the

Pareto criterion is characterized by a subset of the properties we have discussed

in Section 4.1.

Theorem 9. An ordering � satisfies continuity, monotonicity, convexity, ad-

ditivity, stationarity, compensation and continuity at infinity iff there is a

nonempty closed10 set D ⊆ (0, 1) such that �=�D. Furthermore, D is unique.

10Closed means with respect to the standard Euclidean topology, and not with respect to
the relative topology on (0, 1). So any closed set must exclude 0 and 1.
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The substantive axioms are convexity, additivity, and stationarity. Con-

vexity and additivity can be interpreted, respectively, as fairness and inter-

generational utility comparability. See Chambers and Echenique (2016) for a

detailed discussion. Stationarity was discussed above.

Continuity, compensation, and continuity at infinity are technical axioms.

We do not have much to say about them.

4.4. Interval D. The set of discount factors obtained in Theorem 9 has no

structure other than being closed. It is natural to ask for the conditions under

which D will be an interval, as in Section 3. The condition turns out to

be a statement of the tradeoff between intertemporal comparisons and utility

magnitudes.

Tradeoff: Let 0 < a < b < 1. If (−a, 1, 0, . . .) 6� 0 and (b,−1, 0, . . .) 6� 0

then a(b,−1, 0, . . .) 6� (0, b,−1, 0, . . .).

The “tradeoff” axiom expresses how making an outcome occur earlier trades

off with its magnitude. An agent who discounts the future would not want to

shift a bad outcome from a later period to an earlier period, unless the earlier

outcome is sufficiently “deflated,” or smaller in magnitude.

More specifically, the meaning of (b,−1, 0, . . .) 6� 0 is that the tradeoff of

receiving b today at the loss of 1 tomorrow is undesirable. It is a “bad,” not

a “good.” To shift the bad forward in time is not desirable: (b,−1, 0, . . .) 6�
(0, b,−1, 0, . . .) because we are discounting future outcomes. In principle, we

could have a(b,−1, 0, . . .) � (0, b,−1, 0, . . .) if a were small enough. The “bad”

(b, 1, 0, . . .) would be deflated, diminished, when multiplied by a small a; a the

smaller is a, the more likely it is that shifting (b,−1) forward in time while

deflating by a would be desirable. However, since we have (−a, 1, 0, . . .) 6� 0,

then a is not small enough.

Theorem 10. An ordering � satisfies tradeoff, continuity, monotonicity, con-

vexity, additivity, stationarity, compensation and continuity at infinity iff there

is a nonempty closed interval [a, b] ⊆ (0, 1) such that �=�[a,b].

4.5. Maximal subrelations. We now focus on the following question. The-

orem 9 axiomatizes a class of incomplete relations. However, many preference
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relations need not satisfy the axioms stated there. Motivated by (Cerreia-

Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi, 2011), who work

in a framework of uncertainty, we study whether, for a given relation, there

exists a maximal subrelation of the type axiomatized in Theorem 9.

The notion of maximality is obviously related to the result stated in Theo-

rem 7. We show that whenever there exists a subrelation satisfying the axioms

of Theorem 9, there is a maximal such subrelation. In other words, the prop-

erty of maxmin weak orders identified by Theorem 7 holds quite generally.

Theorem 11. Let � be a continuous and convex weak order satisfying that

there exists D∗ ⊂ (0, 1) closed such that ∀δ ∈ D∗,
∑∞

t=0 δ
txt ≥

∑∞
t=0 δ

tyt =⇒
(x− y) + z � z. Then there is a maximal ordering �∗ with the properties that:

(1) �∗⊆�;

(2) there is D ⊆ (0, 1), closed, such that x �∗ y iff for all δ ∈ D
∞∑
t=0

δtxt ≥
∞∑
t=0

δtyt.

5. Discussion

5.1. On the proof of Theorem 9. Theorem 9 is obtained by first treating N

as a state space, and establishing that the at least as good as set at the origin

is supported by a set of probabilities (multiple priors), as in the literature of

decisions under uncertainty. We then use the stationarity axiom to update

some of the priors, and use updating to show that they must be geometric

distributions. The proof of Theorem 9 relies on first obtaining a multiple prior

representation as in Bewley (2002): there is a set of probability distributionsM

over N such that x � y iff the expected value of x is larger than the expected

value of y for all probability distributions in M . We use the continuity at

infinity axiom, and ideas from Villegas (1964), Arrow (1974), and Chateauneuf,

Maccheroni, Marinacci, and Tallon (2005), to show that the measures in M

are countably additive.

The main contribution in our paper is to use stationarity to show that M is

the convex hull of geometric probability distributions. This is carried out in

Lemma 16, which contains the core of the proofs of Theorem 9. The idea is to

choose a subset of the extreme points of M (the exposed points of M ; these are
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the extreme points that are the unique minimizers in M of some supporting

linear functional), and show that when these priors are updated then they

have the memoryless property that characterizes the geometric distribution.

Think of each m ∈ M as representing the beliefs over when the world

will end, and choose a particular extreme point m of M . We show that the

stationarity axiom implies that for any time period t ≥ 0, if m′ is the belief

m ∈ M conditional (Bayesian updated) on the event {t, t + 1, . . .} (that is,

conditional on the event that the world does not end before time t), then

m′ = m. This means that m is the geometric distribution.

5.2. On Koopmans’ axiomatization. Koopmans (1960) is the first axiom-

atization of discounted utility. He relies on two crucial ideas: one is sepa-

rability and the other is stationarity. Separability means two things. First

that (θ, x) � (θ′, x) iff (θ, y) � (θ′, y) for all y. Second, that (θ, x) � (θ, y) iff

(θ′, x) � (θ′, y) for all θ′. It is easy to see that additivity implies separability.

The second of Koopman’s main axioms is stationarity. It says that x � y iff

(θ, x) � (θ, y). It is probably obvious how his axiom differs from ours, but let

us stress two aspects. In our stationarity axiom, stationarity is only imposed

for comparisons with a smooth stream. As we explained in 4.1.2, our idea

is that the smooth stream is a status quo, and that the comparison in the

stationarity axiom can be phrased as postponing the decision to move away

from the status quo.

The other way in which we depart from Koopmans is that our stationarity

axiom requires that λx+ (1− λ)(θ, x) � θ implies x � θ (recall the discussion

on page 14). The idea is again that the comparison between λx+ (1−λ)(θ, x)

and θ is based on the comparison between x and θ. In Koopmans’ model,

� is complete, which simplifies matters a bit. In our analysis, when � is

complete, we can make do with the following version of stationarity: x �
θ =⇒ λx+ (1− λ)(θ, . . . , θ︸ ︷︷ ︸

t times

, x) � θ.

6. Proof of Theorem 1 and Proposition 2

To establish the theorem, we need a preliminary definition.
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Given γ ∈ l∞, define the difference function ∆γ : N2 → R inductively as

follows:

(1) ∆γ(0, t) = γ(t)

(2) ∆γ(m, t) = (−1)m[∆(m− 1, t+ 1)−∆(m− 1, t)].

Say that γ is totally monotone if for all m, t ∈ N, ∆γ(m, t) ≥ 0. Total

monotonicity is basically the concept of infinite-order stochastic dominance,

applied to a discrete environment. The class of totally monotone functions is

a subset of l∞ which we denote by T .

Total monotonicity means for all t:

• γ(t) ≥ 0

• −γ(t+ 1) + γ(t) ≥ 0

• γ(t+ 2)− 2γ(t+ 1) + γ(t) ≥ 0

• −γ(t+ 3) + 3γ(t+ 2)− 3γ(t+ 1) + γ(t) ≥ 0

• γ(t+ 4)− 4γ(t+ 3) + 6γ(t+ 2)− 4γ(t+ 1)− γ(t) ≥ 0

The inequalities are the same as η(m, t) · γ ≥ 0 for all m, t ∈ N.

The following result is due to (Hausdorff, 1921), and is referred to as the

Hausdorff Moment Problem.11

Proposition 12. Let γ(1) = 1. Then γ is totally monotone if and only if

there is a Borel probability measure ( i.e. nonnegative measure on the Borel

sets) µ on [0, 1] for which γ(t) =
∫ 1

0
δtµ(δ).

We also record the following easy consequence of Proposition 12.

Corollary 13. Let γ1, . . . , γl be a given finite sequence of real numbers, where

γ1 = 1. Then there exists a Borel probability measure µ on [0, 1] for which for

all t ∈ {1, . . . , l},
∫ 1

0
δtdµ(δ) = γt if and only if for every m, t ∈ N for which

m+ t ≤ l, we have ∆γ(m, t) ≥ 0, where ∆γ(m, t) has the obvious meaning.

Proof. (of Corollary 13) By Bernstein (1915), we know that the polynomials

of the form p(x) = xm(1−x)(n−m), where m runs from 0 to n, forms a basis for

the polynomials of at most degree n on [0, 1], and moreover, that a polynomial

is positive on [0, 1] if and only if it is in the cone generated by polynomials

11Observe that this result is closely related to the characterization of belief functions as
those capacities which are totally monotone, e.g. Shafer (1976).
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of the form p(x) = xm(1 − x)(k−m) where m ∈ {0, . . . , k} and k ≤ n. We can

define a linear functional on the set of polynomials of degree at most n by

setting T (δk) = γk and extending by linearity. Observe that T (p) ≥ 0 for any

polynomial of degree at most n if and only if the total monotonicity conditions

are satisfied (by the decomposition mentioned). Finally, it follows by Corollary

7.32 of Aliprantis and Border (1999) that T can be extended to a positive

linear functional T ∗ defined on C([0, 1]) whereby it has a representation via

a probability measure µ (see Theorem 13.12 of Aliprantis and Border (1999),

together with the fact the representing measure is nonnegative, and normalized

(as T ∗(1) = 1). �

Proof. (of Theorem 1) First, we establish that x �[0,1] y if and only if for all

γ ∈ T , γ · x ≥ γ · y.12 For δ ∈ [0, 1], γ(t) = δt is totally monotone by Proposi-

tion 12. So, if γ · x ≥ γ · y for all γ ∈ T , then x �[0,1] y. Conversely, suppose

that x �[0,1] y. Let γ ∈ T . Then let µ be the Borel over [0, 1] associated

with γ. Since x �[0,1] y, we know that
∑

t δ
txt ≥

∑
t δ

tyt for all δ ∈ [0, 1]; in-

tegrating with respect to µ obtains
∫ 1

0

∑
t δ

txtdµ(δ) ≥
∫ 1

0

∑
t δ

tytdµ(δ). Now,

|δtxt| ≤ |xt| for all t, so
∫ 1

0

∑
t |xt|dµ(t) ≤ µ([0, 1])

∑
t |xt|. So by Fubini’s The-

orem (see Theorem 11.26 of Aliprantis and Border (1999),
∫ 1

0

∑
t δ

txtdµ(t) =∑
t

∫ 1

0
δtxtdµ(δ) = γ ·x. Similarly,

∫ 1

0

∑
t δ

tytdµ(δ) = γ · y, so that γ ·x ≥ γ · y.

Therefore, if x �[0,1] y is false, there is a totally monotone γ for which

γ · (x−y) < 0. By renormalizing, we can choose γ so that γ · (y−x) ≥ 1. Now,

it is simple to verify that γ is totally monotone if and only if γ · η(m, t) ≥ 0

for all m, t ∈ N.13 So x �[0,1] y being false is equivalent to the consistency of

the set of linear inequalities:

• γ · (y − x) ≥ 1

• γ · η(m, t) ≥ 0 for all m, t ∈ N.

for some γ ∈ l∞.

Consider the set of vectors (y − x, 1) ∈ `1 ×R and (η(m, t), 0) ∈ `1 ×R for

all (m, t); we can call this set V . By the Corollary of p. 97 on Holmes (1975),

12We use the notation γ · x =
∑
t γ(t)xt.

13The proof uses Pascal’s identity:
(
m−1

i−(t+1)

)
+
(
m−1
i−t
)

=
(
m
i−t
)

to show (by induction on m)

that γ · η(m,w) = ∆γ(m, t). See, e.g. Aigner (2007), p. 5.
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we may conclude that our inequality system is inconsistent if and only if (0, 1)

is in the closed convex cone spanned by V .

Therefore, we can conclude that for any ε > 0, there is (z, a) ∈ `1×R, where

(z, a) is in the convex cone spanned by V and for which ‖z‖1 + |1 − a| < ε;

which implies that each of ‖z‖1 < ε and |1 − a| < ε. In particular, by taking

a sufficiently close to 1, we can also guarantee that ‖ 1
a
z‖1 < ε.14 The vector(

1
a
z, 1
)

is in the convex cone spanned by V .

To simplify notation, write w = 1
a
z. Now, (w, 1) is a finite combination of

vectors of the form (λiη(mi, ti), 0) and (b(y − x), b). Clearly, it must be that

b = 1, so we have w = (y − x) +
∑N

i=1 λiη(mi, ti), which is what we wanted to

show. �

The proof of Proposition 2 follows from the same idea, except that we search

for the consistency of a finite set of linear inequalities on a finite dimensional

space.

The extension mentioned after the statement of Theorem 1 follows from a

generalization of Proposition 12. Specifically, it is known that for γ : N→ R,

there is a Borel probability measure µ on [a, b] for which γ(t) =
∫ 1

0
δtµ(δ) if

and only if for every polynomial P : R → R, given by P (x) =
∑n

i=0 aix
i for

which for all x ∈ [a, b], we have P (x) ≥ 0, it follows that
∑n

i=0 aiγ(i) ≥ 0 and

γ(0) = 1 (see, e.g. Theorem 1.1 of Shohat and Tamarkin (1943)). Further,

it is known that if P is a nonnegative polynomial on [a, b], then it can be

written as P (x) =
∑

(s,t)∈S λ(s,t)(x− a)s(b−x)t for some set of indices S ⊆ N2

and λ(s,t) ≥ 0. A variant of this fact is due to Bernstein (1915), for the case

[−1, 1]; see again Shohat and Tamarkin (1943), p. 8 who consider the case [0, 1].

The result then follows from renormalizing. Finally this leads to the result,

as it implies that we only need to check non-negativity of the polynomials

(x− a)s(b− x)t for each s, t.

6.1. Proof of Theorem 5. Define

P (a, b) ≡
⋂

δ∈[a,b]

{x ∈ `∞ : x ·m(δ) ≥ 0}.

14For example, let ν > 0 so that ν2 +ν < ε, and take (z, a) so that | 1a | < 1+ν and ‖z‖1 < ν.

Then ‖ 1az‖1 ≤ |
1
a |‖z‖1 < ν2 + ν < ε.
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The discussion preceding the statement of the theorem shows that cone(a, b) ⊆
P (a, b).

The theorem can then be stated as:

Theorem 14. x ∈ P (a, b) iff for every ε > 0 and every {m1, . . . ,mK} ⊆ `1,

there is y ∈ cone(a, b) for which for all k ∈ {1, . . . , K}, we have |mk ·(x−y)| <
ε.

Proof. Suppose that the second hypothesis is satisfied, and observe that we

have shown that cone(a, b) ⊆ P (a, b).

The second hypothesis establishes that for each δ ∈ [a, b] and each ε > 0,

there is y ∈ cone(a, b) such that we have |m(δ) ·(x−y)| < ε. But y ∈ cone(a, b)

implies that m(δ) · y ≥ 0. Thus m(δ) · x ≥ −ε. Since the inequality holds for

any ε > 0, we have m(δ) · x ≥ 0.

For the other direction, let τp denote the topology on `∞ such that `1 con-

stitutes the set of continuous linear functionals. That is, the weak topology

with respect to the pairing 〈`∞, `1〉.
We will show that if x 6∈ cone(a, b), where cone(a, b) refers to the closure of

cone(a, b) in (`∞, τp), then x 6∈ P (a, b), which will be enough to establish the

claim.

If x 6∈ cone(a, b), then there is m∗ ∈ `1 such that x · m∗ < 0 and for all

η ∈ cone(a, b), η ·m∗ ≥ 0 (Theorem 5.58 of Aliprantis and Border (1999)).

By Haviland’s Theorem (Shohat and Tamarkin (1943) Theorem 1.1) to-

gether with the discussion of the Hausdorff moment problem, we know that

for any m ∈ `1, η(s, t, a, b) ·m ≥ 0 for all s, t iff there is a nonnegative Borel

measure µ on [a, b] for which m · x ≡
∫
x ·m(δ)dµ(δ).

Consequently, m∗ ∈ `1 corresponds to some Borel measure µ∗, so that it

follows that there is δ ∈ [a, b] for which x ·m(δ) < 0. �

7. Proof of Theorem 9

The following lemma is useful.

Lemma 15. The function m : [0, 1)→ `1 given by m(δ) = (1− δ)(1, δ, δ2, . . .)
is norm-continuous.
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Proof. First, we show that the map d : [0, 1)→ `1 given by d(δ) = (1, δ, δ2, . . .)

is continuous. The result will then follow as m(δ) = (1− δ)d(δ).15

So, let δn → δ∗. Then ‖d(δn) − d(δ∗)‖1 =
∑

t |δtn − (δ∗)t|. Observe that

for each t, |δtn − (δ∗)t| → 0. By letting δ̂ = supn(δn) < 1, we have that

for each t, |δtn − (δ∗)t| ≤ max{|(δ∗)t|, |δ̂t − (δ∗)t|}, since the expression |δt −
(δ∗)t| increases monotonically when δ moves away from δ∗. And observe that∑

t max{|(δ∗)t|, |δ̂t − (δ∗)t|} < +∞. Conclude by the Lebesgue Dominated

Convergence Theorem (Theorem 11.20 of Aliprantis and Border (1999)) that

‖d(δn)− d(δ∗)‖1 → 0. �

Lemma 16, following, characterizes cones in `∞ which are the set of streams

which have nonnegative discounted payoff for every discount factor in some

(endogenously determined) closed set of discount factors. The lemma is the

main building block in the Bewley style representation. In each environment,

the cone of vectors deemed at least as good as 0 must be a cone of this type.

From there, it is a matter of translating the properties of the cone into the

properties of the preference �.

The lemma uses similar ideas to those of Villegas (1964), Arrow (1974), and

Chateauneuf, Maccheroni, Marinacci, and Tallon (2005) to obtain countably

additive measures. Villegas and Arrow show the existence of countably addi-

tive priors in Savage’s subjective expected utility model. Chateauneuf et. al

show that the set of priors in the α-maximin model is countably additive.

The main novelty in the lemma lies in using the boundary property 4 to

show that the measures supporting the cone take the exponential form. This

is achieved essentially by updating the supporting measures and by showing

the “memoryless” property of the exponential distribution.

Lemma 16. Let P ⊆ `∞. Suppose P satisfies the following properties.

(1) P is a `∞-closed, convex cone.

(2) There is x 6∈ P .

(3) `+∞ ⊆ P .

(4) x ∈ bd(P ) implies (0, 0, . . . , 0, x) ∈ P and x+ (0, 0, . . . , 0, x) ∈ bd(P ).

15The latter is easily deemed continuous. By a simple application of the triangle inequality,
if δn → δ∗, we have ‖(1−δn)d(δn)−(1−δ)d(δ)‖1 ≤ |(δ−δn)|‖d(δn)‖1+(1−δ)‖d(δn)−d(δ)‖1.
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(5) For all θ ∈ [0, 1), there is T so that

(1− θ, . . . , 1− θ︸ ︷︷ ︸
T times

,−θ,−θ, . . .) ∈ P.

(6) For all T , (0, . . . , 0︸ ︷︷ ︸
T times

, 1, . . .) ∈ int(P ).

Then there is a nonempty closed D ⊆ (0, 1) so that P =
⋂
δ∈D{x :

∑
t(1 −

δ)δtxt ≥ 0}. Conversely, if there is such a set D, all of the properties are

satisfied.

Proof. Establishing that if there is such a D, then the properties are satisfied is

mostly simple: Let M = {m(δ) : δ ∈ D}, so that P =
⋂
δ∈D{x : m(δ) · x ≥ 0}.

Each set {x : m(δ) · x ≥ 0} is closed, and contains `+∞, so (1) and (3) are

satisfied. Property (2) is immediate as P contains no negative sequences.

For the other properties, note that Lemma 15 and the compactness of D

imply that M is norm-compact. Observe that x ∈ P iff infδ∈D(1−δ)
∑

t δ
txt ≥

0, and that moreover this infimum is achieved (by norm-compactness of M).

Then, to see that (4) is satisfied, observe that if x ∈ bd(P ), then there is δ ∈ D
for which m(δ) · x = 0, and in particular then, m(δ) · (0, . . . , 0︸ ︷︷ ︸

T times

, x) = 0, and

hence m(δ) · (x+ (0, . . . , 0︸ ︷︷ ︸
T times

, x)) = 0. This means that x+ (0, . . . , 0, x) ∈ bd(P ).

Properties (5) and (6) obtain as 0 < inf D ≤ supD < 1. First, m(δ) · (1 −
θ, . . . , 1− θ,−θ, . . .) = (1− δT )− θ. So θ < 1 means that there is T such that

(1 − δT ) − θ ≥ 0 for all δ ∈ D. Second, for any T , let ε > 0 be such that

inf{δT : δ ∈ D} > ε. Then if m(δ) · (−ε, . . . ,−ε, 1 − ε, . . .) = δT − ε ≥ 0 for

all δ ∈ D. This means that if ‖x− (0, . . . , 0, 1, . . .)‖ < ε then x ∈ P .

We now turn to proving that properties (1)-(6) imply the existence of D as

in the statement of the lemma.

Step 1: Constructing a set M of finitely additive probabilities on

N as the polar cone of P .

Let ba(N) denote the bounded, additive set functions on N, and observe

that (`∞, (ba)(N)) is a dual pair. Consider the cone M∗ ⊆ ba(N) given by

M∗ =
⋂
p∈P{x : x · p ≥ 0}. By Aliprantis and Border (1999) Theorems 5.86
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and 5.91, P =
⋂
x∈M∗{p : x · p ≥ 0}.16 Since `+∞ ⊆ P (property (3)), we can

conclude that M∗ ⊆ ba(N)+. Moreover, there is nonzero m ∈ M∗ (by the

existence of p 6∈ P , property 2.) For any such nonzero m, observe that since

m ≥ 0, it follows that m(1) > 0.17 Let M = {m ∈ M∗ : m(1) = 1} and

conclude that P =
⋂
m∈M{p : x · p ≥ 0}.

Step 2: Verifying that all elements of M are countably additive,

and that m({T, . . .}) > 0 for all m ∈M .

We show now that each m ∈M is countably additive. Since for all θ ∈ [0, 1),

there is T so that (1− θ, . . . , 1− θ︸ ︷︷ ︸
T times

,−θ,−θ, . . .) ∈ P (property (5)), it follows

that for allm ∈M , m({0, . . . , T−1}) ≥ θ. Conclude that limt→∞m({0, . . . , t}) =

m(N), so that countable additivity is satisfied.18 So we write m(z) = m · z.

Since (0, . . . , 0︸ ︷︷ ︸
T times

, 1, . . .) ∈ int(P ) (property (6)), we can conclude thatm({T, . . .}) >

0 for all m ∈M .

Step 3: Establishing that M is weakly compact Countably additive

and nonnegative set functions can be identified with elements of `1, so we can

view M as a subset of `1. We show that M is weakly compact, under the

pairing (`1, `∞).

First, view M as being a subset of ba(N), endowed with the weak* topol-

ogy from the pairing (`∞, ba(N)). By Alaoglu’s Theorem (Theorem 6.25 of

Aliprantis and Border (1999)), M is compact.

Consequently, since M consists of countably additive measures, by Theorem

1 of Maccheroni and Marinacci (2001), M is weakly compact when endowed

with topology generated by the pairing (ba(N), ba∗(N)), where ba∗(N) rep-

resents the norm-bounded linear functionals defined on ba∗(N). Observe that

`∞ can be identified with a subset of ba∗(N), so M retains weak compactness

when endowed with the topology generated by the pairing (ba(N), `∞) simply

16One needs to verify that P is weakly closed with respect to the pairing (`∞,ba(N)), but
it is by Theorem 5.86 since (ba)(N) are the `∞ continuous linear functionals by Aliprantis
and Border (1999), Theorem 12.28.
17Otherwise, we would have m(x) = 0 for all x ∈ [0,1], which would imply m = 0.
18For example, see Aliprantis and Border (1999), Lemma 9.9. Suppose Ek ⊂ N is a sequence
of sets for which

⋂
k Ek = ∅ and Ek+1 ⊆ Ek. Then for each k, there is t(k) ∈ N such that

Ek ⊆ {t(k), t(k)+1, . . .} and for which t(k)→∞. Without loss, take t to be nondecreasing.
The result then follows as m(Ek) ≤ m({t(k), t(k) + 1, . . . , })→ 0.
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by definition of compactness. In particular, since M is closed, and consists

of countably additive measures, any net in M which converges converges to a

countably additive measure. Hence, by the nets characterization of compact-

ness (Theorem 2.28 of Aliprantis and Border (1999)), we can conclude that

M is weakly compact when endowed with the weak topology generated by the

pairing (`1, `∞).

Step 4: Characterizing exposed points of M . A point of M is exposed

if there is a linear functional f with f(m) < f(m′) for all m′ ∈M \ {m}. We

now show that any exposed point of M has the form (1 − δ)(1, δ, δ2, . . .) for

some δ ∈ [0, 1]. So, suppose that m ∈ M is an exposed point. Then there

exists x ∈ `∞ such that x · m < x · m′ for all m′ ∈ M\{m}. Clearly it is

without loss to suppose that x · m = 0.19 Since x · m = 0, it follows that x

is on the boundary of P . Therefore, for any T , x+ (0, . . . , 0︸ ︷︷ ︸
T times

, x) is also on the

boundary of P (property 4). Since x+ (0, . . . , 0︸ ︷︷ ︸
T times

, x) is on the boundary, it has

a supporting hyperplane mx ∈ M∗ passing through the origin, for which for

all y ∈ P ,

0 = mx · (x+ (0, . . . , 0︸ ︷︷ ︸
T times

, x)) ≤ mx · y.20

We can choose mx to be non-constant; so we can take mx ∈ M . So there

is mx ∈ M such that 0 = mx · ((0, . . . , 0︸ ︷︷ ︸
T times

, x) + x). But observe that, since

x ∈ P and (0, . . . , 0︸ ︷︷ ︸
T times

, x) ∈ P , mx · x ≥ 0 and mx · (0, . . . , 0, x) ≥ 0. Then

0 = mx · (0, . . . , 0︸ ︷︷ ︸
T times

, x) +mx · x means that mx · x = 0 and mx · (0, . . . , 0, x) = 0.

But mx · x = 0 implies that mx = m, as x was chosen to expose m. In turn,

mx = m implies that m · (0, . . . , 0︸ ︷︷ ︸
T times

, x) = 0 as well.

Let

mT =
(m(T − 1),m(T ),m(T + 1), . . .)

m({T − 1, . . .})
∈ `1.

19If x ·m > 0, observe that x− (x ·m)1 satisfies 0 = (x− x ·m1) ·m < (x− x ·m1) ·m′.
20That it has a supporting hyperplane follows from Aliprantis and Border (1999), Lemma
5.78. That the supporting hyperplane passes through zero follows as P is a cone. That mx

is in the polar cone to P follows by definition.
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(recall that we established that m({T − 1, . . .}) > 0.) We shall first show that

mT ∈ M . Let p ∈ P . It is enough to show that (0, . . . , 0︸ ︷︷ ︸
T times

, p) ∈ P , as mT · p =

m ·(0, . . . , 0, p) ≥ 0 and p ∈ P is arbitrary. So let 0 ≤ c = inf{p ·m′ : m′ ∈M},
and note that 0 = inf{·(p − c1) : m′ ∈ M}, the infimum being achieved at

some m′ ∈ M by compactness of M . Then p − c1 ∈ bd(P ). Property (4)

implies that (0, . . . , 0, p− c1) ∈ P . Property (3) implies that (0, . . . , 0, p) ∈ P .

Now, mT · x = 0 and x exposes m, so mT ∈ M implies that m = mT . This

equation (mT = m for all T ) characterizes the geometric distribution: Let

h(s) = m({s, s+ 1, . . .}). Then we have

h(s+ t)

h(t)
=
m({t+ s, t+ s+ 1, . . .})

m({t, t+ 1, . . .})
= m({s, s+ 1, . . .}) = h(s).

Then we obtain h(t) = h((t− 1) + 1) = h(t− 1)h(1). Continuing by induction

h(t) = h(1)t. If we let δ = h(1) = m∗({1, 2, . . .}), we have m∗({t, . . .}) = δt

for all t ≥ 1, and m∗({0}) = 1 −m∗({1, . . .}) = 1 − δ. Finally, observe δ > 0

as m({T, . . .}) > 0 for all T .

So, conclude that each exposed point of M takes the form (1−δ)(1, δ, δ2, . . .)
for some δ > 0 (and clearly δ < 1).

Step 5: Finalizing the characterization

Since we have established that M is weakly compact, a theorem of Linden-

strauss and Troyanski ensures that it is the weakly closed convex hull of its

strongly exposed points (see Corollary 5.18 of Benyamini and Lindenstrauss

(1998)); and, in particular then, of its exposed points. This then allows us

to conclude that P has the desired form; let D denote the set of associated

discount factors. By Lemma 15, we may take D to be closed. Moreover, 0 6∈ δ,
since for any m ∈M and any T , m({T, . . . , }) > 0. �

7.1. Proof of Theorem 9. We establish the sufficiency of the axioms first.

Let P = {x ∈ `∞ : x � 0}. Translation invariance implies that x � y iff

x − y � 0. So x � y iff x − y ∈ P . If we can show that P satisfies the

conditions of Lemma 16 then we are done, because if D ⊆ (0, 1) is as delivered

by the lemma, then x � y iff x− y ∈ P iff ∀δ ∈ D
∑∞

t=0(1− δ)δt(xt− yt) ≥ 0.



THE PARETO COMPARISONS OF A GROUP OF EXPONENTIAL DISCOUNTERS 29

Lemma 17. The set P satisfies all of the properties listed in Lemma 16.

Proof. First, we show that P is closed under positive scalar multiplication. If

x ∈ P , then for any λ ∈ [0, 1], we have λx ∈ P by convexity. On the other

hand, if x ∈ P , then for any n ∈ N, we have nx ∈ P by additivity, transitivity,

and a simple induction argument.21 Conclude that if x ∈ P and λ > 0, then

λx ∈ P .

Hence P is a cone. P is closed since � is continuous. That P is convex

follows from the convexity of �.

Monotonicity of � implies that the set of positive vectors is contained in P

(property 3) and that −1 /∈ P , so property 2 is satisfied.

Let x ∈ bd(P ) and T > 0. Strong stationarity of� implies that (0, . . . , 0︸ ︷︷ ︸
T times

, x) ∈

P . So x + (0, . . . , 0︸ ︷︷ ︸
T times

, x) ∈ P because P is a convex cone. To show that

x + (0, . . . , 0︸ ︷︷ ︸
T times

, x) ∈ bd(P ), let ε > 0 and x′ be such that ‖x − x′‖∞ < ε/2

and x′ /∈ P . Note that

‖x+ (0, . . . , 0, x)− x′ + (0, . . . , 0, x′)‖∞ < ε.

We claim that x′ + (0, . . . , 0, x′) /∈ P . So suppose that x′ + (0, . . . , 0, x′) ∈
P . Then (1/2)x′ + (1/2)(0, . . . , 0, x′) ∈ P as P is a cone. Thus (1/2)x′ +

(1/2)(0, . . . , 0, x′) � 0, which by stationarity implies that x′ � 0, contradicting

that x′ /∈ P .

Now turn to property 5. Suppose that the property does not hold. Then

there is some θ ∈ [0, 1) such that for all T , (1− θ, . . . , 1− θ︸ ︷︷ ︸
T times

,−θ,−θ, . . .) /∈ P .

Using additivity, for all T ,

(1, . . . , 1︸ ︷︷ ︸
T times

, 0, 0, . . .) 6� θ.

Then continuity at infinity implies that θ � 1, contradicting monotonicity of

� (as θ < 1).

21Namely, since x ∈ P , if (n − 1)x ∈ P , then x + (n − 1)x � 0 + (n − 1)x, by additivity.
Thus by transitivity, nx � 0.
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Finally, property 6 follows from compensation. For all T ,

(θt − θt, . . . , θt − θt︸ ︷︷ ︸
t times

, θ̄t − θt, . . .) � 0

(using c-translation invariance). So monotonicity of � and θt < θt implies that

(0, . . . , 0, θ̄t−θt, . . .) � 0. Homotheticity of� then implies that (0, . . . , 0︸ ︷︷ ︸
T times

, 1, . . .) �

0. Property 6 then follows from the continuity of �. �

Now we turn to the necessity of the axioms. Continuity at infinity is nec-

essary: Suppose that for all T , (1, . . . , 1︸ ︷︷ ︸
T times

, 0, . . .) 6� θ. Then for every T , there

exists δT ∈ D for which θ > (1 − δT )
∑T

t=0 δ
t
T1 = (1 − δT+1

T ). Without loss

we can take δT = δ∗ = max{δ : δ ∈ D}. Since D is closed, δ∗ ∈ D. Now,

θ > 1 − δT+1
∗ for all T implies that θ ≥ 1. Then monotonicity of � implies

that θ � 1.

Compensation is also a simple consequence of D being closed and therefore

bounded away from 1.

Lemma 18. Stationarity is necessary.

Proof. Let t > 0 and λ ∈ [0, 1]. Let z = λx + (1 − λ)(θ, . . . , θ︸ ︷︷ ︸
t times

, x) − θ1. Then

for any δ ∈ (0, 1)

∞∑
τ=0

δτzτ = λ
∞∑
τ=0

δτ (xτ − θ) + (1− λ)
∞∑
τ=t

δτ (xτ−t − θ)

= [λ+ (1− λ)δt]
∞∑
τ=0

δτ (xτ − θ)

Note that [λ + (1 − λ)δt] > 0. So (1 − δ)
∑∞

τ=0 δ
τzτ ≥ 0 for all δ ∈ D iff

(1− δ)
∑∞

τ=0 δ
τ (xτ − θ) ≥ 0 for all δ ∈ D. �

7.2. Uniqueness.

Proof. By Lemma 15, m(D) and m(D′) are closed, as the continuous image of

compact sets. Let M and M ′ be the closed convex hulls of m(D) and m(D′),

respectively. If δ ∈ D′ \ D then m(δ) /∈ M (because no m(δ) can be written

as a convex combination of some finite m(δ1), . . . ,m(δn)).
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Topologize ∆(N) with the weak*-topology on σ(Cb(N),∆(N)); that is, the

weakest topology for which the map µ 7→ x·µ is continuous for every x ∈ Cb(N)

(observe also that any such x ∈ l∞). By Lemma 14.21 of Aliprantis and Border

(1999), each of M and M ′ is compact.

Since m(δ) 6∈ M , there is a continuous linear functional x separating m(δ)

from M (Theorem 5.58 of Aliprantis and Border (1999)). By Lemma 14.4

and Theorem 5.83 of Aliprantis and Border (1999), there is x ∈ l∞ for which

x ·m(δ) < infm′∈M x ·m′. Let y ∈ R be given by y =
x·m(δ)+infm′∈M x·m′

2
and

observe that (x−y) ·m(δ) < 0 < infm′∈M(x−y) ·m′. Conclude that 0 � (x−y)

and (x− y) �′ 0. �

8. Proof of Theorem 10

Let D be as in Theorem 9 and suppose, towards a contradiction, that D is

not an interval. The set D is closed, so D can only fail to be a closed interval

if if there exists δ ∈ (0, 1)\D and δ0, δ1 ∈ D with δ0 < δ < δ1. In fact, since D

is closed we can find x, y ∈ (0, 1) with δ0 < x < δ < y < δ1 and [x, y]∩D = ∅.
Now δ0 ∈ D and δ0 < x means that (−x, 1, 0, . . .) 6� 0, while δ1 ∈ D

and y < δ1 means that (y,−1, 0, . . .) 6� 0. Then the tradeoff axiom implies

that x(y,−1, 0, . . .) 6� (0, y,−1, 0, . . .); or (using translation invariance) that

(xy,−x− y, 1, 0, . . .) 6� 0.

So there is η ∈ D with

0 > xy − η(x+ y) + η2 = (η − x)(η − y).

This means that η ∈ (x, y), a contradiction.

9. Proof of Theorem 7

Suppose that � satisfies the axioms. Following Cerreia-Vioglio, Ghirardato,

Maccheroni, Marinacci, and Siniscalchi (2011), let �∗ be the ordering defined

by x �∗ y iff λx + (1 − λ)z � λy + (1 − λ)z for all λ ∈ [0, 1] and z ∈ `∞.

By Proposition 2 of Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and

Siniscalchi (2011), observing that our axioms imply the counterparts of theirs

(specifically their risk-independence follows from our monotonicity, and their

Archimedean property follows from completeness of � and our continuity)



32 CHAMBERS AND ECHENIQUE

we know that there exists a (weak*) compact and convex set M∗ of finitely

additive measures over N such that x �∗ y iff x ·m ≥ y ·m for all m ∈M∗.22

Define

V ∗(x) = min
m∈M∗

x ·m.

Let V be that utility representation of � which is normalized, so that for all

θ, V (θ) = θ. Such a representation exists; e.g. simply define V (x) = θ̄, where

θ̄ is the unique constant stream for which x ∼ θ̄.

We claim that V ∗(x) = V (x). To this end, for any x ∈ `∞, let θx = V ∗(x).

Observe therefore that for all m ∈ M∗, x ·m ≥ θx, from which we conclude

x �∗ θx. Then by definition of �∗, it follows that x � θx, so that V (x) ≥ θx =

V ∗(x).

Now, suppose by means of contradiction that V (x) > V ∗(x). Then there

is m ∈ M∗ for which V (x) > x · m. In particular then, x �∗ V (x) must be

false. By default independence, then x � V (x) must also be false, so that

V (x) � x. Thus V (V (x)) > V (X); but since V is normalized, this establishes

V (x) > V (x), a contradiction.

Consider the cone P = {x ∈ `∞ : x �∗ 0}. We shall verify that it satisfies the

conditions in Lemma 16. Conditions 1-3 are obvious from P = ∩m∈M∗{x ∈
`∞ : m · x ≥ 0}. To verify condition 4, let x ∈ bd(P ). Then x �∗ 0 and

stationarity implies that (0, . . . , 0, x) � 0. So default independence implies

that (0, . . . , 0, x) ∈ P . Again, stationarity and default independence imply

that (1/2)x + (1/2)(0, . . . , 0, x) ∈ P . So x + (0, . . . , 0, x) ∈ P as P is a cone.

For the rest of condition 4, consider a sequence xn → x with xn /∈ P . Then

(1/2)xn + (1/2)(0, . . . , 0, xn) /∈ P as �∗⊆� (using the converse implication of

stationarity). Thus x+ (0, . . . , 0, x) ∈ bd(P ).

22Since the vector space we work with is R, we can take the u in their representation to
be constant. In terms of notation, we use x ·m for

∫
xtdm(t) when m is a finitely additive

measure.
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For condition (5), let θ ∈ [0, 1). Continuity at infinity implies that there is

T such that (1, . . . , 1︸ ︷︷ ︸
T times

, 0, 0, . . .) � θ. By default independence, then

1− θ
2

, . . . ,
1− θ

2︸ ︷︷ ︸
T times

,−θ
2
,−θ

2
, . . .

 � 0.

Again by default independence, conclude that1− θ
2

, . . . ,
1− θ

2︸ ︷︷ ︸
T times

,−θ
2
,−θ

2
, . . .

 �∗ 0,

so that 1− θ
2

, . . . ,
1− θ

2︸ ︷︷ ︸
T times

,−θ
2
,−θ

2
, . . .

 ∈ P
and (1− θ, . . . , 1− θ︸ ︷︷ ︸

T times

,−θ,−θ, . . .) ∈ P , as P is a cone.

For condition (6), it is easy to see that compensation implies that, for any

T , (0, . . . , 0︸ ︷︷ ︸
T times

, 1, 1, . . .) � 0. Then continuity implies that x � 0 for all x in

a neighborhood N of (0, . . . , 0︸ ︷︷ ︸
T times

, 1, 1, . . .). Then default independence implies

N ⊆ P .

By Lemma 16 there is a closed set D∗ ⊂ (0, 1) such that

P =
⋂
δ∈D∗
{x ∈ `∞ : (1− δ)

∞∑
t=0

δtxt ≥ 0}.

Note that each m(δ) = (1−δ)(1, δ, δ2, . . .) is a (countably additive) probability

measure on N.

Now, we claim that x �∗ y iff (x−y) ∈ P . So, suppose x �∗ y. By definition

of �∗, conclude that x−y
2
� 0. By default independence, x−y

2
∈ P , and hence

x− y ∈ P as P is a cone. Conversely, suppose that x− y ∈ P . We claim that

for any z and λ ∈ (0, 1), λx+ (1− λ)z � λy + (1− λ)z. So, since P is a cone,

2λ(x− y) ∈ P , from which we conclude 2λ(x− y) �∗ 0. Then 2λ(x− y) � 0
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and by default independence, 1
2
(2λ(x−y))+ 1

2
(2λy+2(1−λ)z) � λy+(1−λ)z.

So λx+ (1− λ)z � λy + (1− λ)z, establishing x �∗ y.

Therefore, we have established that the set M∗ referenced in Cerreia-Vioglio,

Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011) coincides with the

closed convex hull of {m(δ) : δ ∈ D∗}. Since {m(δ) : δ ∈ D∗} is itself

a weak* closed set (by Dominated Convergence; see e.g. Theorem 11.20 of

Aliprantis and Border (1999)), it is compact and therefore V (x) = V ∗(x) =

minδ∈D∗ x ·m(δ), establishing the first statement.

Finally, �∗ is maximal. This follows as for any additive relation �′⊆�,

x �′ y implies (x − y) �′ 0, from which we conclude x − y � 0, and hence

x− y �∗ 0. This implies that x �∗ y.

10. Proof of Theorem 11

Let P be the set of all cones P in `∞ that satisfy the properties listed in

Lemma 16, and for which, if z ∈ P , then x + z � x for all x. The set P is

nonempty because it contains {z ∈ `∞ : ∀δ ∈ D∗,
∑
δtzt ≥ 0}.

Let K be the closure of the convex hull of
⋃
P . We show that if (x−y) ∈ K,

then x � y. First, if x− y =
∑

i λizi, for λ ≥ 0, where
∑

i λi = 1 and for each

i, zi ∈
⋃
P , then x � y follows from convexity of �. Otherwise, for any ε > 0,

there are λεi , z
ε
i where ‖(x − y) −

∑
i λ

ε
iz
ε
i‖∞ < ε, and zi ∈ P . In this case,

since y +
∑

i λ
ε
iz
ε
i � y for each ε, the result follows by continuity of �.

Now note that if K = `∞ then we are done because the theorem is true

trivially when �= `∞ × `∞. So suppose that `∞ \ K 6= ∅. We show that

K ∈ P , which proves the theorem. By Lemma 19 below, K satisfies the

properties listed in Lemma 16. So Lemma 16 implies that K ∈ P , and we are

therefore done.

In the following, co refers to the closed, convex hull.

Lemma 19. Let P be a nonempty collection of cones satisfying the properties

listed in Lemma 16. Then there is a nonempty closed D ⊆ (0, 1) so that

co
(⋃
P
)

=
⋂
δ∈D

{x :
∑
t

(1− δ)δtxt ≥ 0}.

Proof. Let m̃ denote the function defined in Lemma 15.
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Let P be a collection of closed convex cones with the property that for each

P ∈ P there is DP ⊆ (0, 1), closed, such that

P =
⋂
δ∈Dp

{z : m̃(δ) · z ≥ 0}.

Denote by MP the `1-closed convex hull of {m(δ) : δ ∈ DP}. Note that

by basic properties of polars and duals (see Aliprantis and Border (1999),

Theorem 5.91), z ∈ co (
⋃
P) iff m · z ≥ 0 for all m ∈

⋂
P∈PMP .

Let m be an extreme point of
⋂
P∈PMP . For each P ∈ P , m ∈ MP .

We claim that there exists a probability measure µP on DP such that for all t,

mt = EµPm(δ)t. To see this, let mn be a sequence, where each mn ∈ co{m(δ) :

δ ∈ DP}, such that mn →1 m. For each n, mn =
∑
λnim(δni ) for some λni , δ

n
i .

The set of probability measures on DP is weak*-compact (Theorem 6.25 of

Aliprantis and Border (1999)), so there is a probability measure µP on DP so

that (taking a subsequence if necessary), λn →w∗ µP . This implies that for

each t,

mn
t → EµPmt(δ) = EµP (1− δt)δt.

Thus mt = EµP (1− δt)δt.
The cone P was arbitrary, so the uniqueness of the moment curve implies

that µP is independent of P ; and can be identified with a probability on
⋂
DP ,

say µ = µP . Thus m is an expectation of {m(δ) : δ ∈
⋂
DP}. We assumed

that m is an extreme point of M , so µ must be degenerate and there must

exist δ ∈
⋂
DP with m = m(δ). �
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