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Abstract. This supplemental material contains results omitted from the main
paper.

S.1. Estimation and closed preference sets

This section illustrates that having a closed set of preferences is critical for estima-
tion, while it is not needed for identification.

Throughout, the set of alternatives is X ≡ [0, 1], and the set of preferences P is
the set of all locally strict and transitive preferences on X. The argument extends
to other sets of alternatives, but using the unit interval makes it particularly simple.
Here, X meets Assumption (1) but P violates Assumption (2) because it is not closed,
as we show below.

Denote by �I the preference that corresponds to complete indifference, defined
by x �I y for all x, y ∈ X. Note that �I is transitive but not locally strict. We
measure the distance between preference relations by the Hausdorff distance between
the corresponding subsets of X ×X:

ρ(�,�′) = max
{

sup
x�y

inf
x′�′y′

‖(x, y)− (x′, y′)‖,

sup
x′�′y′

inf
x�y
‖(x′, y′)− (x, y)‖

}
,

where ‖ · ‖ is the Euclidean norm. Because X is compact, the Hausdorff metric is
compatible with the topology of closed convergence.

Consider a subject who has a preference in P , denoted �∗, and makes choices
accordingly without error: if x �∗ y, the subject always chooses x over y. Using
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the formalism of Section 2, decisions without error mean that the subject’s choice
function over binary choice problems rationalizes �∗.

Proposition S.1. Suppose {Σn} is an exhaustive set of experiments, and let Σ∞ be
the collection of all the binary choice problems used in this set of experiments.

(1) If a preference � ∈ P rationalizes the observed choices on every binary choice
problem in Σ∞, then � = �∗.

(2) There exists, for every n, a preference �n ∈ P that rationalizes the observed
choices on Σn, and such that ρ(�n,�I) converges to zero as n goes to infinity.

In particular, P is not closed. Neither is the set of all locally strict preferences.
The first part of Proposition S.1 asserts that, if the experimenter could observe the

behavior of the subject over all experiments of an exhaustive set, she would be able
to infer exactly the subject’s true preference. Thus, a countably infinite set of data
points that samples well enough the set of alternatives is sufficient to uniquely pin
down the subject’s true preference. This identification result owes to the fact that the
subject’s true preference is assumed to be locally strict. It is implied by Lemma 1.

The second part of Proposition S.1 contrasts with the interpretation of the first part
of the proposition. On any experiment in an exhaustive set, the experimenter can find
a preference in P that perfectly rationalizes the observed behavior, and yet remains
uninformative about the true preference of the subject—no matter how many data
points have been collected—in the sense that the estimated preference converges to the
same preference relation independently of the subject’s true preference. The proof of
the second part of the proposition relies on constructing sequences of rationalizations
that behave increasingly erratically as experiments grow in size. This result stresses
the importance of the assumption that the class of preferences considered be closed.

Proof of Proposition S.1. The first part of the proposition is a special case of Lemma 1
by setting �B = �. To prove the second part, let Zn be the set of alternatives used
in experiment Σn. Let us write Zn as {z1, . . . , zmn} for some mn, with zi < zj if i < j.

Denote by vn : Zn → [−1/2,+1/2] a utility representation of �∗ restricted to Zn.
Such utility representation is guaranteed to exist because �∗ is transitive and Zn is
finite. We define a utility function un : X → [−1,+1] that extends vn as follows.
First, if z1 6= 0, let un(0) = 0, if zmn 6= 1, let un(1) = 0, and for all z ∈ Zn, let
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un(z) = vn(z). Second, for i = 1, . . . ,mn − 1, let

un

(
2

3
zi +

1

3
zi+1

)
= +1

un

(
1

3
zi +

2

3
zi+1

)
= −1.

Third, we complete the definition of un on X by linear interpolation between the
points just defined.

Let �n be the preference relation that un produces on the full set of alternatives.
Of course, �n is transitive. It is also locally strict because un is never constant on any
open interval. Thus, �n belongs to P . Since it agrees with �∗ on the alternatives used
in experiment Σn, it rationalizes the observed choices on Σn. Finally, �n converges
to �I as n goes to infinity. Indeed, recall that the convergence of preferences in the
closed convergence topology can be defined by the two properties detailed in Section 3.
The first property holds because, no matter the choice of x, y ∈ [0, 1], for every ε > 0

one can always find n large enough and xn, yn ∈ [0, 1] with |xn − x| < ε, |yn − y| < ε

so that un(xn) ≥ un(yn), which means xn �n yn. The second property is immediately
satisfied. �

S.2. Convergence rates in commodity-space environments

In this section, we compute explicit convergence rates for the statistical preference
model in the commodity-space environment of Section 5.1.

In this environment, the set of alternatives X is the positive orthant Rd
++. We use

the Euclidean norm (and metric) on X and the L∞ product norm on the product
space X×X. For a subset S of X or X×X, let Sε denote the set of all points within
distance ε of S.

To enable the computation of convergence rates, we require that P be identified
on a compact set. Given a subset of alternatives from X, we say that the class
P is identified on the subset if, whenever two preferences coincide on this subset,
they must be identical on X. We also ask that P have finite VC dimension. These
requirements are satisfied by a number of common models; for example, the class
of preferences with a constant elasticity of substitution (CES) utility representation,
or, when {1, . . . , d} is interpreted as a state space, and the set of alternatives X is
interpreted as a space of monetary acts, preferences with a CARA subjective expected
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utility representation.S.1 Throughout, we fix a compact set K ⊂ X with nonempty
interior (without loss of generality), and we let θ > 0 be small enough so thatKθ ∈ X.
We refer to θ as a “fudge parameter.” In effect, Kθ is a slightly enlarged version of
K.

Similarly to Section 4.2, we focus on error probability functions that are polyno-
mially bounded. However, since we do not impose that the preferences in P have a
utility representation, we use the Euclidean distance between alternatives instead of
the difference of utilities. Specifically, we assume that there exists C > 0 and k > 0

such that, if x ∈ Kθ is strictly preferred to y ∈ Kθ according to preference �, then
the error probability function q satisfies

(S.1) q(�;x, y) ≥ 1

2
+ C‖x− y‖k.

Observe that, as in Section 4.2, Equation (S.1) only bites as the distance between x
and y vanishes. The reason is that Kθ is bounded and C can be set to be arbitrarily
small.

The metric we use on preferences is a “fudged metric” based on the Hausdorff
distance.S.2 It is defined as follows:

ρ(�,�′) = max
{

sup
{
ρ
(
(x, y),�′ ∩ (K ×K)θ

)
: x �|K y

}
,

sup
{
ρ
(
(x, y),� ∩ (K ×K)θ

)
: x �′|K y

}}
,

where �|K is the restriction of � to K and, for A ⊆ X ×X,

ρ((x, y), A) = inf{‖(x, y)− (x′, y′)‖ : (x′, y′) ∈ A}.

Note that the distance between two preferences weakly increases with the fudge pa-
rameter, and as θ becomes small, the fudged metric becomes equal to the usual Haus-
dorff metric restricted to K × K. The reasons for adding a fudge to the Hausdorff
distance are technical and unsubstantive.

The above conditions enable us to derive explicit convergence rates as a corollary
to Theorem 3.

Corollary S.1. Suppose the statistical preference model for commodity spaces (X,P , λ, q)
meets the following conditions:
S.1See Basu and Echenique (2018) for a discussion of other uses of the VC dimension for choice
under uncertainty. The results in Basu and Echenique (2018) provide convergence rates for learning
preferences in a revealed preference model, different from the one under consideration here.
S.2We do not need to show that the fudged metric is a compatible metric, because Theorem 3 applies
to any metric, not just metrics compatible with the topology on preferences.



RECOVERING PREFERENCES FROM FINITE DATA ONLINE APPENDIX 5

(1) P has a finite VC-dimension and is identified on K;
(2) each preference in P is transitive and strictly monotone with respect to �;
(3) λ is the uniform distribution over on Kθ;
(4) q satisfies Equation (S.1).

Then the Kemeny-minimizing estimator is consistent and, as η → 0 and δ → 0,

N(η, δ) = O

(
1

η4d+2k
ln

1

δ

)
.

Proof. The proof proceeds similarly to the proof of Corollary 4 on expected utility
preferences: we compute an asymptotic lower bound on the value of r(η) defined in
Section 3.2, and then we apply Theorem 3.

For x ∈ Rd
++ and ε > 0, we let Bε(x) be the open ball of radius ε and center x. We

also let

B+
ε (x) =

{
z ∈ Bε(x) : z � x

}
,

B−ε (x) =
{
z ∈ Bε(x) : x� z

}
.

The proof makes use of the following lemma.

Lemma S.1. Let 0 < η < θ, and �A and �B be preferences in P. Suppose that
there exist x0, y0 ∈ X with x0 �A y0 and such that for all x, y ∈ Rd

++ with ‖(x0, y0)−
(x, y)‖ < η, we have y �B x. Then, for all (x, y) ∈ B+

η/2(x0) × B
−
η/2(y0), we have (i)

x �A y and y �B x, (ii) (x, y) ∈ (K ×K)θ, and (iii) ‖x− y‖ ≥ η/2.

Proof. Let (x, y) ∈ B+
η/2(x0) × B

−
η/2(y0). We have x �A x0 �A y0 �A y, by mono-

tonicity of the preference �A. Hence, by transitivity, x �A y. And since ‖(x0, y0) −
(x, y)‖ < η, we have y �B x. Because η/2 < θ, x ∈ Kθ and y ∈ Kθ, therefore
(x, y) ∈ (K ×K)θ = Kθ ×Kθ. Finally, let us show that ‖x− y‖ ≥ η/2. We have

‖(x0, y0)− (y, x)‖ ≤ ‖(x0, y0)− (x, y)‖+ ‖(x, y)− (y, x)‖,

and by choice of (x, y),
‖(x0, y0)− (x, y)‖ ≥ η

2
.

If (y, x) ∈ (K ×K)θ, then using that y �B x, we get

‖(x0, y0)− (y, x)‖ ≥ η.

If (y, x) 6∈ (K ×K)θ, then since (x0, y0) ∈ K ×K,

‖(x0, y0)− (y, x)‖ ≥ θ ≥ η.
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In both cases, we get
η ≤ η

2
+ ‖(x, y)− (y, x)‖

and hence, ‖x− y‖ = ‖(x, y)− (y, x)‖ ≥ η/2. �

We now return to the main proof. Let us fix the subject’s preference �∗, and let
� be any preference of P with ρ(�∗,�) ≥ η, with 0 < η < θ. As in the proofs of our
main results, we continue to use q(x, y) as a short notation for q(�∗;x, y), and for a
binary relation R, we let 1R(x, y) = 1 if and only if (x, y) ∈ R.

We established in the proof of Theorem 2 that

µ(�∗)− µ(�) =

∫
X×X

1�∗\�(x, y)
[
q(x, y)− q(y, x)

]
dλ(x, y).

There are two cases to consider.
First, suppose that there exist x0, y0 ∈ K with x0 �∗ y0 such that, if x, y ∈ Rd

++

and ‖(x0, y0) − (x, y)‖ < η, then (x, y) /∈ � ∩ (K × K)θ—which implies that y � x

by completeness. We always have q(x, y)− q(y, x) ≥ 0 if x �∗ y, and by Lemma S.1,
B+
η/2(x0)× B

−
η/2(y0) ⊂ X ×X, so

µ(�∗)− µ(�) ≥
∫
B+
η/2

(x0)×B−η/2(y0)
1�∗\�(x, y)

[
q(x, y)− q(y, x)

]
dλ(x, y).

By Lemma S.1, if (x, y) ∈ B+
η/2(x0) × B

−
η/2(y0), x �∗ y while y � x, and since �∗ is

locally strict, the set {(x, y) : x ∼∗ y} has λ-probability zero, so

µ(�∗)− µ(�) ≥
∫
B+
η/2

(x0)×B−η/2(y0)

[
q(x, y)− q(y, x)

]
dλ(x, y)

≥ inf
{
q(x, y)− q(y, x) : (x, y) ∈ B+

η/2(x0)× B
−
η/2(y0)

}
× λ
(
B+
η/2(x0)× B

−
η/2(y0)

)
.

Recall that Bη/2(x0) and Bη/2(y0) are d-dimensional balls of radius η/2, and so each of
B+
η/2(x0) and B

−
η/2(y0) has a Lebesgue measure equal to the volume of a d-dimensional

ball of radius η/2 divided by 2d, which is equal to

πd/2

4d · Γ
(
d
2

+ 1
)ηd.

where Γ is the Gamma function. Since λ is the uniform probability measure on
(K ×K)θ, λ

(
B+
η/2(x0)× B

−
η/2(y0)

)
is directly proportional to η2d.
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In addition, by Lemma S.1, ‖x− y‖ ≥ η/2, so by Equation (S.1),

q(x, y)− q(y, x) ≥ C‖x− y‖k

≥ Cηk

2k
,

and

inf
{
q(x, y)− q(y, x) : (x, y) ∈ B+

η/2(x0)× B
−
η/2(y0)

}
≥ Cηk

2k
.

Second, suppose that there exist x0, y0 ∈ K with x0 � y0 such that, if x, y ∈ Rd
++

with ‖(x0, y0)− (x, y)‖ < η, then (x, y) /∈ �∗ ∩ (K ×K)θ. By a symmetric argument,
we get that

µ(�∗)− µ(�) ≥ inf
{
q(y, x)− q(x, y) : (x, y) ∈ B+

η/2(x0)× B
−
η/2(y0)

}
× λ
(
B+
η/2(x0)× B

−
η/2(y0)

)
,

with

inf
{
q(y, x)− q(x, y) : (x, y) ∈ B+

η/2(x0)× B
−
η/2(y0)

}
≥ Cηk

2k
.

In both cases, as η → 0,

µ(�∗)− µ(�) = Ω(η2d+k).

where the big Omega notation refers to the asymptotic lower bound, and hence,

r(η) = Ω
(
η2d+k

)
.

Corollary S.1 then follows from Theorem 3. Note that λ does not have full support
on X, and we have not required that P be closed, so Assumptions (2) and (3) may be
violated. Although the statement of Theorem 3 asks that Assumptions (2) and (3)
be satisfied to ensure consistency of the Kemeny-minimizing estimator, this condition
is not needed to obtain the asymptotic upper bound of the theorem: when r(η) > 0

for η close enough to zero, as in this case, N(η, δ) is guaranteed to be finite, so the
estimator is consistent and the bound obtains. �

S.3. Subjective expected utility preferences

Subjective expected utility preferences are yet another case where we can ground
the analysis in a family of utility representations. Specifically, we consider envi-
ronments of choice under uncertainty, and study preferences that have a subjective
expected utility representation.
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Let Π = {π1, . . . , πd} be a set of d prizes (or outcomes) and S = {ω1, . . . , ωs} be a
set of s states. The set of alternatives X is the set of Anscombe-Aumann acts; that
is, the set of all mappings that send each state to a lottery over prizes.

As in Section 4.2, a lottery is represented by an element of the (d− 1)-dimensional
simplex ∆d−1. It will be convenient to represent an act f as an s-by-d matrix {fij}i,j
interpreted as follows: f sends state ωi to lottery (fi1, . . . , fid) ∈ ∆d−1. Throughout
this section, all the finite-dimensional spaces are endowed with the Euclidean norm
denoted ‖ · ‖.

A subjective expected utility preference or SEU preference for short is a preference
� on X that complies with subjective expected utility theory: there exists a vector
of subjective state probabilities (p1, . . . , ps) and a vector of utilities (u1, . . . , ud) such
that f � g if and only if the subjective expected utility of f , which equals p · (fu), is
not less than the subjective expected utility of g, p · (gu). Let P be the set of SEU
preferences that are non-constant, which means that for every � ∈ P , there exists
f, g ∈ X for which f � g; or, equivalently, the corresponding vector of utilities u
satisfies ui 6= uj for some i, j.

By an analogous argument to that in Section 4.2, it can be shown that each non-
constant SEU preference is locally strict, and that P is closed. Therefore, the SEU
environment satisfies Assumptions (1) and (2).

Now, analogously to the expected-utility environment, we provide explicit conver-
gence rates, under some mild conditions on the error probability function.

Each nonconstant SEU preference is captured by a (s+ d)-dimensional parameter
consisting of the state probabilities and utilities. We normalize nonconstant vectors
of utilities u by requiring that u ∈ Ud−1 with

Ud−1 =

{
u ∈ Rd :

d∑
j=1

uj = 0 and ‖u‖ = 1

}
.

Each preference in P is then associated with a unique pair (p, u) ∈ ∆s−1 × Ud−1, in-
terpreted as “parameters” of the prefererence, with ∆s−1×Ud−1 the finite-dimensional
parameter space. We measure the distance ρ(�,�′) between nonconstant SEU pref-
erences � and �′ as the Euclidean distance between their respective parameters; one
can follow the steps of Section 6.3 and show that ρ is a compatible metric.

We restrict error probability functions in the following way: we ask that there exists
C > 0 and k > 0 such that, for all � ∈ P , if f � g,

(S.2) q(�; f, g) ≥ 1

2
+ C|EU(f)− EU(g)|k,
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where EU(f) and EU(g) are the expected utilities of f and g respectively.

Corollary S.2. For the statistical preference model (X,P , λ, q), where X ≡ (∆d−1)s,
P is the set of all nonconstant SEU preferences, λ is the uniform distribution on
(∆d−1)s, and q satisfies Equation (S.2), the Kemeny-minimizing estimator is consis-
tent and, as η → 0 and δ → 0,

N(η, δ) = O

(
1

η8s(d−1)+4k
ln

1

δ

)
.

The uniform distribution is chosen for simplicity, but not required. More generally,
the above convergence rate continues to apply when λ is absolutely continuous with
respect to the Lebesgue measure and its Radon–Nikodym derivative is bounded.

Proof of Corollary S.2. The proof is very similar to the proof of Corollary 4 in Sec-
tion 4.2.

Let ∆d−1 be the affine span of ∆d−1 in Rd, and X = (∆d−1)s. For x ∈ X and ε > 0,
we let Bε(x) be the open ball of radius ε and center x in X.

For a preference �∈ P associated with the pair (p, u) ∈ Θ, and the subjective
expected utility of act f is p · (fu).

Lemma S.2. Let 0 < η < 1 and �A,�B ∈ P with ρ(�A,�B) ≥ η. There exists
f ?, g? ∈ X such that, for all f ∈ Bη′(f ?) and g ∈ Bη′(g?),

p · (fu) ≥ p · (gu) +
η2

80d
√
d
,

q · (gv) ≥ q · (gv) +
η2

80d
√
d
,

where (p, u) and (q, v) are the parameters associated respectively with �A and �B,
and η′ ≡ η2/(200d). In addition, Bη′(f ?)× Bη′(g?) ⊂ X ×X.

Proof. Let p̃ = p/‖p‖ and q̃ = q/‖q‖. Observe that p = p̃/
∑

i p̃i and q = q̃/
∑

i q̃i.
Then,

‖p− q‖ = ‖ p̃∑
i p̃i
− q̃∑

i q̃i
‖

=
1∑
i p̃i
‖p̃− q̃ + q̃ −

∑
i q̃i∑
i p̃i

q̃‖

≤ 1∑
i p̃i
‖p̃− q̃‖+

1∑
i p̃i

1∑
i q̃i

∣∣∣∣∣∑
i

(p̃i − q̃i)

∣∣∣∣∣ ,
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where we use the triangle inequality and the fact that ‖q̃‖ = 1. Observe that
∑

i p̃i ≥ 1

and
∑

i q̃i ≥ 1, so

‖p− q‖ ≤ ‖p̃− q̃‖+

∣∣∣∣∣∑
i

(p̃i − q̃i)

∣∣∣∣∣
≤ ‖p̃− q̃‖+

∑
i

|p̃i − q̃i|

≤ 3‖p̃− q̃‖.

Now suppose ρ(�A,�B) ≥ η. Then, either ‖u − v‖2 ≥ η2/2, or ‖p − q‖2 ≥ η2/2

and ‖p̃ − q̃‖2 ≥ η2/18. Therefore we have u · v ≤ 1 − η2/2 or p̃ · q̃ ≤ 1 − η2/36, and
(u · v)(p̃ · q̃) ≤ 1− η2/100.

Next, let

f ?i =
1

d
1 +

(
1

d
− η′

)
p̃iu, and g?i =

1

d
1 +

(
1

d
− η′

)
q̃iv.

(Abusing notation, since we are making a row vector equal to a column vector, to fix
later.)

Let f ∈ Bη′(f ?) and g ∈ Bη′(g?). The following sequence of inequalities obtains:

p̃ · (fu) = p̃ · ((f − f ?)u) + p̃ · (f ?u)

≥ p̃ · (f ?u)− η′

≥ p̃ · (g?u) +

(
1

d
− η′

)
η2

40
− η′

= p̃ · ((g0 − g)u) + p̃ · (gu) +

(
1

d
− η′

)
η2

40
− η′

≥ p̃ · (gu) +

(
1

d
− η′

)
η2

40
− 2η′

≥ p̃ · (gu) +
η2

80d
.

To get the first inequality, observe that

|p̃ · ((f − f ?)u)| ≤ ‖p̃‖ · ‖f − f ?‖ · ‖u‖ ≤ ‖f − f ?‖ ≤ η′.

Similarly we have |p̃ · ((g− g?)u)| ≤ η′, which yields the third inequality. The second
inequality comes from p · (f ?u) = 1/d− η′ and

p̃ · (g?u) =

(
1

d
− η′

)
(u · v)(p · q) ≤

(
1

d
− η′

)
−
(

1

d
− η′

)
η2

40
.
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The fourth inequality comes from(
1

d
− η′

)
η2

4
− 2η′ =

η2

80d
+

20η2 − η4

8000d
≥ η2

80d
.

Then,

1∑
i p̃i

p̃ · (fu) ≥ 1∑
i p̃i

p̃ · (gu) +
1∑
i p̃i

η2

80d

p · (fu) ≥ p · (gu) +
1∑
i p̃i

η2

80d
≥ η2

80d
√
d
.

observing that
∑

i p̃i ≤
√
d.

By a symmetric argument we also have

q · (gv) ≥ q · (gv) +
η2

80d
√
d
.

Finally, observe that η′ is chosen small enough to ensure that the balls Bη′(f ?) and
Bη′(g?) of X are included in X. �

We now return to the main proof. Let us fix the subject’s preference �∗, and let
� be any preference of P with ρ(�∗,�) ≥ η, with 0 < η < 1. As in the proofs of
Theorems 2 and 3, we use q(f, g) as a short notation for q(�∗; f, g), and for a binary
relation R, we let 1R(f, g) = 1 if and only if (f, g) ∈ R.

We established in the proof of Theorem 2 that

µ(�∗)− µ(�) =

∫
X×X

1�∗\�(x, y)
[
q(x, y)− q(y, x)

]
dλ(x, y).

Let η′ = η2/(200d). By Lemma S.2, there exists f ?, g? ∈ X such that Bη′(f ?) ×
Bη′(g?) ⊂ X ×X, and if (f, g) ∈ Bη′(f ?)× Bη′(g?) then f �∗ g while g � f . Also, if
f �∗ g, then q(f, g)− q(g, f) ≥ 0. Hence,

µ(�∗)− µ(�) =

∫
�∗\�

[
q(f, g)− q(g, f)

]
dλ(f, g)

≥
∫
Bη′ (x0)×Bη′ (y0)

[
q(f, g)− q(g, f)

]
dλ(f, g)

≥ inf
{
q(f, g)− q(g, f) : (f, g) ∈ Bη′(f ?)× Bη′(g?)

}
× λ
(
Bη′(f ?)

)
× λ
(
Bη′(g?)

)
.
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The Lebesgue measure of each of the s × (d − 1)-dimensional balls Bη′(f ?) and
Bη′(g?) is proportional to η′s(d−1), and so is proportional to η2s(d−1). So

λ
(
Bη′(x0)

)
× λ
(
Bη′(y0)

)
= Ω(η4s(d−1))

as η → 0, where the big Omega notation refers to the asymptotic lower bound.
Since x ∈ Bη′(x0) and y ∈ Bη′(y0) implies x �∗ y, by Equation (S.2),

q(x, y)− q(y, x) ≥ 2C|p · (fu)− p · (gu)|k,

where (p, u) is paramater associated with �∗. By Lemma S.2, we have

p · (fu)− p · (gu) ≥ η2

80d
√
d

and hence,

inf
{
q(x, y)− q(y, x) : (x, y) ∈ Bη′(x0)× Bη′(y0)

}
= Ω(η2k)

as η → 0.
Overall, we get µ(�∗) − µ(�) = Ω(η4(d−1)+2k), and thus r(η) = Ω(η4(d−1)+2k).

Applying Theorem 3 and observing that the VC dimension of P is no greater than
d+ 1 (and so finite) by Proposition 4.20 of Wainwright (2019), we have

N(η, δ) = O

(
1

η8s(d−1)+4k
ln

1

δ

)
.

�
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