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Abstract A dataset is a list of observed factor inputs and prices for a tech-
nology; profits and production levels are unobserved. We obtain necessary
and sufficient conditions for a dataset to be consistent with profit maximiza-
tion under a monotone and concave revenue based on the notion of cyclic
monotonicity. Our result implies that monotonicity and concavity cannot be
tested, and that one cannot decide if a firm is competitive based on factor
demands. We also introduce a condition, cyclic supermodularity, which is
both necessary and sufficient for data to be consistent with a supermodular
technology. Cyclic supermodularity provides a test for complementarity of
production factors.

Key words Complementarity, Afriat’s Theorem, Factor Demands, Re-

vealed Preference

1 Introduction

We study the testable implications of monotone and supermodular revenues

and technologies. We suppose that we are given data on a firm’s factor de-

mands at various factor prices, but that profits and output are unobservable.

? We are very grateful to two anonymous referees for suggestions, comments,
and corrections. We also thank Kim Border for his suggestions on an earlier draft.
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We show that the data are consistent with profit maximization if and only

if they are consistent with a concave and monotone technology. Moreover,

the data are rational if and only if they are “cyclically monotone.” Con-

sequently, monotonicity and concavity have no testable implications in this

environment. Second, we provide a condition characterizing datasets which

could be generated by a technology with complementary production fac-

tors, where complementarity means that the technology is supermodular.

The condition is a strengthening of the one we have obtained for monotonic-

ity. While it may not be easy to verify whether the condition is satisfied

in general, it is usually quite simple to refute. Moreover, in many special

cases, the condition is in fact easy to verify.

That monotonicity is not testable is potentially interesting because it

implies that one cannot test if a firm is competitive based on factor de-

mands. To some extent, the result is a formalization of the notion that a

profit-maximizing firm will not operate where its revenues are monotone

decreasing.

Our research follows Sydney Afriat’s (1967; 1972) seminal papers in

studying the testable implications of maximizing behavior. Afriat studied

the refutability of concave and monotone production functions. Afriat as-

sumes that both factor demands and production output are observable.

When output is observable, one can directly test if the output is supermod-

ular in the factors used. We assume instead that only factors and their prices

are observed, and we ask when these can be rationalized using a supermod-

ular technology. Our assumptions make sense when studying, for example,

household production (Becker, 1965; Lancaster, 1966), or other areas where

one may observe factor demands but not outputs.

Other early papers on testing assumptions on technologies are Hanoch

and Rothschild (1972), Diewert and Parkan (1983) and Varian (1984). Like

Afriat, they assume data on output, not purely on factor demands. They

do not test for complementarities in production (supermodularity). Varian

(1984) discusses how one can use his results to test for non-competitive

behavior by a firm. But his results are positive, in the sense that it is

possible to test anti-competitive behavior.
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Our theorem relies on basic duality results from linear programming and

convex analysis, and in this sense rests on ideas similar to those found in

Fostel, Scarf, and Todd (2004) and Chung-Piaw and Vohra (2003) (see also

Fishburn (1971)).

A paper similar in spirit and results to ours is Brown and Calsamiglia

(2007). They study problems of consumer behavior, obtaining necessary

and sufficient conditions for demand data to be rationalizable by a quasi-

linear utility function. Their condition is a list of inequalities strengthening

Afriat’s; but they also provide a cyclic monotonicity condition that demand

data must satisfy. They do not study supermodularity, however.

In Chambers and Echenique (2006), we studied the testable implications

of supermodularity in ordinal economic models. The model we are consid-

ering here is not ordinal, and the results of the two papers are independent.

We present definitions and background results in Section 2. We present

the results in Section 3.

2 Preliminary Definitions and Results

We use ≤ to denote the usual partial order on Rn. A set X ⊆ Rn is a lattice

if, for all x, y ∈ X, there exists a unique greatest lower bound x ∧ y and

a unique least upper bound x ∨ y in X according to ≤. We write x ‖ y if

neither x ≤ y or y ≤ x.

For an arbitrary set X, say that a function u : X → R is monotone

increasing if for all x, y ∈ X, x ≤ y implies u (x) ≤ u (y). A function

u : X → R is supermodular (see Topkis (1998) and Vives (1999)) if, for

all x, y ∈ X, u (x ∨ y) + u (x ∧ y) ≥ u (x) + u (y) .

3 Results

We imagine that we observe a finite set of price and factor input data.

Prices are elements of Rn
+, and factor input data are elements of some finite

X ⊆ Rn
+. We denote by w ∈ Rn

+ a vector of factor prices and z ∈ X is

a vector of factor demands at prices w. Thus, an observation is a pair

(w, z) ∈ Rn
+ ×X.
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Let X ⊆ Y . We say that a function f : Y → R rationalizes a finite

set of observations {(wk, zk)}K
k=1 if, for all k = 1, ...,K and all z ∈ Y ,

f(zk)− wk · zk ≥ f(z)− wk · z.

Interpret f(z) as the revenue the firm receives when it uses factors z.

If the firm in question is competitive, f(z) is proportional to its pro-

duction function. So our results can be interpreted as statements about

revenue, or about technology, if one makes the assumption that the firm is

competitive.

Proposition 1 Given is a finite set of observations {(wk, zk)}K
k=1. The fol-

lowing statements are equivalent.

(a) There exists f :
K⋃

k=1

{zk} → R rationalizing the observations.

(b) There exists a concave and monotone f : Rn
+ → R rationalizing the

observations.

(c) For all finite sequences {(wi, zi)}L
i=1 ⊆ {(wk, zk)}K

k=1,

L∑
i=1

wi · (zi − zi+1) ≤ 0 (addition here is modL)

Proof We establish that a=⇒c=⇒b=⇒a.

The implication b=⇒a is trivial. To see that a=⇒c, let f rationalize the

observations, and let {(wi, zi)}L
i=1 ⊆ {(wk, zk)}K

k=1. In particular,

f(zi)− wi · zi ≥ f(zi+1)− wi · zi+1.

Consequently,

f(zi)− f(zi+1) ≥ wi · (zi − zi+1).

Thus
L∑

i=1

[f(zi)− f(zi+1)] ≥
L∑

i=1

[wi · (zi − zi+1)].

However, the left hand side of this inequality is zero. Thus,
∑L

i=1 wi ·
(zi − zi+1) ≤ 0.
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Lastly, consider the correspondence ρ : Rn
+ ⇒ Rn

+ defined by ρ(z) = {w :

(w, z) ∈ {(wk, zk)}K
k=1}. Condition (b) states that this correspondence is

cyclically monotone. By Theorem 24.8 of Rockafellar (1970), there exists

f : Rn
+ → R which is concave for which for all (wi, zi) ∈ {(wk, zk)}K

k=1 and

all z ∈ Rn
+, f (zi) + wi · (z − zi) ≥ f (z). Consequently, f(zi) − wi · zi ≥

f(z)−wi ·z for all z ∈ Rn
+. That f is monotonic follows from the construction

in Rockafellar and the fact that wi ≥ 0 for all i.

Proposition 1 is the direct consequence of a result in convex analysis

(Rockafellar, 1970). We are not the first to draw attention to this result in

the economics literature: Brown and Calsamiglia (2007) present a similar

application. They characterize, in a demand context, those price and con-

sumption bundle observations which can be generated by the maximization

of a quasilinear utility function. They obtain a necessary and sufficient

condition which is effectively our condition (c).

Our second result tries to understand the implications of a supermod-

ular revenue function. Supermodularity in this context can be interpreted

as complementarity of inputs (Topkis, 1998; Vives, 1999). Here, we will

suppose X ⊆ Rn
+ is a finite lattice according to ≤. We will provide a neces-

sary and sufficient condition that a set of data must satisfy in order to be

rationalizable by a supermodular f .

Before we begin, we start with some preliminaries. We first define three

binary relations on X. Fix a set of data {(wk, zk)}K
k=1. We define for all

k = 1, ...,K and for all z ∈ X, zkTz.1 That is, every observed demand

beats every other possible demand with T . For z, z′ ∈ X, define zUz′ if

there exists x ‖ z′ such that z = x ∨ z′. Define zDz′ if there exists x ‖ z′

such that z = x ∧ z′. The relations U and D can be viewed as jumps

“up” and “down” in terms of ≤. Note that (z ∨ x, z) ∈ U if and only if

(z ∧ x, x) ∈ D.

There may be more than one reason for zRz′, R ∈ {T,U,D}. We use a

notation that keeps track of more than just the pair z and z′. When zTz′,

1 This relation clearly depends on the dataset in question; however, in the in-
terest of notational simplicity, we suppress this dependence.
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we keep track of the salary λ = wk at which z = zk was demanded. When

zUz′ or zDz′, we keep track of the x for which z = x ∨ z′ or z = x ∧ z′,

respectively.

The notation we use is as follows. When zTz′ we write the expression

((z, z′), T, λ, y),

which has λ = wk for a k with z = zk, and y = z′. When zUz′ we write

((z, z′), U, λ, x), which has λ = 0 and x∨ z′ = z. Symmetrically, when zDz′

we write the expression ((z, z′), D, λ, x), which has λ = 0 and x ∧ z′ = z.

A cycle according to (T,U,D) (or simply a (T,U,D) cycle) is a finite

set {(zi, zi+1), Ri, λi, xi}L
i=1 for which for all i = 1, ..., L, the expression

((zi, zi+1), Ri, λi, xi)

is true (addition here is modL).2 Denote the set of all (T,U,D) cycles by

%.

Here is our primary requirement:

Cyclic supermodularity: Let n ∈ Z%
+ for which for all ordered pairs (x, y) ∈

X2 such that x ‖ y,

∑
{ρ∈%:((x∨y,x),U,0,y)∈ρ}

nρ =
∑

{ρ∈%:((x∧y,y),D,0,x)∈ρ}

nρ. (1)

Then ∑
ρ∈%

nρ

∑
((z,z′),T,λ,z′)∈ρ

λ · (z − z′) ≤ 0.

In particular, note that cyclic supermodularity is a strengthening of

condition (c) in Proposition 1.

Proposition 2 A set of data {(wk, zk)}K
k=1 can be rationalized by a super-

modular f : X → R if and only if it is cyclically supermodular.

2 Note that two distinct cycles according (T, U, D) may be the same cycles
according to T ∪U ∪D. This is because there may be some overlap between the
three relations T , U , and D.
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The proof appears in an Appendix. Proposition 2 obtains the complete

testable implications for the rationalization of data by a supermodular pro-

duction function. Verifying that cyclic supermodularity is satisfied can be

very difficult, but the condition often provides an easy method of verify-

ing when a set of data does not have a supermodular rationalization. An

example follows:

Example 1 Let X = {0, 1}2. Suppose that we have two demand observa-

tions, one at prices w1 = (0, 0) and the other at prices w2 = (1, 1). At w1,

z1 = (0, 1) is demanded, whereas at w2, z2 = (1, 0) is demanded. Conse-

quently, any f which rationalizes the data must satisfy

f(0, 1) ≥ f(1, 1) by observation (w1, z1)

f(1, 0)− 1 ≥ f(0, 0) by observation (w2, z2).

Summing the two inequalities obtains f(0, 1)+f(1, 0)−1 ≥ f(1, 1)+f(0, 0),

so that

f(0, 1) + f(1, 0) > f(1, 1) + f(0, 0),

a direct contradiction to supermodularity. Nevertheless, the function f

defined by

f(0, 0) = 0

f(0, 1) = 1

f(1, 0) = 1

f(1, 1) = 1

is easily seen to rationalize the data. Our necessary and sufficient condition

is easily seen to be violated by considering the (T,U,D)-cycle

(0, 1) T // (1, 1)

U

��
(0, 0)

D

OO

(1, 0)
T

oo
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Formally:

(((1, 0), (0, 0)), T, (1, 1), (0, 0))

(((0, 0), (0, 1)), D, (0, 0), (1, 0))

(((0, 1), (1, 1)), T, (0, 0), (1, 1))

(((1, 1), (1, 0)), U, (0, 0), (0, 1))

and

(1, 1) · ((1, 0)− (0, 0)) + (0, 0) · ((0, 1)− (1, 1)) > 0,

a contradiction to cyclic supermodularity.

Finally, we present a simple corollary with a sufficient condition for the

existence of a supermodular rationalization.

Corollary 1 If for all ρ ∈ %, we have
∑

((z,z′),T,λ,z′)∈ρ λ · (z− z′) ≤ 0, then

there exists a supermodular f : X → R rationalizing the data.

4 Appendix: Proof of Proposition 2

Let us first suppose that the set of data {(wk, zk)}K
k=1 can be rationalized

by a supermodular f : X → R. Let n ∈ Z%
+ satisfy Condition (1) for all

x ‖ y. Since f is supermodular, [f(x ∨ y)− f(x)] + [f(x ∧ y)− f(y)] ≥ 0.

So Condition (1) implies that, for all x, y ∈ X such that x ‖ y,

∑
{ρ∈%:((x∨y,x),U,0,y)∈ρ}

nρ[f(x ∨ y)− f(x)]

+
∑

{ρ∈%:((x∧y,y),D,0,x)∈ρ}

nρ[f(x ∧ y)− f(y)] ≥ 0.

Conclude that, by summing over all ordered pairs (x, y) for which x ‖ y,

∑
ρ∈%

nρ

 ∑
((z∨z′,z′),U,0,z)∈ρ

f(z ∨ z′)− f(z′)


+

 ∑
((z∧z′,z),D,0,z′)∈ρ

f(z ∧ z′)− f(z)

 ≥ 0.
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Now, since each ρ ∈ % is a cycle, we have

∑
((z,z′),R,λ,x)∈ρ

nρ[f(z)− f(z′)] = 0.

Conclude

0 =
∑
ρ∈%

nρ

∑
((z,z′),R,λ,x)∈ρ

[f(z)− f(z′)]

=
∑
ρ∈%

nρ

∑
((z,z′),T,λ,z′)∈ρ

[f(z)− f(z′)]

+
∑
ρ∈%

nρ

 (∑
((z∨z′,z′),U,0,z)∈ρ f(z ∨ z′)− f(z′)

)
+

(∑
((z∧z′,z),D,0,z′)∈ρ f(z ∧ z′)− f(z′)

)
≥

∑
ρ∈%

nρ

∑
((z,z′),T,λ,z′)∈ρ

[f(z)− f(z′)].

Since f rationalizes the data, for all ((z, z′), T, λ, z′) ∈ T , f(z) − f(z′) ≥
λ · (z − z′). Therefore,

∑
ρ∈%

nρ

∑
((z,z′),T,λ,z′)∈ρ

[f(z)− f(z′)] ≥
∑
ρ∈%

nρ

∑
((z,z′),T,λ,z′)∈ρ

λ · (z − z′).

Therefore, ∑
ρ∈%

nρ

∑
((z,z′),T,λ,z′)∈ρ

λ · (z − z′) ≤ 0,

so that cyclic supermodularity is satisfied.

We will now show that if there does not exist a supermodular rational-

izing function, then cyclic supermodularity is violated. The existence of a

supermodular rationalizing function is equivalent to the existence of a vector

u ∈ RX satisfying the following conditions. For all zTz′ and all k for which

z = zk, (1z − 1z′) · u ≥ wk · (z − z′), and for all ordered pairs (z, z′) ∈ X2

with z ‖ z′, (1z∨z′ + 1z∧z′ − 1z − 1z′) · u ≥ 0.

We will show that if such a vector does not exist, then cyclic supermod-

ularity is violated. In particular, by Theorem 22.1 in Rockafellar (1970), if

such a vector does not exist, there exists for all ordered pairs (z, z′) ∈ T

and all k for which z = zk, a nonnegative number η((z,z′),T,wk,(z,z′)), and for

all unordered pairs z, z′ ∈ X such that z ‖ z′, a nonnegative number α{z,z′}
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such that

∑
((z,z′),T,λ,z′)

η((z,z′),T,λ,(z,z′))(1z − 1z′)

+
∑

z,z′∈X
z‖z′

α{z,z′} (1z∨z′ + 1z∧z′ − 1z − 1z′) = 0 (2)

and ∑
((z,z′),T,λ,(z,z′))

η((z,z′),T,λ,(z,z′))λ · (z − z′) > 0. (3)

Note that the 0 in (2) is the null vector in RX .

We now use the numbers α{z,z′} to construct the weights η((z,z′),R,λ,(x,y))

when R 6= T . For all unordered pairs z, z′ for which z ‖ z′, choose nonneg-

ative numbers η((z∨z′,z),U,0,z′) and η((z∧z′,z′),D,0,z′) by fixing ordering z, z′

arbitrarily and choosing

η((z∨z′,z),U,0,z′) = η((z∧z′,z′),D,0,z) = α{z,z′}.

η((z∨z′,z′),U,0,z) = η((z∧z′,z),D,0,z′) = 0.

Then the sum in (2) results in:

∑
((z,z′),R,λ,x)

η((z,z′),R,λ,x)(1z − 1z′) = 0, (4)

So the nonexistence of a supermodular rationalization implies (4) and (3).

We claim that there is a vector (yρ)ρ∈% ∈ R%
+ such that

η((z,z′),R,λ,(x,y)) =
∑

{ρ∈%:((z,z′),R,λ,(x,y))∈ρ}

yρ. (5)

The argument is similar to that of the argument establishing the The-

orem of Poincaré-Veblen-Alexander (see (Berge, 2001), Chapter 15, The-

orem 5), so we only sketch it here. If η((z,z′),R,λ,x) = 0 for all possible

elements of a (T,U,D) cycle, we are done (by choosing yρ = 0 for all

(T,U,D) cycles). (Of course, as
∑

((z,z′),T,λ,z′) η((z,z′),T,λ,z′)λ · (z− z′) > 0,

this is impossible). So, fix some ((z, z′), R, λ, x) for which η((z,z′),R,λ,x) >
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0. By Equality (4), there exists some z′′ such that η((z′,z′′),R,λ′,x′) >

0 for some λ′, x′. Repeat the procedure with z′′, finding a correspond-

ing z′′′. Since the set X is finite, eventually these elements will form a

(T,U,D) cycle ρ for which, for all ((z, z′), R, λ, x) ∈ ρ, η((z,z′),R,λ,x) > 0.

Set yρ = inf((z,z′),R,λ,x)∈ρ η((z,z′),R,λ,x) > 0. We now obtain a new vector

η′ indexed by the elements of a (T,U,D) cycle, defined as η′((z,z′),R,λ,x) =

η((z,z′),R,λ,x) − yρ1((z,z′),R,λ,x,)∈ρ ≥ 0. Moreover, η′ has at least one more

zero element than η and also satisfies an equality such as (4). We therefore

repeat the procedure with this η′, eventually obtaining (5) after a finite

number of steps.

Therefore,

∑
((z,z′),R,λ,x)

∑
{ρ∈%:((z,z′),R,λ,x)∈ρ}

yρ(1z − 1z′) = 0

and ∑
((z,z′),T,λ,z′)

∑
{ρ∈%:((z,z′),T,λ,z′∈ρ}

yρλ · (z − z′) > 0.

Equivalently,

∑
ρ∈%

yρ

∑
{(z,z′):((z,z′),R,λ,x)∈ρ}

(1z − 1z′) = 0

and ∑
ρ∈%

yρ

∑
((z,z′),T,λ,z′)∈ρ

λ · (z − z′) > 0.

Moreover, for all z, z′ for which z ‖ z′,

η((z∨z′,z),U,0,z,z′) = η((z∧z′,z′),D,0,z)

so that ∑
((z∨z′,z),U,0,z′)∈ρ

yρ =
∑

((z∧z′,z′),D,0,z)∈ρ

yρ.

We now claim that we may without loss of generality choose each yρ to be

integer valued. For any collection of rational vectors p1, ..., pM ∈ Q%, there

is a set of rational vectors forming a basis for {x ∈ R% : x · pi = 0 for all



12 Chambers and Echenique

i = 1, ...,M}, consequently rational vectors are dense in {x ∈ R% : x · pi = 0

for all i = 1, ...,M}.
Note that, viewed as a vector in R%,

q∗ =

 ∑
{(z,z′):((z,z′),R,λ,x∈ρ}

(1z − 1z′)


ρ∈%

∈ Q%,

so that y · q∗ = 0. Moreover, for all ordered pairs z, z′ ∈ X for which z ‖ z′,

qz,z′ =
(
1((z∨z′,z),U,0,z′)∈ρ − 1((z∧z′,z′),D,0,z)∈ρ

)
ρ∈%

∈ Qρ.

Note that y ·qz,z′ = 0 as well. Lastly, for all ρ ∈ % for which yρ = 0, we know

that y ·1ρ = 0. There is a rational vector y′ satisfying all of these equalities

which is arbitrarily close to y; consequently we may choose y′ ∈ Q%
+ such

that
∑

ρ∈% y′ρ
∑

((z,z′),T,λ,z′)∈ρ λ · (z − z′) > 0. Note that yρ = 0 =⇒ y′ρ = 0

and that ∑
((z∨z′,z),U,0,z′)∈ρ

y′ρ =
∑

((z∧z′,z′),D,0,z)∈ρ

y′ρ.

Now, simply set n ∈ Z%
+ to be some multiple of y′ large enough so that

all coordinates are integer valued. We have

∑
((z∨z′,z),U,0,z′)∈ρ

nρ =
∑

((z∧z′,z′),D,0,z′)∈ρ

nρ

and
∑

ρ∈% nρ

∑
((z,z′),T,λ,z′)∈ρ λ · (z − z′) > 0. Thus the condition of cyclic

supermodularity does not hold.
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