Savage in the Market

Federico Echenique Kota Saito

California Institute of Technology

Math. Econ. Conference – Wisconsin September 27, 2014

- ► Model / Utility
- ► Data / Behavior

This paper:

- ► SEU
- ► Market behavior

Utility and behavior

Model:

$$\max_{x \in \mathbf{R}_{+}^{S}} \qquad U(x)$$

$$p \cdot x \le I$$

Utility and behavior

Market behavior:

Utility and behavior

- ► Q: When is observable behavior consistent with utility max.?
- ► A: When SARP is satisfied.

This paper: Subjective Expected Utility (SEU)

$$\max_{x \in \mathbf{R}_{+}^{S}} \qquad U(x)$$
$$p \cdot x \le I$$

This paper: Subjective Expected Utility (SEU)

$$\max_{x \in \mathbf{R}_{+}^{S}} \qquad U(x)$$
$$p \cdot x \le I$$

Where

$$U(x) = \sum_{s \in S} \mu_s u(x_s)$$

- ▶ $u: \mathbf{R}_+ \to \mathbf{R}$ st. inc. and concave;
- ▶ $\mu \in \Delta(S)$ a subjective prior.

This paper.

Market behavior:

- ► State-contingent consumption (monetary acts);
- ► complete markets;

This paper.

- ▶ Q: When is observable behavior consistent with SEU?
- ► A: When SARSEU is satisfied.

Warmup

Warmup

The 2×2 case.

- ► 2 states
- ▶ 2 observations

What is the meaning of this:

$$\max \mu_1 u(x_1) + \mu_2 u(x_2) p_1 x_1 + p_2 x_2 \le I$$

model for market behavior?

Unobservables:

- ▶ Utility $u : \mathbf{R}_+ \to \mathbf{R}$
- ▶ Prior (μ_1, μ_2)

Observable:

choices at different budgets

Figure: A violation of WARP.

Axiom 1 Not:

Axiom 2 Not:

END of Warmup

Now: K observations and S states.

Main theorem:
A dataset is SEU rationalizable iff it satisfies the Strong Axiom of Revealed Subjective Expected Utility (SARSEU).

Plug

Echenique, Imai, Saito (2014)

- ▶ Discounting: $\sum \delta^t u(x_t)$
- ▶ Quasi-hyperbolic discounting $u(x_0) + \beta \sum \delta^t u(x_t)$.
- ► Empirical application to Andreoni-Sprenger's data.

Model

- ► Finite set *S* of states.
- ▶ Monetary acts: $x \in \mathbf{R}_{+}^{S}$.
- ▶ Price vectors: $p \in \mathbf{R}_{++}^S$

Notation: S is also the number of states.

Data

A dataset is a collection $(x^k, p^k)_{k=1}^K$ s.t.

- $\triangleright x^k$ is a monetary act;
- $ightharpoonup p^k$ is a price vector.

Notation

Let

- ► $\Delta_{++}^{S} = \{ \mu \in \mathbf{R}_{++}^{S} | \sum_{s=1}^{S} \mu_s = 1 \}$
- $ightharpoonup \mathcal{C} = \{u: \mathbf{R}_+
 ightarrow \mathbf{R} | u ext{ is st. increasing and concave}\}$
- $B(p, I) = \{ y \in \mathbf{R}_+^{S} | p \cdot y \le I \}$

Model

SEU

$$\max_{\mathbf{x} \in \mathbf{R}_{+}^{S}} \sum_{\mathbf{s} \in S} \mu_{\mathbf{s}} u(\mathbf{x}_{\mathbf{s}})$$
s.t
$$\sum_{\mathbf{s} \in S} p_{\mathbf{s}} \mathbf{x}_{\mathbf{s}} \leq I$$

SEU rational

$$(x^k, p^k)_{k=1}^K$$
 is subjective exp. utility rational (SEU rational) if

- ▶ $\exists \mu \in \Delta_{++}^{\mathcal{S}}$;
- ▶ and $u \in C$ s.t.

$$\sum_{s\in S} \mu_s u(y_s) \le \sum_{s\in S} \mu_s u(x_s^k),$$

for all $y \in B(p^k, p^k \cdot x^k)$ and all k.

Previous work:

- Varian
- ► Green & Srivastava
- ► Kubler, Selden & Wei

All assume observable μ .

Derive SARSEU; K = 1 and μ is known.

Derivation of SARSEU.

- ► *K* = 1
- ightharpoonup μ objective and known
- ▶ *u* differentiable.

Derive SARSEU; K = 1 and μ is known.

$$\max_{x \in \mathbf{R}_{+}^{S}} \sum_{s \in S} \mu_{s} u(x_{s})$$
$$\sum_{s \in S} p_{s} x_{s} \leq I$$

FOC:

$$\mu_{s}u'(x_{s}) = \lambda p_{s}$$

$$u'(x_{s}) = \lambda(p_{s}/\mu_{s}) = \lambda \rho_{s}$$

Here ρ is observable.

Derive SARSEU; K=1 and μ is known.

So,
$$u'(x_s)=\lambda(\rho_s/\mu_s)=\lambda\rho_s$$

$$\frac{u'(x_s)}{u'(x_{s'})}=\frac{\lambda\rho_s}{\lambda\rho_{s'}}=\frac{\rho_s}{\rho_{s'}}$$

Derive SARSEU; K = 1 and μ is *known*.

So,
$$u'(x_s) = \lambda(p_s/\mu_s) = \lambda \rho_s$$
$$\frac{u'(x_s)}{u'(x_{s'})} = \frac{\lambda \rho_s}{\lambda \rho_{s'}} = \frac{\rho_s}{\rho_{s'}}$$

Axiom (Downward sloping demand):

$$x_s > x_{s'} \Rightarrow \frac{\rho_s}{\rho_{s'}} \leq 1$$

Derive SARSEU - general K and subjective μ

$$\max_{\mathbf{x} \in \mathbf{R}_{+}^{S}} \sum_{s \in S} \mu_{s} u(\mathbf{x}_{s})$$
$$\sum_{s \in S} p_{s} \mathbf{x}_{s} \leq I$$

FOC:

$$\mu_s u'(x_s) = \lambda p_s.$$

Derive SARSEU - general K and subjective μ

$$\max_{\mathbf{x} \in \mathbf{R}_{+}^{S}} \sum_{s \in S} \mu_{s} u(\mathbf{x}_{s})$$
$$\sum_{s \in S} p_{s} \mathbf{x}_{s} \leq I$$

FOC:

$$\mu_{s}u'(x_{s})=\lambda p_{s}.$$

$$\frac{u'(x_s^k)}{u'(x_{c'}^{k'})} = \frac{\mu_{s'}}{\mu_s} \frac{\lambda^k}{\lambda^{k'}} \frac{p_s^k}{p_{c'}^{k'}}.$$

$$\frac{u'(x_s^k)}{u'(x_{s'}^{k'})} = \frac{\mu_{s'}}{\mu_s} \frac{\lambda^k}{\lambda^{k'}} \frac{p_s^k}{p_{s'}^{k'}}.$$

Idea: Choose $(x_{s_i}^{k_i}, x_{s_i'}^{k_i'})$ so that unobservable μ_s and λ^k cancel out.

Example

Choose:

$$x_{s_1}^{k_1} > x_{s_2}^{k_2}, \quad x_{s_2}^{k_3} > x_{s_3}^{k_1}, \quad \text{and } x_{s_3}^{k_2} > x_{s_1}^{k_3}.$$

Then:

$$\frac{u'(x_{s_1}^{k_1})}{u'(x_{s_2}^{k_2})} \cdot \frac{u'(x_{s_3}^{k_3})}{u'(x_{s_3}^{k_1})} \cdot \frac{u'(x_{s_3}^{k_2})}{u'(x_{s_3}^{k_3})} = \left(\frac{\mu_{s_2}}{\mu_{s_1}} \frac{\lambda^{k_1}}{\lambda^{k_2}} \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_2}}\right) \cdot \left(\frac{\mu_{s_3}}{\mu_{s_2}} \frac{\lambda^{k_3}}{\lambda^{k_1}} \frac{p_{s_2}^{k_3}}{p_{s_3}^{k_1}}\right) \\
\cdot \left(\frac{\mu_{s_1}}{\mu_{s_3}} \frac{\lambda^{k_2}}{\lambda^{k_3}} \frac{p_{s_3}^{k_2}}{p_{s_3}^{k_3}}\right)$$

Example

Choose:

$$x_{s_1}^{\mathbf{k_1}} > x_{s_2}^{k_2}, \quad x_{s_2}^{k_3} > x_{s_3}^{\mathbf{k_1}}, \quad \text{ and } x_{s_3}^{k_2} > x_{s_1}^{k_3}.$$

Then:

$$\frac{u'(x_{s_{1}}^{k_{1}})}{u'(x_{s_{2}}^{k_{2}})} \cdot \frac{u'(x_{s_{2}}^{k_{3}})}{u'(x_{s_{3}}^{k_{3}})} \cdot \frac{u'(x_{s_{3}}^{k_{2}})}{u'(x_{s_{1}}^{k_{3}})} = \left(\frac{\mu_{s_{2}}}{\mu_{s_{1}}} \frac{\lambda^{k_{1}}}{\lambda^{k_{2}}} \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{2}}}\right) \cdot \left(\frac{\mu_{s_{3}}}{\mu_{s_{2}}} \frac{\lambda^{k_{3}}}{\lambda^{k_{1}}} \frac{p_{s_{2}}^{k_{3}}}{p_{s_{3}}^{k_{1}}}\right) \\
\cdot \left(\frac{\mu_{s_{1}}}{\mu_{s_{3}}} \frac{\lambda^{k_{2}}}{\lambda^{k_{3}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{3}}^{k_{3}}} \frac{p_{s_{3}}^{k_{3}}}{p_{s_{1}}^{k_{3}}}\right) \\
= \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{2}}} \frac{p_{s_{2}}^{k_{3}}}{p_{s_{3}}^{k_{3}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{3}}} \frac{p_{s_{2}}^{k_{3}}}{p_{s_{1}}^{k_{3}}}$$

So by concavity of u,

$$\frac{p_{s_1}^{k_1}}{p_{s_2}^{k_2}} \frac{p_{s_2}^{k_3}}{p_{s_3}^{k_1}} \frac{p_{s_3}^{k_2}}{p_{s_1}^{k_3}} \le 1$$

SARSEU

(Strong Axiom of Revealed Subjective Utility (SARSEU))

For any $(x_{s_i}^{k_i}, x_{s_i'}^{k_i'})_{i=1}^n$ s.t.

- 1. $x_{s_i}^{k_i} > x_{s_i'}^{k_i'}$
- 2. s appears as s_i (on the left of the pair) the same number of times it appears as s_i' (on the right);
- 3. k appears as k_i (on the left of the pair) the same number of times it appears as k'_i (on the right):

$$\prod_{i=1}^{n} \frac{p_{s_i}^{k_i}}{p_{s_i'}^{k_i'}} \le 1.$$

Main result

Theorem

A dataset is SEU rational if and only if it satisfies SARSEU.

The 2×2 case again

Data:

$$\frac{u'(x_{s_1}^{k_1})}{u'(x_{s_2}^{k_1})}\frac{u'(x_{s_2}^{k_2})}{u'(x_{s_1}^{k_2})} = \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}}\frac{p_{s_2}^{k_2}}{p_{s_1}^{k_2}}$$

Two cases:

Data:

$$\frac{u'(x_{s_1}^{k_1})}{u'(x_{s_2}^{k_1})}\frac{u'(x_{s_2}^{k_2})}{u'(x_{s_1}^{k_2})} = \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}}\frac{p_{s_2}^{k_2}}{p_{s_1}^{k_1}}$$

Two cases:

$$\begin{split} x_{s_1}^{k_1} > x_{s_2}^{k_1} \text{ and } x_{s_2}^{k_2} > x_{s_1}^{k_2} \Rightarrow \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}} \frac{p_{s_2}^{k_2}}{p_{s_1}^{k_1}} \leq 1 \\ x_{s_1}^{k_1} > x_{s_1}^{k_2} \text{ and } x_{s_2}^{k_2} > x_{s_2}^{k_1} \Rightarrow \frac{p_{s_1}^{k_1}}{p_{s_1}^{k_2}} \frac{p_{s_2}^{k_2}}{p_{s_2}^{k_2}} \leq 1 \end{split}$$

$$\begin{split} \frac{u'(x_{s_1}^{k_1})}{u'(x_{s_2}^{k_1})} \frac{u'(x_{s_2}^{k_2})}{u'(x_{s_1}^{k_2})} &= \frac{\rho_{s_1}^{k_1}}{\rho_{s_2}^{k_1}} \frac{\rho_{s_2}^{k_2}}{\rho_{s_1}^{k_2}} \\ x_{s_1}^{k_1} > x_{s_1}^{k_2} \text{ and } x_{s_2}^{k_2} > x_{s_2}^{k_1} \Rightarrow \frac{\rho_{s_1}^{k_1}}{\rho_{s_1}^{k_2}} \frac{\rho_{s_2}^{k_2}}{\rho_{s_1}^{k_2}} \leq 1 \end{split}$$

$$\begin{split} \frac{u'_{s_1}(x_{s_1}^{k_1})}{u'_{s_2}(x_{s_2}^{k_1})} \frac{u'_{s_2}(x_{s_2}^{k_2})}{u'_{s_1}(x_{s_1}^{k_2})} &= \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}} \frac{p_{s_2}^{k_2}}{p_{s_1}^{k_1}} \\ x_{s_1}^{k_1} > x_{s_1}^{k_2} \text{ and } x_{s_2}^{k_2} > x_{s_2}^{k_1} \Rightarrow \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}} \frac{p_{s_2}^{k_2}}{p_{s_1}^{k_2}} \leq 1 \end{split}$$

(Strong Axiom of Revealed Subjective Utility (SARSEU)) For any $(x_{s_i}^{k_i}, x_{s_i'}^{k_i'})_{i=1}^n$ s.t.

any
$$(x_{s_i}, x_{s_i})_{i=1}$$

1. $x_{s_i}^{k_i} > x_{s_i'}^{k_i'}$ 2. s appears as s_i (on the left of the pair) the same number of

times it appears as s' (on the right); 3. k appears as k_i (on the left of the pair) the same number of

 $\prod_{i=1}^n \frac{p_{s_i}^{k_i}}{p_{s_i'}^{k_i'}} \leq 1.$

times it appears as
$$s'_i$$
 (on the right);
k appears as k_i (on the left of the pair) the same number of
times it appears as k'_i (on the right):

(Strong Axiom of Revealed State-dependent Utility)

For any $(x_{s_i}^{k_i}, x_{s_i'}^{k_i'})_{i=1}^n$ s.t.

ony
$$(x_{s_i}^{\kappa_i}, x_{s_i'})_{i=1}^n$$
 s

1.
$$x_{s_i}^{k_i} > x_{s_i'}^{k_i'}$$

2. $s_i = s'_i$.

3. k appears as k_i (on the left of the pair) the same number of times it appears as k'_i (on the right):

a appears as
$$k_i$$
 (on the left of the pair) the same number of times it appears as k_i' (on the right):
$$\prod_{i=1}^n \frac{p_{s_i}^{k_i}}{p_{s_i'}} \leq 1.$$

Equivalently . . .

(Strong Axiom of Revealed State-dependent Utility)

For any cycle:

$$x_{s_1}^{k_1} > x_{s_1}^{k_2} > x_{s_2}^{k_2} < x_{s_2}^{k_2} > x_{s_2}^{k_3}$$
 \vdots
 $x_{s_n}^{k_n} > x_{s_n}^{k_1},$

it holds that:

$$\prod_{i=1}^{n} \frac{p_{s_{i}}^{k_{i}}}{p_{s_{i}}^{k_{i+1}}} \leq 1$$

(using addition mod n).

$$\frac{u'(x_{s_1}^{k_1})}{u'(x_{s_2}^{k_1})} \frac{u'(x_{s_2}^{k_2})}{u'(x_{s_1}^{k_2})} = \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}} \frac{p_{s_2}^{k_2}}{p_{s_1}^{k_2}}$$

$$x_{s_1}^{k_1} > x_{s_2}^{k_1} \text{ and } x_{s_2}^{k_2} > x_{s_1}^{k_2} \Rightarrow \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}} \frac{p_{s_2}^{k_2}}{p_{s_1}^{k_1}} \le 1$$

$$\frac{u'_{k_1}(x_{s_1}^{k_1})}{u'_{k_1}(x_{s_2}^{k_1})} \frac{u'_{k_2}(x_{s_2}^{k_2})}{u'_{k_2}(x_{s_1}^{k_2})} = \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}} \frac{p_{s_2}^{k_2}}{p_{s_1}^{k_2}}$$

$$x_{s_1}^{k_1} > x_{s_2}^{k_1} \text{ and } x_{s_2}^{k_2} > x_{s_1}^{k_2} \Rightarrow \frac{p_{s_1}^{k_1}}{p_{s_2}^{k_1}} \frac{p_{s_2}^{k_2}}{p_{s_1}^{k_1}} \le 1$$

Discussion

- ► Checking SARSEU
- ▶ ∃ data
- ► Prob. sophistication (Epstein)
- ► Maxmin
- ► Objective EU
- ► Savage

Checking SARSEU

Proposition

There is an algorithm that decides (in polynomial time) whether a dataset satisfies SARSEU.

Data

Need:

- ▶ obj. identifiable states
- ► complete asset markets (and no-arbitrage)

Turns out such data are routinely used in empirical finance.

Recent example: S. Ross "The recovery theorem" (J. of Finance, forth.). Such data is also used by Rubinstein (1998), Ait-Sahalia and Lo (1998) and many others.

Epstein (2000)

Necessary Condition for prob. sophistication: if $\exists (x, p)$ and (x', p')

$$\left[\begin{array}{ll} \text{(i) } p_1 \geq p_2 \quad \text{and} \quad p_1' \leq p_2' \text{ with at least one strict ineq.} \\ \text{(ii) } x_1 > x_2 \quad \text{and} \quad x_1' < x_2' \end{array}\right]$$

⇒ Not Probability Sophisticated

Epstein (2000)

Necessary Condition for prob. sophistication: if $\exists (x, p)$ and (x', p')

$$\left[\begin{array}{ll} \text{(i) } p_1 \geq p_2 \quad \text{and} \quad p_1' \leq p_2' \text{ with at least one strict ineq.} \\ \text{(ii) } x_1 > x_2 \quad \text{and} \quad x_1' < x_2' \end{array}\right]$$

⇒ Not Probability Sophisticated

 $\{(x_1,x_2),(x_2',x_1')\}$ satisfy conditions in SARSEU: so must have

$$\frac{p_1}{p_2}\frac{p_2'}{p_1'}\leq 1,$$

hence can't violate Epstein's condition.

A probabilistically sophisticated data set violating SARSEU.

Maxmin

$$U(x) = \min_{\mu \in M} \sum_{s \in S} \mu_s u(x_s)$$

 ${\it M}$ is a convex set of priors.

Maxmin

$$(x^k, p^k)_{k=1}^K$$
 is maxmin rational if \exists

- ▶ convex set $M \subseteq \Delta_{++}$
- ▶ and $u \in C$ s.t.

$$y \in B(p^k, p^k \cdot x^k) \Rightarrow \min_{\mu \in M} \sum_{s \in S} \mu_s u(y_s) \leq \min_{\mu \in M} \sum_{s \in S} \mu_s u(x_s^k).$$

Maxmin

Proposition

Let S = K = 2. Then a dataset is max-min rational iff it is SEU rational.

Example with S=2 and K=4 of a dataset that is max-min rational and violates SARSEU.

$$\max \sum \mu_s u(x_s)$$
$$p \cdot x \le I$$

- ▶ Observables: μ , p, x
- ▶ Unobservables: *u*

Varian (1983), Green and Srivastava (1986), and Kubler, Selden, and Wei (2013)

Varian (1983), Green and Srivastava (1986): FOC

$$\mu_s u'(x_s) = \lambda p_s$$
, (linear "Afriat" inequalities).

Kubler, Selden, and Wei (2013): axiom on data.

$$u'(x_s^k) = \lambda^k \frac{p_s^k}{\mu_s} = \lambda^k \rho_s^k,$$

 $ho_s^k = p_s^k/\mu_s$ is a "risk neutral" price.

(Strong Axiom of Revealed Exp. Utility (SAREU))

For any $(x_{s_i}^{k_i}, x_{s_i'}^{k_i'})_{i=1}^n$ s.t.

- 1. $x_{s_i}^{k_i} > x_{s_i'}^{k_i'}$
- 2. each k appears in k_i (on the left of the pair) the same number of times it appears in k_i' (on the right):

we have:

$$\prod_{i=1}^n \frac{\rho_{s_i}^{k_i}}{\rho_{s_i'}^{k_i'}} \le 1.$$

Theorem

A dataset is EU rational if and only if it satisfies SAREU.

Savage

Primitives:

infinite S;

 \succeq on acts: information on all pairwise comparisons.

Define \succeq to be the *rev. preference relation* defined from a finite dataset (x^k, p^k) :

- $\triangleright x^k \succeq y \text{ if } y \in B(p^k, p^k \cdot x^k)$
- \triangleright $x^k \succ y$ if ...
- ► note: <u></u> is incomplete.

Savage

Axioms:

- ▶ P1
- ► P2
- ► P3
- ► P4
- ▶ P5
- ► P6
- ▶ P7

Proposition

If a data set violates P2, P4 or P7, then it violates SARSEU. No data can violate P3 or P5.

$$\mu_{s}u'(x_{s}^{k}) = \lambda^{k}p_{s}^{k}$$

$$x_{s}^{k} > x_{s}^{k} \Rightarrow u'(x_{s}^{k}) \leq u'(x_{s}^{k})$$

 $quadratic equations \Rightarrow linearize by logs.$

$$egin{array}{ll} \log \mu_s + \log u'(x_s^k) &= \log \lambda^k + \log p_s^k \ x_s^k > x_{s'}^{k'} &\Rightarrow \log u'(x_{s'}^{k'}) \leq \log u'(x_s^k) \end{array}$$

When $\log p_s^k \in \mathbf{Q}$, the integer version of Farkas's lemma gives our axiom.

When $\log p_s^k \notin \mathbf{Q}$: approximation result.

$$\log v_s^k + \log \mu_s - \log \lambda^k - \log p_s^k = 0,$$

$$x_s^k > x_{s'}^{k'} \Rightarrow \log v_s^k \le \log v_{s'}^{k'}$$
(2)

In the system (3)- (4), the unknowns are the real numbers $\log v_s^k$, $\log \mu_s$, $\log \lambda^k$, $k=1,\ldots,K$ and $s=1,\ldots,S$.

$$S1: \begin{cases} A \cdot u = 0, \\ B \cdot u \ge 0, \\ E \cdot u \gg 0. \end{cases}$$

Matrix A:

S2:
$$\begin{cases} \theta \cdot A + \eta \cdot B + \pi \cdot E = 0, \\ \eta \ge 0, \\ \pi > 0. \end{cases}$$

Lemma

Let $(x^k, p^k)_{k=1}^K$ be a dataset. The following statements are

 $\mu_s v_s^k = \lambda^k p_s^k$ $x_s^k > x_{s'}^{k'} \Rightarrow v_s^k \le v_{s'}^{k'}.$

equivalent:

equivalent:

1.
$$(x^k, p^k)_{k=1}^K$$
 is SEU rational.

2. \exists strictly positive numbers v_s^k , λ^k , μ_s , s.t.

Lemma

Let data $(x^k, p^k)_{k=1}^k$ satisfy SARSEU. Suppose that $\log(p_s^k) \in \mathbf{Q}$ for all k and s. Then there are numbers v_s^k , λ^k , μ_s , for s = 1, ..., S and k = 1, ..., K satisfying (2) in Lemma 3.

Lemma

Let data $(x^k, p^k)_{k=1}^k$ satisfy SARSEU. Then for all positive numbers $\overline{\varepsilon}$, there exists $q_s^k \in [p_s^k - \overline{\varepsilon}, p_s^k]$ for all $s \in S$ and $k \in K$ such that $\log q_s^k \in \mathbf{Q}$ and the data $(x^k, q^k)_{k=1}^k$ satisfy SARSEU.

Lemma Let data $(x^k, p^k)_{k=1}^k$ satisfy SARSEU. Then there are numbers v_s^k , λ^k , μ_s , for $s=1,\ldots,S$ and $k=1,\ldots,K$ satisfying (2) in Lemma 3.

Lemma

Let A be an $m \times n$ matrix, B be an $I \times n$ matrix, and E be an

- $r \times n$ matrix. Suppose that the entries of the matrices A, B, and E
- belong the a commutative ordered field F. Exactly one of the
- following alternatives is true.

 - 1. There is $u \in \mathbf{F}^n$ such that $A \cdot u = 0$, $B \cdot u > 0$, $E \cdot u \gg 0$. 2. There is $\theta \in \mathbf{F}^r$, $\eta \in \mathbf{F}^l$, and $\pi \in \mathbf{F}^m$ such that

 $\theta \cdot A + \eta \cdot B + \pi \cdot E = 0$; $\pi > 0$ and $\eta \ge 0$.

Proof

$$\log v_s^k + \log \mu_s - \log \lambda^k - \log p_s^k = 0,$$

$$x_s^k > x_{s'}^{k'} \Rightarrow \log v_s^k \le \log v_{s'}^{k'}$$
(4)

In the system (3)- (4), the unknowns are the real numbers $\log v_s^k$, $\log \mu_s$, $\log \lambda^k$, $k=1,\ldots,K$ and $s=1,\ldots,S$.

Proof:

S1:
$$\begin{cases} A \cdot u = 0, \\ B \cdot u \ge 0, \\ E \cdot u \gg 0. \end{cases}$$

Proof:

Matrix A:

	(1,1)	•••	(k,s)	•••	(K,S)	1		s	•••	S	1	•••
(1,1)	[1		0		0	1	• • •	0		0	-1	• • •
:	:		:		; 0	:		:		:	:	
(k,s)	0		1		0	0		1		0	0	• • •
÷	:		:		: 1	:		:		:	:	
(K,S)	0		0		1	0		0		1	0	

Proof:

S2:
$$\begin{cases} \theta \cdot A + \eta \cdot B + \pi \cdot E = 0, \\ \eta \ge 0, \\ \pi > 0. \end{cases}$$

L. Savage

If I have seen less than other men, it is because I have walked in the footsteps of giants.

P. Chernoff