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Utility and behavior

» Q: When is observable behavior consistent with utility max.?
» A: When SARP is satisfied.
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This paper: Subjective Expected Utility (SEU)

max U(x)

S
xERY

p-x<I

Where
U(x) = 3 pisu(xs)

seS

» u: Ry — R st. inc. and concave;

» 1 € A(S) a subjective prior.



This paper.

Market behavior:

» State-contingent consumption (monetary acts);

» complete markets;



This paper.

» Q: When is observable behavior consistent with SEU?
» A: When SARSEU is satisfied.
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Warmup

The 2 x 2 case.

» 2 states

» 2 observations
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What is the meaning of this:

max p1u(xi) + pau(x2)
pix1 + paxo < |

model for market behavior ?

Unobservables:
» Utility v: R = R
» Prior (u1, 12)

Observable:

» choices at different budgets



Figure : A violation of WARP.
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Axiom 1
Not: Axiom 2

Not:




END of Warmup
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Now: K observations and S states.



Main theorem:
A dataset is SEU rationalizable iff it satisfies the Strong Axiom of
Revealed Subjective Expected Utility (SARSEU).



Plug

Echenique, Imai, Saito (2014)
» Discounting: > 6% u(x)
» Quasi-hyperbolic discounting u(x) + 8 6t u(x¢).
» Empirical application to Andreoni-Sprenger's data.



Model

» Finite set S of states.
» Monetary acts: x € Rfr.

» Price vectors: p € R_SHr

Notation: S is also the number of states.



Data

A dataset is a collection (x¥, p¥)K_, s.t.

k

» x* is a monetary act;

» pXis a price vector.



Notation

Let

S
» A ={peRI [ s =1}
» C ={u: Ry — R|uis st. increasing and concave}
» B(p,)={y eRZ|p-y <1}



Model

SEU



SEU rational

(xk, p¥)K_, is subjective exp. utility rational (SEU rational) if
» Ju € Ai+;
» and u € C s.t.

Z,usu(ys) < Z#su(xsk)>

seS SES

for all y € B(p, p¥ - x¥) and all k.



Previous work:

» Varian
» Green & Srivastava
» Kubler, Selden & Wei

All assume observable p.



Derive SARSEU; K =1 and p is known.

Derivation of SARSEU.
» K = 1
» 1 objective and known

» u differentiable.



Derive SARSEU; K =1 and p is known.

max, crs Y ses Msti(Xs)
ngs Psxs < |
FOC:

IU/SUI(XS) = Aps
“/(XS) = Mps/1s) = Aps

Here p is observable.



Derive SARSEU; K =1 and p is known.

u'(xs) = A(ps/ps) = Aps

So,
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Derive SARSEU; K =1 and p is known.

u'(xs) = A(ps/ps) = Aps
So,
u'(xs) _ Aps _ Ps
U(xs)  Nps ps

Axiom (Downward sloping demand):

<1

Xs > Xg! = Ps
Ps’



Derive SARSEU - general K and subjective u

MaX,ersS 2 ses Msti(xs)
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Derive SARSEU - general K and subjective u

MaX,ersS 2 ses Msti(xs)
2565 PsXs < /
FOC:
:u’Su/(XS) = Aps-

Hence,
u'(x§) _ b A< pf
u'(xk) s A pl




Y
Idea: Choose (xs’j',xs{’) so that unobservable p15 and A\¥ cancel out.
!
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Example
Choose:

ki ko ks ke
Xg > X, X2 > X

ko k3
o X s> and x;2 > x3.

Then:

V) W) W) (;W% p) | <u53 A p)

pst A ple

fis; A3 Pﬁf

ki k3 ok
_Ps Ps; Ps;

= ki ks
Ps, Ps3; Ps;

s M Ps/fgl

So by concavity of u,

k: k: k:
Ps; Ps; Ps;
o kg e =1
p$22 P531 Psl3



SARSEU

(Strong Axiom of Revealed Subjective Utility (SARSEU))
For any (xs’f,", xﬁ,’ ) s.t.
1. Xslj" > x:_,’{
2. s appears as s; (on the left of the pair) the same number of
times it appears as s, (on the right);
3. k appears as k; (on the left of the pair) the same number of
times it appears as k! (on the right):

no ki
Be

g =1
i=1 Pg/
1




Main result

Theorem
A dataset is SEU rational if and only if it satisfies SARSEU.



The 2 x 2 case again




The 2 x 2 case again

Data:

u'Oet) 1'062) Pl ps?

U (&) u(x2)  p& pk

Two cases:



The 2 x 2 case again

p

Data: e

U (x8) d'(x2) Pl

U (xE) U (xE2)  p& pk
Two cases:
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The 2 x 2 case again
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The 2 x 2 case again

P52 PS1

>Xk2 andx >X :>p—p—

52 PS1

<1

X

k2




(Strong Axiom of Revealed Subjective Utility (SARSEU))
For any (Xskf", xsk',"l),f’:1 s.t.

1. Xslf" > x:_,’{

2. s appears as s; (on the left of the pair) the same number of

times it appears as s; (on the right);

3. k appears as k; (on the left of the pair) the same number of
times it appears as k! (on the right):

n

1% <1

i=1 Pg/
1




(Strong Axiom of Revealed State-dependent Utility)

k/
For any (x X! ), s.t.

1. x > xk,
2. 5= 5,..
3. k appears as k; (on the left of the pair) the same number of
times it appears as k; (on the right):

no_k
Ps;
k/
i=1 P /

<1



Equivalently . ..

(Strong Axiom of Revealed State-dependent Utility)

For any cycle:
Ky ko
X > Xs,

ko k3
Xgg > Xs,

kn kq
Xsy > Xs'

it holds that:

(using addition mod n).



The 2 x 2 case again

() U () _ ol P

u(xd) u'(s2)  ps ps

pl pk

k1 k1 k2 k2 S1 S2

X5 > X, and xg? > xg2 = —-— - <1
s, Ps;




The 2 x 2 case again

u/kl (X5k11) ulkz (Xsk22) _ Lﬁf&ﬁf
u,kl (XSk21) u/kz (X5k12) pé(zl Pé(f

p ple

k1 k1 ko ko s1 Msp

X > X' and xg7 > x2 = e S 1
sy Ps;
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Checking SARSEU

Proposition

There is an algorithm that decides (in polynomial time) whether a
dataset satisfies SARSEU.



Data

Need:
» obj. identifiable states
» complete asset markets (and no-arbitrage)

Turns out such data are routinely used in empirical finance.

Recent example: S. Ross “The recovery theorem” (J. of Finance,
forth.). Such data is also used by Rubinstein (1998), Ait-Sahalia
and Lo (1998) and many others.



Epstein (2000)

Necessary Condition for prob. sophistication: if 3 (x, p) and (X', p’)

(i) pr > p2 and p] < p) with at least one strict ineq.
(i) x1 > x> and x| < x5

= Not Probability Sophisticated



Epstein (2000)

Necessary Condition for prob. sophistication: if 3 (x, p) and (X', p’)

(i) pr > p2 and p] < p) with at least one strict ineq.
(i) x1 > x> and x| < x5

= Not Probability Sophisticated

{(x1,%2), (x5, x1)} satisfy conditions in SARSEU: so must have

P1 P

2 <1,
P2 Py

hence can't violate Epstein's condition.



A probabilistically sophisticated data set violating SARSEU.
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Maxmin

U(x) = lr};i/\nﬂz,usu(xs)

seS

M is a convex set of priors.



Maxmin

(xk, p¥)K_, is maxmin rational if 3
» convex set M C A
» and u € C s.t.

y € B(p¥, p¥ - x¥) = lrféiﬂr}%ltsu()/s) < l%iﬂr}éuw(xsk)-
S S



Maxmin

Proposition

Let S = K = 2. Then a dataset is max-min rational iff it is SEU
rational.

Example with S = 2 and K = 4 of a dataset that is max-min
rational and violates SARSEU.



Objective Probabilities

max Y psu(xs)
p-x<I

» Observables: p, p, x

» Unobservables: u

Varian (1983), Green and Srivastava (1986), and Kubler, Selden,
and Wei (2013)



Objective Probabilities

Varian (1983), Green and Srivastava (1986): FOC

pst' (xs) = Aps, (linear "Afriat” inequalities).

Kubler, Selden, and Wei (2013): axiom on data.



Objective Probabilities

pk
o) = A gt
Us

> pk = pk/us is a “risk neutral” price.



Objective Probabilities

(Strong Axiom of Revealed Exp. Utility (SAREU))

For any (x& xsk, ), s.t.

ki ki

L x5 > XS,-/

2. each k appears in k; (on the left of the pair) the same number
of times it appears in k! (on the right):
we have:

n ki
Ps;
k/
i=1 Pg /

<1

Theorem
A dataset is EU rational if and only if it satisfies SAREU.



Savage

Primitives:
infinite S;
> on acts: information on all pairwise comparisons.

Define > to be the rev. preference relation defined from a finite
dataset (x*, p):

» x¥ =y if y € B(p¥, p¥ - x¥)

» xK—yif ...

» note: > is incomplete.



Savage

Axioms:
» P1
> P2
» P3
» P4
» P5
» P6
» P7

Proposition

If a data set violates P2, P4 or P7, then it violates SARSEU. No
data can violate P3 or P5.



Ideas in the proof



NSUI(Xsk) = )\kpg
x> xk = ' (xk) < u'(xF)

quadratic equations = linearize by logs.



Iog,us—i-logu( ) Iog)\k—i-log;ps
xk > xK = log u'(x5') < log u/(x¥)

When log pk € Q, the integer version of Farkas's lemma gives our
axiom.
When log pk ¢ Q: approximation result.



log v£ + log 15 — log A¥ — log pf = 0, (1)

x> xK = log vk < log vk (2)

In the system (3)- (4), the unknowns are the real numbers log v/,
log s, log A<, k=1,...,Kands=1,...,8S.



A-u=0,
S1: ¢B-u>0,
E-u>0.



Matrix A:

(L.1)

(kss)

(k.S) |

(1,1)

1

(kss)

(K.S)

[y




0-A+n-B+n-E=0,
§52: ¢n>0,
m > 0.



Lemma

Let (x*, p¥)K_, be a dataset. The following statements are
equivalent:

1. (xk, pk)K_, is SEU rational.
2. 1 strictly positive numbers vsk, 2k s, S.t.
s Vsk — )k pk

s
/ /
xsk>xsk, :>v5k§v5k/.



Lemma

Let data (x*, p¥)k_, satisfy SARSEU. Suppose that log(p%) € Q
for all k and s. Then there are numbers vsk, K us, for
s=1,...,5and k =1,...,K satisfying (2) in Lemma 3.

Lemma

Let data (x*, pk)ﬁ:1 satisfy SARSEU. Then for all positive
numbers E, there exists q¥ € [pk — 2, pk] for all s € S and k € K
such that log ¥ € Q and the data (x*, qk)fz1 satisfy SARSEU.

Lemma

Let data (x*, p")’,j:1 satisfy SARSEU. Then there are numbers vk,
N, us, fors=1,...,5 and k = 1,...,K satisfying (2) in
Lemma 3.



Lemma

Let A be an m X n matrix, B be an | X n matrix, and E be an

r X n matrix. Suppose that the entries of the matrices A, B, and E
belong the a commutative ordered field F. Exactly one of the
following alternatives is true.

1. Thereisu € F" such that A-u=0, B-u>0, E-u>0.

2. Thereis0 € F', n e F/', and = € F™ such that
0-A+n-B+n-E=0,7>0andn>0.



Proof

log vE + log 115 — log A¥ — log pk = 0, (3)

xK > Xk

"= log v& < log v (4)

In the system (3)- (4), the unknowns are the real numbers log vX,
log s, log A<, k=1,...,Kands=1,...,S.



Proof:

A-u=0,
S1: ¢B-u>0,
E-u>0.



Proof:

Matrix A:
(1,1)

ay [ 1

(k,s) 0

(kss)
0

(K.S)
0




Proof:

0-A+n-B+w-E=0,
§52: ¢n>0,
m > 0.



If | have seen less than other men, it is because | have
walked in the footsteps of giants.

P. Chernoff



