Savage in the Market

Federico Echenique Kota Saito

California Institute of Technology

Math. Econ. Conference - Wisconsin
September 27, 2014

- Model / Utility
- Data / Behavior

This paper:

- SEU
- Market behavior

Utility and behavior

Model:

$$
\begin{array}{ll}
\max _{x \in \mathbf{R}_{+}^{S}} & U(x) \\
& p \cdot x \leq 1
\end{array}
$$

Utility and behavior

Market behavior:

Utility and behavior

- Q: When is observable behavior consistent with utility max.?
- A: When SARP is satisfied.

This paper: Subjective Expected Utility (SEU)

$$
\begin{array}{ll}
\max _{x \in \mathbf{R}_{+}^{5}} & U(x) \\
& p \cdot x \leq 1
\end{array}
$$

This paper: Subjective Expected Utility (SEU)

$$
\begin{array}{ll}
\max _{x \in \mathbf{R}_{+}^{S}} & U(x) \\
& p \cdot x \leq 1
\end{array}
$$

Where

$$
U(x)=\sum_{s \in S} \mu_{s} u\left(x_{s}\right)
$$

- $u: \mathbf{R}_{+} \rightarrow \mathbf{R}$ st. inc. and concave;
- $\mu \in \Delta(S)$ a subjective prior.

This paper.

Market behavior:

- State-contingent consumption (monetary acts);
- complete markets;

This paper.

- Q: When is observable behavior consistent with SEU?
- A: When SARSEU is satisfied.
A

Warmup

The 2×2 case.

- 2 states
- 2 observations

What is the meaning of this:

$$
\begin{aligned}
& \max \mu_{1} u\left(x_{1}\right)+\mu_{2} u\left(x_{2}\right) \\
& p_{1} x_{1}+p_{2} x_{2} \leq I
\end{aligned}
$$

model for market behavior ?

Unobservables:

- Utility $u: \mathbf{R}_{+} \rightarrow \mathbf{R}$
- Prior $\left(\mu_{1}, \mu_{2}\right)$

Observable:

- choices at different budgets
$\sin \sin$

Figure : A violation of WARP.

$\sinh \sin$

A A A A

h h A h

$\sinh \sin$

Axiom 1
Not:
Axiom 2
Not:

END of Warmup

Now: K observations and S states.

Main theorem:
A dataset is SEU rationalizable iff it satisfies the Strong Axiom of Revealed Subjective Expected Utility (SARSEU).

Plug

Echenique, Imai, Saito (2014)

- Discounting: $\sum \delta^{t} u\left(x_{t}\right)$
- Quasi-hyperbolic discounting $u\left(x_{0}\right)+\beta \sum \delta^{t} u\left(x_{t}\right)$.
- Empirical application to Andreoni-Sprenger's data.

Model

- Finite set S of states.
- Monetary acts: $x \in \mathbf{R}_{+}^{S}$.
- Price vectors: $p \in \mathbf{R}_{++}^{S}$

Notation: S is also the number of states.

Data

A dataset is a collection $\left(x^{k}, p^{k}\right)_{k=1}^{K}$ s.t.

- x^{k} is a monetary act;
- p^{k} is a price vector.

Notation

Let

- $\Delta_{++}^{S}=\left\{\mu \in \mathbf{R}_{++}^{S} \mid \sum_{s=1}^{S} \mu_{s}=1\right\}$
- $\mathcal{C}=\left\{u: \mathbf{R}_{+} \rightarrow \mathbf{R} \mid u\right.$ is st. increasing and concave $\}$
- $B(p, I)=\left\{y \in \mathbf{R}_{+}^{S} \mid p \cdot y \leq I\right\}$

Model

SEU

$$
\begin{aligned}
\max _{x \in \mathbf{R}_{+}^{S}} & \sum_{s \in S} \mu_{s} u\left(x_{s}\right) \\
\text { s.t } & \sum_{s \in S} p_{s} x_{s} \leq 1
\end{aligned}
$$

SEU rational

$\left(x^{k}, p^{k}\right)_{k=1}^{K}$ is subjective exp. utility rational (SEU rational) if

- $\exists \mu \in \Delta_{++}^{S}$;
- and $u \in \mathcal{C}$ s.t.

$$
\sum_{s \in S} \mu_{s} u\left(y_{s}\right) \leq \sum_{s \in S} \mu_{s} u\left(x_{s}^{k}\right),
$$

for all $y \in B\left(p^{k}, p^{k} \cdot x^{k}\right)$ and all k.

Previous work:

- Varian
- Green \& Srivastava
- Kubler, Selden \& Wei

All assume observable μ.

Derive SARSEU; $K=1$ and μ is known.

Derivation of SARSEU.

- $K=1$
- μ objective and known
- u differentiable.

Derive SARSEU; $K=1$ and μ is known.

$$
\begin{aligned}
& \max _{x \in \mathbf{R}_{+}^{S}} \sum_{s \in S} \mu_{s} u\left(x_{s}\right) \\
& \sum_{s \in S} p_{s} x_{s} \leq I
\end{aligned}
$$

FOC:

$$
\begin{aligned}
\mu_{s} u^{\prime}\left(x_{s}\right) & =\lambda p_{s} \\
u^{\prime}\left(x_{s}\right) & =\lambda\left(p_{s} / \mu_{s}\right)=\lambda \rho_{s}
\end{aligned}
$$

Here ρ is observable.

Derive SARSEU; $K=1$ and μ is known.

$$
u^{\prime}\left(x_{s}\right)=\lambda\left(p_{s} / \mu_{s}\right)=\lambda \rho_{s}
$$

So,

$$
\frac{u^{\prime}\left(x_{s}\right)}{u^{\prime}\left(x_{s^{\prime}}\right)}=\frac{\lambda \rho_{s}}{\lambda \rho_{s^{\prime}}}=\frac{\rho_{s}}{\rho_{s^{\prime}}}
$$

Derive SARSEU; $K=1$ and μ is known.

$$
u^{\prime}\left(x_{s}\right)=\lambda\left(p_{s} / \mu_{s}\right)=\lambda \rho_{s}
$$

So,

$$
\frac{u^{\prime}\left(x_{s}\right)}{u^{\prime}\left(x_{s^{\prime}}\right)}=\frac{\lambda \rho_{s}}{\lambda \rho_{s^{\prime}}}=\frac{\rho_{s}}{\rho_{s^{\prime}}}
$$

Axiom (Downward sloping demand):

$$
x_{s}>x_{s^{\prime}} \Rightarrow \frac{\rho_{s}}{\rho_{s^{\prime}}} \leq 1
$$

Derive SARSEU - general K and subjective μ

$$
\begin{aligned}
& \max _{x \in \mathbf{R}_{+}^{s}} \sum_{s \in S} \mu_{s} u\left(x_{s}\right) \\
& \sum_{s \in S} p_{s} x_{s} \leq I
\end{aligned}
$$

FOC:

$$
\mu_{s} u^{\prime}\left(x_{s}\right)=\lambda p_{s} .
$$

Derive SARSEU - general K and subjective μ

$$
\begin{aligned}
& \max _{x \in \mathbf{R}_{+}^{S}} \sum_{s \in S} \mu_{s} u\left(x_{s}\right) \\
& \sum_{s \in S} p_{s} x_{s} \leq 1
\end{aligned}
$$

FOC:

$$
\mu_{s} u^{\prime}\left(x_{s}\right)=\lambda p_{s} .
$$

Hence,

$$
\frac{u^{\prime}\left(x_{s}^{k}\right)}{u^{\prime}\left(x_{s^{\prime}}^{k^{\prime}}\right)}=\frac{\mu_{s^{\prime}}}{\mu_{s}} \frac{\lambda^{k}}{\lambda^{k^{\prime}}} \frac{p_{s}^{k}}{p_{s^{\prime}}^{k^{\prime}}} .
$$

$$
\frac{u^{\prime}\left(x_{s}^{k}\right)}{u^{\prime}\left(x_{s^{\prime}}^{k^{\prime}}\right)}=\frac{\mu_{s^{\prime}}}{\mu_{s}} \frac{\lambda^{k}}{\lambda^{k^{\prime}}} \frac{p_{s}^{k}}{p_{s^{\prime}}^{k^{\prime}}}
$$

Idea: Choose $\left(x_{s_{i}}^{k_{i}}, x_{s_{i}^{\prime}}^{k_{i}^{\prime}}\right)$ so that unobservable μ_{s} and λ^{k} cancel out.

Example

Choose:

$$
x_{s_{1}}^{k_{1}}>x_{s_{2}}^{k_{2}}, \quad x_{s_{2}}^{k_{3}}>x_{s_{3}}^{k_{1}}, \quad \text { and } x_{s_{3}}^{k_{2}}>x_{s_{1}}^{k_{3}} .
$$

Then:

$$
\begin{aligned}
\frac{u^{\prime}\left(x_{s_{1}}^{k_{1}}\right)}{u^{\prime}\left(x_{s_{2}}^{k_{2}}\right)} \cdot \frac{u^{\prime}\left(x_{s_{2}}^{k_{3}}\right)}{u^{\prime}\left(x_{s_{3}}^{k_{1}}\right)} \cdot \frac{u^{\prime}\left(x_{s_{3}}^{k_{2}}\right)}{u^{\prime}\left(x_{s_{1}}^{k_{3}}\right)}= & \left(\frac{\mu_{s_{2}}}{\mu_{s_{1}}} \frac{\lambda^{k_{1}}}{\lambda^{k}} \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{2}}}\right) \cdot\left(\frac{\mu_{s_{3}}}{\mu_{s_{2}}} \frac{\lambda^{k_{3}}}{\lambda^{k_{1}}} \frac{p_{s_{2}}^{k_{3}}}{p_{s_{3}}^{k_{1}}}\right) \\
& \cdot\left(\frac{\mu_{s_{1}}}{\mu_{s_{3}}} \frac{\lambda^{k_{2}}}{\lambda^{k_{3}}} \frac{p_{s_{3}}^{k_{2}}}{p_{s_{1}}^{k_{3}}}\right)
\end{aligned}
$$

Example

Choose:

$$
x_{s_{1}}^{k_{1}}>x_{s_{2}}^{k_{2}}, \quad x_{s_{2}}^{k_{3}}>x_{s_{3}}^{k_{1}}, \quad \text { and } x_{s_{3}}^{k_{2}}>x_{s_{1}}^{k_{3}}
$$

Then:

$$
\begin{aligned}
\frac{u^{\prime}\left(x_{s_{1}}^{k_{1}}\right)}{u^{\prime}\left(x_{s_{2}}^{k_{2}}\right)} \cdot \frac{u^{\prime}\left(x_{s_{2}}^{k_{3}}\right)}{u^{\prime}\left(x_{s_{3}}^{k_{1}}\right)} \cdot \frac{u^{\prime}\left(x_{s_{3}}^{k_{2}}\right)}{u^{\prime}\left(x_{s_{1}}^{k_{3}}\right)}= & \left(\frac{\mu_{s_{2}}}{\mu_{s_{1}}} \frac{\chi^{k_{1}}}{\lambda^{k_{2}}} \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{2}}}\right) \cdot\left(\frac{\mu_{s_{3}}}{\mu_{s_{2}}} \frac{\lambda^{k_{3}}}{\chi^{k_{1}}} \frac{p_{s_{2}}^{k_{3}}}{p_{s_{3}}^{k_{1}}}\right) \\
& \cdot\left(\frac{\mu_{s_{1}}}{\mu_{s_{3}}} \frac{\lambda^{k_{2}}}{\lambda^{k_{3}}} \frac{p_{s_{3}}^{k_{2}}}{p_{s_{1}}^{k_{3}}}\right) \\
= & \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{2}}} \frac{p_{s_{2}}^{k_{3}}}{p_{s_{3}}^{k_{1}}} \frac{p_{s_{3}}^{k_{2}}}{p_{s_{1}}^{k_{3}}}
\end{aligned}
$$

So by concavity of u,

$$
\frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{2}}} \frac{p_{s_{3}}^{k_{3}}}{p_{1}} \frac{p_{s_{3}}^{k_{2}}}{p_{s_{1}}^{k_{3}}} \leq 1
$$

SARSEU

(Strong Axiom of Revealed Subjective Utility (SARSEU))

For any $\left(x_{s_{i}}^{k_{i}}, x_{s_{i}^{\prime}}^{k_{i}^{\prime}}\right)_{i=1}^{n}$ s.t.

1. $x_{s_{i}}^{k_{i}}>x_{s_{i}^{\prime}}^{k_{i}^{\prime}}$
2. s appears as s_{i} (on the left of the pair) the same number of times it appears as s_{i}^{\prime} (on the right);
3. k appears as k_{i} (on the left of the pair) the same number of times it appears as k_{i}^{\prime} (on the right):

$$
\prod_{i=1}^{n} \frac{p_{s_{i}}^{k_{i}}}{p_{s_{i}^{\prime}}^{k_{i}^{\prime}}} \leq 1
$$

Main result

Theorem
A dataset is SEU rational if and only if it satisfies SARSEU.

The 2×2 case again

The 2×2 case again

Data:

$$
\frac{u^{\prime}\left(x_{s_{1}}^{k_{1}}\right)}{u^{\prime}\left(x_{s_{2}}^{k_{1}}\right)} \frac{u^{\prime}\left(x_{s_{2}}^{k_{2}}\right)}{u^{\prime}\left(x_{s_{1}}^{k_{2}}\right)}=\frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}}
$$

Two cases:

The 2×2 case again

Data:

$$
\frac{u^{\prime}\left(x_{s_{1}}^{k_{1}}\right)}{u^{\prime}\left(x_{s_{2}}^{k_{1}}\right)} \frac{u^{\prime}\left(x_{s_{2}}^{k_{2}}\right)}{u^{\prime}\left(x_{s_{1}}^{k_{2}}\right)}=\frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}}
$$

Two cases:

$$
\begin{aligned}
& x_{s_{1}}^{k_{1}}>x_{s_{2}}^{k_{1}} \text { and } x_{s_{2}}^{k_{2}}>x_{s_{1}}^{k_{2}} \Rightarrow \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \leq 1 \\
& x_{s_{1}}^{k_{1}}>x_{s_{1}}^{k_{2}} \text { and } x_{s_{2}}^{k_{2}}>x_{s_{2}}^{k_{1}} \Rightarrow \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \leq 1
\end{aligned}
$$

The 2×2 case again

$$
\begin{gathered}
\frac{u^{\prime}\left(x_{s_{1}}^{k_{1}}\right)}{u^{\prime}\left(x_{s_{2}}^{k_{1}}\right)} \frac{u^{\prime}\left(x_{s_{2}}^{k_{2}}\right)}{u^{\prime}\left(x_{s_{1}}^{k_{2}}\right)}=\frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \\
x_{s_{1}}^{k_{1}}>x_{s_{1}}^{k_{2}} \text { and } x_{s_{2}}^{k_{2}}>x_{s_{2}}^{k_{1}} \Rightarrow \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \leq 1
\end{gathered}
$$

The 2×2 case again

$$
\begin{gathered}
\frac{u_{s_{1}}^{\prime}\left(x_{s_{1}}^{k_{1}}\right)}{u_{s_{2}}^{\prime}\left(x_{s_{2}}^{k_{1}}\right)} \frac{u_{s_{2}}^{\prime}\left(x_{s_{2}}^{k_{2}}\right)}{u_{s_{1}}^{\prime}\left(x_{s_{1}}^{k_{2}}\right)}=\frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{s_{1}}}}{k_{2}} \\
x_{s_{1}}^{k_{1}}>x_{s_{1}}^{k_{2}} \text { and } x_{s_{2}}^{k_{2}}>x_{s_{2}}^{k_{1}} \Rightarrow \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \leq 1
\end{gathered}
$$

(Strong Axiom of Revealed Subjective Utility (SARSEU))

For any $\left(x_{s_{i}}^{k_{i}}, x_{s_{i}^{\prime}}^{k_{i}^{\prime}}\right)_{i=1}^{n}$ s.t.

1. $x_{s_{i}}^{k_{i}}>x_{s_{i}^{\prime}}^{k_{i}^{\prime}}$
2. s appears as s_{i} (on the left of the pair) the same number of times it appears as sí (on the right);
3. k appears as k_{i} (on the left of the pair) the same number of times it appears as k_{i}^{\prime} (on the right):

$$
\prod_{i=1}^{n} \frac{p_{s_{i}^{\prime}}^{k_{i}}}{p_{s_{i}^{\prime}}^{k_{i}}} \leq 1 .
$$

(Strong Axiom of Revealed State-dependent Utility)

For any $\left(x_{s_{i}}^{k_{i}}, x_{s_{i}^{\prime}}^{k_{i}^{\prime}}\right)_{i=1}^{n}$ s.t.

1. $x_{s_{i}}^{k_{i}}>x_{s_{i}^{\prime}}^{k_{i}^{\prime}}$
2. $s_{i}=s_{i}^{\prime}$.
3. k appears as k_{i} (on the left of the pair) the same number of times it appears as k_{i}^{\prime} (on the right):

$$
\prod_{i=1}^{n} \frac{p_{s_{i}}^{k_{i}}}{p_{s_{i}^{\prime}}^{k_{i}^{\prime}}} \leq 1
$$

Equivalently ...

(Strong Axiom of Revealed State-dependent Utility)
For any cycle:

$$
\begin{gathered}
x_{s_{1}}^{k_{1}}>x_{s_{1}}^{k_{2}} \\
x_{s_{2}}^{k_{2}}>x_{s_{2}}^{k_{3}} \\
\vdots \\
x_{s_{n}}^{k_{n}}>x_{s_{n}}^{k_{1}},
\end{gathered}
$$

it holds that:

$$
\prod_{i=1}^{n} \frac{p_{s_{i}}^{k_{i}}}{p_{s_{i}}^{k_{i+1}}} \leq 1
$$

(using addition mod n).

The 2×2 case again

$$
\begin{gathered}
\frac{u^{\prime}\left(x_{s_{1}}^{k_{1}}\right)}{u^{\prime}\left(x_{s_{2}}^{k_{1}}\right)} \frac{u^{\prime}\left(x_{s_{2}}^{k_{2}}\right)}{u^{\prime}\left(x_{s_{1}}^{k_{2}}\right)}=\frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \\
x_{s_{1}}^{k_{1}}>x_{s_{2}}^{k_{1}} \text { and } x_{s_{2}}^{k_{2}}>x_{s_{1}}^{k_{2}} \Rightarrow \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \leq 1
\end{gathered}
$$

The 2×2 case again

$$
\begin{gathered}
\frac{u_{k_{1}}^{\prime}\left(x_{s_{1}}^{k_{1}}\right)}{u^{\prime}{ }_{k_{1}}\left(x_{s_{2}}^{k_{1}}\right)} \frac{u_{k_{2}}^{\prime}\left(x_{s_{2}}^{k_{2}}\right)}{u_{k_{2}}^{\prime}\left(x_{s_{1}}^{k_{2}}\right)}=\frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \\
x_{s_{1}}^{k_{1}}>x_{s_{1}}^{k_{1}} \text { and } x_{s_{2}}^{k_{2}}>x_{s_{1}}^{k_{2}} \Rightarrow \frac{p_{s_{1}}^{k_{1}}}{p_{s_{2}}^{k_{1}}} \frac{p_{s_{2}}^{k_{2}}}{p_{s_{1}}^{k_{2}}} \leq 1
\end{gathered}
$$

Discussion

- Checking SARSEU
- ヨ data
- Prob. sophistication (Epstein)
- Maxmin
- Objective EU
- Savage

Checking SARSEU

Proposition

There is an algorithm that decides (in polynomial time) whether a dataset satisfies SARSEU.

Data

Need:

- obj. identifiable states
- complete asset markets (and no-arbitrage)

Turns out such data are routinely used in empirical finance.

Recent example: S. Ross "The recovery theorem" (J. of Finance, forth.). Such data is also used by Rubinstein (1998), Ait-Sahalia and Lo (1998) and many others.

Epstein (2000)

Necessary Condition for prob. sophistication: if $\exists(x, p)$ and $\left(x^{\prime}, p^{\prime}\right)$
$\left[\begin{array}{l}\text { (i) } p_{1} \geq p_{2} \quad \text { and } \quad p_{1}^{\prime} \leq p_{2}^{\prime} \text { with at least one strict ineq. } \\ \text { (ii) } x_{1}>x_{2} \quad \text { and } x_{1}^{\prime}<x_{2}^{\prime}\end{array}\right]$
\Rightarrow Not Probability Sophisticated

Epstein (2000)

Necessary Condition for prob. sophistication: if $\exists(x, p)$ and $\left(x^{\prime}, p^{\prime}\right)$
$\left[\begin{array}{l}\text { (i) } p_{1} \geq p_{2} \quad \text { and } \quad p_{1}^{\prime} \leq p_{2}^{\prime} \text { with at least one strict ineq. } \\ \text { (ii) } x_{1}>x_{2} \quad \text { and } \quad x_{1}^{\prime}<x_{2}^{\prime}\end{array}\right]$
\Rightarrow Not Probability Sophisticated
$\left\{\left(x_{1}, x_{2}\right),\left(x_{2}^{\prime}, x_{1}^{\prime}\right)\right\}$ satisfy conditions in SARSEU: so must have

$$
\frac{p_{1}}{p_{2}} \frac{p_{2}^{\prime}}{p_{1}^{\prime}} \leq 1
$$

hence can't violate Epstein's condition.

A probabilistically sophisticated data set violating SARSEU.

Maxmin

$$
U(x)=\min _{\mu \in M} \sum_{s \in S} \mu_{s} u\left(x_{s}\right)
$$

M is a convex set of priors.

Maxmin

$\left(x^{k}, p^{k}\right)_{k=1}^{K}$ is maxmin rational if \exists

- convex set $M \subseteq \Delta_{++}$
- and $u \in \mathcal{C}$ s.t.
$y \in B\left(p^{k}, p^{k} \cdot x^{k}\right) \Rightarrow \min _{\mu \in M} \sum_{s \in S} \mu_{s} u\left(y_{s}\right) \leq \min _{\mu \in M} \sum_{s \in S} \mu_{s} u\left(x_{s}^{k}\right)$.

Maxmin

Proposition

Let $S=K=2$. Then a dataset is max-min rational iff it is $S E U$ rational.

Example with $S=2$ and $K=4$ of a dataset that is max-min rational and violates SARSEU.

Objective Probabilities

$$
\max \sum_{p \cdot x \leq I} \mu_{s} u\left(x_{s}\right)
$$

- Observables: μ, p, x
- Unobservables: u

Varian (1983), Green and Srivastava (1986), and Kubler, Selden, and Wei (2013)

Objective Probabilities

Varian (1983), Green and Srivastava (1986): FOC

$$
\mu_{s} u^{\prime}\left(x_{s}\right)=\lambda p_{s}, \quad \text { (linear "Afriat" inequalities). }
$$

Kubler, Selden, and Wei (2013): axiom on data.

Objective Probabilities

$$
u^{\prime}\left(x_{s}^{k}\right)=\lambda^{k} \frac{p_{s}^{k}}{\mu_{s}}=\lambda^{k} \rho_{s}^{k}
$$

- $\rho_{s}^{k}=p_{s}^{k} / \mu_{s}$ is a "risk neutral" price.

Objective Probabilities

(Strong Axiom of Revealed Exp. Utility (SAREU))
For any $\left(x_{s_{i}}^{k_{i}}, x_{s_{i}^{\prime}}^{k_{i}^{\prime}}\right)_{i=1}^{n}$ s.t.

1. $x_{s_{i}}^{k_{i}}>x_{s_{i}^{\prime}}^{k_{i}^{\prime}}$
2. each k appears in k_{i} (on the left of the pair) the same number of times it appears in k_{i}^{\prime} (on the right):
we have:

$$
\prod_{i=1}^{n} \frac{\rho_{s_{i}}^{k_{i}}}{\rho_{s_{i}^{\prime}}^{k_{i}^{\prime}}} \leq 1
$$

Theorem
A dataset is EU rational if and only if it satisfies SAREU.

Savage

Primitives:
infinite S;
\succeq on acts: information on all pairwise comparisons.

Define \succeq to be the rev. preference relation defined from a finite dataset $\left(x^{k}, p^{k}\right)$:

- $x^{k} \succeq y$ if $y \in B\left(p^{k}, p^{k} \cdot x^{k}\right)$
- $x^{k} \succ y$ if \ldots
- note: \succeq is incomplete.

Savage

Axioms:

- P1
- P2
- P3
- P4
- P5
- P6
- P7

Proposition

If a data set violates P2, P4 or P7, then it violates SARSEU. No data can violate P3 or P5.

Ideas in the proof

$$
\begin{aligned}
\mu_{s} u^{\prime}\left(x_{s}^{k}\right) & =\lambda^{k} p_{s}^{k} \\
x_{s}^{k}>x_{s}^{k} & \Rightarrow u^{\prime}\left(x_{s}^{k}\right) \leq u^{\prime}\left(x_{s}^{k}\right)
\end{aligned}
$$

quadratic equations \Rightarrow linearize by logs.

$$
\begin{array}{ll}
\log \mu_{s}+\log u^{\prime}\left(x_{s}^{k}\right) & =\log \lambda^{k}+\log p_{s}^{k} \\
x_{s}^{k}>x_{s^{\prime}}^{k^{\prime}} & \Rightarrow \log u^{\prime}\left(x_{s^{\prime}}^{k^{\prime}}\right) \leq \log u^{\prime}\left(x_{s}^{k}\right)
\end{array}
$$

When $\log p_{s}^{k} \in \mathbf{Q}$, the integer version of Farkas's lemma gives our axiom.
When $\log p_{s}^{k} \notin \mathbf{Q}$: approximation result.

$$
\begin{array}{r}
\log v_{s}^{k}+\log \mu_{s}-\log \lambda^{k}-\log p_{s}^{k}=0 \\
x_{s}^{k}>x_{s^{\prime}}^{k^{\prime}} \Rightarrow \log v_{s}^{k} \leq \log v_{s^{\prime}}^{k^{\prime}} \tag{2}
\end{array}
$$

In the system (3)- (4), the unknowns are the real numbers $\log v_{s}^{k}$, $\log \mu_{s}, \log \lambda^{k}, k=1, \ldots, K$ and $s=1, \ldots, S$.
$S 1:\left\{\begin{array}{l}A \cdot u=0, \\ B \cdot u \geq 0, \\ E \cdot u \gg 0 .\end{array}\right.$

Matrix A :
$(1,1)$
\vdots
(k, s)
\vdots
$(K, S)$$\left[\begin{array}{ccccc|ccccccc}(1,1) & \cdots & (k, s) & \cdots & (K, S) & 1 & \cdots & s & \cdots & s & 1 & \cdots \\ 1 & \cdots & 0 & \cdots & 0 & 1 & \cdots & 0 & \cdots & 0 & -1 & \cdots \\ \vdots & & \vdots & & \vdots & \vdots & & \vdots & & \vdots & \vdots & \\ 0 & \cdots & 1 & \cdots & 0 & 0 & \cdots & 1 & \cdots & 0 & 0 & \cdots \\ \vdots & & \vdots & & \vdots & \vdots & & \vdots & & \vdots & \vdots & \\ 0 & \cdots & 0 & \cdots & 1 & 0 & \cdots & 0 & \cdots & 1 & 0 & \cdots\end{array}\right.$

$$
S 2:\left\{\begin{array}{l}
\theta \cdot A+\eta \cdot B+\pi \cdot E=0 \\
\eta \geq 0 \\
\pi>0
\end{array}\right.
$$

Lemma

Let $\left(x^{k}, p^{k}\right)_{k=1}^{K}$ be a dataset. The following statements are equivalent:

1. $\left(x^{k}, p^{k}\right)_{k=1}^{K}$ is SEU rational.
2. \exists strictly positive numbers $v_{s}^{k}, \lambda^{k}, \mu_{s}$, s.t.

$$
\begin{array}{r}
\mu_{s} v_{s}^{k}=\lambda^{k} p_{s}^{k} \\
x_{s}^{k}>x_{s^{\prime}}^{k^{\prime}} \Rightarrow v_{s}^{k} \leq v_{s^{\prime}}^{k^{\prime}}
\end{array}
$$

Lemma

Let data $\left(x^{k}, p^{k}\right)_{k=1}^{k}$ satisfy SARSEU. Suppose that $\log \left(p_{s}^{k}\right) \in \mathbf{Q}$ for all k and s. Then there are numbers $v_{s}^{k}, \lambda^{k}, \mu_{s}$, for $s=1, \ldots, S$ and $k=1, \ldots, K$ satisfying (2) in Lemma 3.

Lemma

Let data $\left(x^{k}, p^{k}\right)_{k=1}^{k}$ satisfy SARSEU. Then for all positive numbers $\bar{\varepsilon}$, there exists $q_{s}^{k} \in\left[p_{s}^{k}-\bar{\varepsilon}, p_{s}^{k}\right]$ for all $s \in S$ and $k \in K$ such that $\log q_{s}^{k} \in \mathbf{Q}$ and the data $\left(x^{k}, q^{k}\right)_{k=1}^{k}$ satisfy SARSEU.

Lemma

Let data $\left(x^{k}, p^{k}\right)_{k=1}^{k}$ satisfy SARSEU. Then there are numbers v_{s}^{k}, λ^{k}, μ_{s}, for $s=1, \ldots, S$ and $k=1, \ldots, K$ satisfying (2) in Lemma 3.

Lemma

Let A be an $m \times n$ matrix, B be an $I \times n$ matrix, and E be an $r \times n$ matrix. Suppose that the entries of the matrices A, B, and E belong the a commutative ordered field \mathbf{F}. Exactly one of the following alternatives is true.

1. There is $u \in \mathbf{F}^{n}$ such that $A \cdot u=0, B \cdot u \geq 0, E \cdot u \gg 0$.
2. There is $\theta \in \mathbf{F}^{r}, \eta \in \mathbf{F}^{\prime}$, and $\pi \in \mathbf{F}^{m}$ such that $\theta \cdot A+\eta \cdot B+\pi \cdot E=0 ; \pi>0$ and $\eta \geq 0$.

Proof

$$
\begin{array}{r}
\log v_{s}^{k}+\log \mu_{s}-\log \lambda^{k}-\log p_{s}^{k}=0 \\
x_{s}^{k}>x_{s^{\prime}}^{k^{\prime}} \Rightarrow \log v_{s}^{k} \leq \log v_{s^{\prime}}^{k^{\prime}} \tag{4}
\end{array}
$$

In the system (3)- (4), the unknowns are the real numbers $\log v_{s}^{k}$, $\log \mu_{s}, \log \lambda^{k}, k=1, \ldots, K$ and $s=1, \ldots, S$.

Proof:

$$
S 1:\left\{\begin{array}{l}
A \cdot u=0, \\
B \cdot u \geq 0, \\
E \cdot u \gg 0 .
\end{array}\right.
$$

Proof:

Matrix A :

	$(1,1)$	(k,s)	(K,S)	1	s	s	1
$(1,1)$	1	0	0	1	0	0	-1
!	:	:		:	!	:	:
(k,s)	0	1	0	0	1	0	0
				:	\vdots	:	:
(K, S)	0	0	1	0	0	1	0

Proof:

$$
S 2:\left\{\begin{array}{l}
\theta \cdot A+\eta \cdot B+\pi \cdot E=0, \\
\eta \geq 0, \\
\pi>0 .
\end{array}\right.
$$

L. Savage

If I have seen less than other men, it is because I have walked in the footsteps of giants.
P. Chernoff

