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Abstract. We provide revealed preference axioms that charac-

terize models of translation invariant preferences. In particular, we

characterize the models of variational, maxmin, CARA and CRRA

utilities. In each case we present a revealed preference axiom that

is satisfied by a dataset if and only if the dataset is consistent

from the corresponding utility representation. Our results comple-

ment traditional exercises in decision theory that take preferences

as primitive.

1. Introduction

We work out the testable implications of models with translation

invariant preferences. Given a finite dataset on purchases of state-

contingent assets, we give a revealed preference axiom that describes

the datasets that are consistent with different models of translation

invariant preferences.

These models include risk neutral variational preferences (Maccheroni

et al., 2006), risk neutral maxmin preferences (Gilboa and Schmeidler,

1989), and subjective expected utility preferences with constant abso-

lute risk aversion: so-called CARA preferences. Analogously to the
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CARA case, we also work out the testable implications of subjective

expected utility preferences with constant relative risk aversion, the

CRRA preferences (these form the “homothetic” class alluded to in the

title). The models have been used by economists for different purposes.

Variational and maxmin preferences are the most commonly-used mod-

els of ambiguity aversion. They are also used to capture model robust-

ness (Hansen and Sargent, 2008). CARA and CRRA preferences are

very common in applied work in macroeconomics and finance, among

other fields.

Our contribution is to start from finite data on state-contingent con-

sumption purchases, such as one would observe from a market exper-

iment on choice under uncertainty (Hey and Pace, 2014; Ahn et al.,

2014; Bayer et al., 2012; Bossaerts et al., 2010). We describe the

datasets that are rationalizable as consistent with a preference relation

that satisfies translation invariance. When we say that we describe the

datasets that are rationalizable, we mean that we provide a property,

a “revealed preference axiom,” that the data satisfies if and only if it

is consistent with the theory in question.

The models we study have well known axiomatizations when one

takes preferences as primitive, but not when one takes consumption

data as given. The axiomatization of variational preferences is due

to Maccheroni et al. (2006) (see also Grant and Polak (2013) for a

variation on their arguments). The axiomatization of maxmin is due

to Gilboa and Schmeidler (1989). These papers are often thought to

provide the behavioral counterpart of certain theories of choice: the

preference relation captures an agent’s behavior, and the theorems in

these papers describe the behaviors that are consistent with the the-

ory. Our focus is on behavior in the market, not on preferences. The

primitive is a finite list of purchases of state-contingent payments, each

one made at a different price vector.

In contrast with most papers on ambiguity, we do not work in the

Anscombe-Aumann framework. For this reason, we must restrict atten-

tion to risk-neutral variational and maxmin preferences. The Anscombe-

Aumann framework has the advantage that it (essentially) allows the
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utility over outcome to be observable. In a similar vein, our results

extend beyond the risk neutral case by adding a utility function as an

“observation” to our datasets.

It would of course be desirable to obtain results without the assump-

tion of risk neutrality; but these are likely difficult to come by. One

exception is the case of maxmin utility with two states: we give a

characterization of the data sets that are rationalizable with risk neu-

tral (concave utility over money) maxmin in Section 6. The two-state

case is of course restrictive, but probably of interest for experiments on

ambiguity: some of the most basic experiments illustrating ambiguity

aversion involve two states.

The closest papers to ours are Varian (1988), Bayer et al. (2012)

and Polisson and Quah (2013). Our results on CARA and CRRA are

close to Varian (1988). The main difference is that Varian considers the

case of objective probabilities, not subjective. Bayer et al. (2012) and

Polisson and Quah (2013) looks at the testable implications of models

of ambiguity aversion for the same kinds of data that we assume in

this paper. They give a characterization in terms of the solution of a

system of inequalities. Our contribution is different because we give a

revealed preference axiom that has to be satisfied for the data to be

rationalizable.

The papers by (Kubler et al., 2014) and (Echenique and Saito, 2013)

are also related. Kubler et al. solves the same problem as we do

here, but for the case of expected utility theory with known (objective)

probabilities over states. Echenique and Saito solve the problem for

subjective expected utility.

2. Definitions.

Let S be a finite set of states of the world. An act is a function from

S into R. So RS is the set of acts. An act can be interpreted as a

state-contingent monetary payment. Define ‖x‖1 =
∑

s xs.

A preference relation on RS is a binary relation � that is complete

and transitive. Given a preference relation �, we denote by � the strict

part of �. A function u : RS → R defines a preference relation � by
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x � y if and only if u(x) ≥ u(y). We say that u represents �, or that

it is a utility function for �.

A preference relation � on RS is locally nonsatiated if for every x

and every ε > 0 there is y such that ‖x− y‖ < ε and y � x.

3. Preferences, utilities, and data.

A data set D is a finite collection {(pk, xk)}Kk=1, where each pk ∈ RS
++

is a vector of strictly positive (Arrow-Debreu) prices, and each xk ∈ RS

is an act. The interpretation of a dataset is that each pair (pk, xk)

consists of an act xk chosen from the budget {x ∈ RS : pk ·x ≤ pk ·xk}
of affordable acts.1

A data set {(pk, xk)}Kk=1 is rationalizable by a preference relation �
if xk � x whenever pk · xk ≥ pk · x. So a data set is rationalizable by

a preference relation when the choices in the dataset would have been

optimal for that preference relation.

A data set {(pk, xk)}Kk=1 is rationalizable by a utility function u if it

is rationalizable by the preference relation represented by u. So a data

set is rationalizable by a utility function when the choices in the dataset

would have maximized that utility function in the relevant budget set.

A preference relation � is translation invariant if for all x, y ∈ RS

and all c ∈ R, we have x � y if and only if x+(c, . . . , c) � y+(c, . . . , c).

A preference relation � is homothetic if for all x, y ∈ RS and all

α > 0, we have x � y if and only if αx � αy.

A preference � is a (risk-neutral) variational preference if there is a

convex and continuous function c such that the utility function

inf
π∈∆(S)

π · x+ c(π)

represents �. If a data set is rationalizable by a variational preference

relation, we will say that the dataset set is (risk-neutral) variational-

rationalizable.

1Arrow-Debreu prices make sense in a setting of complete markets and absence
of arbitrage. Arrow-Debreu prices can then be recovered from asset prices. We
also imagine experimental data from markets in which Arrow-Debreu securities are
traded (Hey and Pace, 2014; Ahn et al., 2014; Bayer et al., 2012).
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A special case of variational preference is maxmin: A preference

relation is (risk-neutral) maxmin if there is a closed and convex set

Π ⊆ ∆(S) such that the utility function

inf
π∈Π

π · x

represents �. If a data set is rationalizable by a risk neutral maxmin

preference relation, we will say that the dataset set is (risk-neutral)

maxmin-rationalizable.

A utility u : RS → R is constant absolute risk aversion (CARA) if

there is a > 0 and π ∈ ∆(S) for which

u(x) =
∑
s∈S

πs (− exp(−ax)) .

Note that CARA is a special case of subjective expected utility.

A utility u : RS → R is constant relative risk aversion (CRRA) if

there is a ∈ (0, 1) and π ∈ ∆(S) for which

u(x) =
∑
s∈S

πs

(
x1−a

1− a

)
.

If a data set is rationalizable by a CARA (CRRA) utility, we will

say that the dataset set is CARA (CRRA) rationalizable.

4. Variational preferences

We present the results on variational and maxmin rationalizability

as Theorems 1 and 3. In each case, the model in question assumes

a linear utility index: so the model captures ambiguity aversion but

risk neutrality. These results beg the question of the empirical content

of risk aversion together with ambiguity aversion. In Section 6 we

present a result on maxmin utility with risk aversion. It is restricted

to environments with two states.

1. Theorem. The following statements are equivalent:

(1) Dataset D is rationalizable by a locally nonsatiated, translation

invariant preference.
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(2) Dataset D is rationalizable by a continuous, strictly increasing,

concave utility function satisfying the property u(x+(c, . . . , c)) =

u(x) + c.

(3) Dataset D is variational-rationalizable.

(4) For every l = 1, . . . ,M , and every sequence {kl} ⊆ {1, . . . , K},
we have

∑M
l=1

pkl

‖pkl‖1
· (xkl+1 − xkl) ≥ 0 (here addition is modulo

M , as usual).

2. Remark. The preceding result can be generalized. Suppose we were

interested in the testable implications of preferences which are β-translation

invariant, for some β ≥ 0, β 6= 0. That is, we want to know whether

for all x, y, we have x � y if and only if x + β � y + β. Define the

seminorm ‖x‖β1 =
∑

i |βixi|. Then it is an easy exercise to verify that

the testable implications of β-translation invariance are given by equa-

tion (4), replacing ‖ · ‖1 with ‖ · ‖β1 . Hence, the test given here should

be compared with the one given by Brown and Calsamiglia (2007), and

other tests for risk preferences.

We now turn out attention to maxmin preferences. Note that the

equivalence between (2) and (3) in Theorem 3 is well known, but here

we prove it through an application of Theorem 1.

We say that a function u : RS → R is linearly homogeneous if for

all x ∈ RS and all α > 0, we have u(αx) = αu(x).

3. Theorem. The following statements are equivalent:

(1) Dataset D is rationalizable by a locally nonsatiated, homothetic

and translation invariant preference.

(2) Dataset D is rationalizable by a continuous, strictly increasing,

linearly homogeneous and concave utility function satisfying the

property that u(x+ (c, . . . , c)) = u(x) + c.

(3) Dataset D is maxmin-rationalizable.

(4) For every k and l,

pk

‖pk‖1

· xk ≤ pl

‖pl‖1

· xk.
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5. CARA and CRRA

The previous section considers translation invariance and homoth-

eticity as general properties of preferences in choice under uncertainty.

Here we focus on the case of subjective expected utility. So we consider

models in which the agent has a single prior over states, and maximizes

expected utility. The prior is unknown though, and must be inferred

from her choices. In the subjective expected utility case, translation in-

variance gives rise to CARA preferences, and homotheticity to CRRA.

4. Theorem. A dataset D is CARA rationalizable if and only if there

is α∗ > 0 such that (1) holds; and CRRA rationalizable if and only if

there is α∗ ∈ (0, 1) such that (2) holds.

α∗(xkt − xks + xk
′

s − xk
′

t ) = ln(
pks
pkt

pk
′
t

pk′s
)(1)

α∗ ln(
xkt
xks

xk
′
s

xk
′
t

) = ln(
pks
pkt

pk
′
t

pk′s
)(2)

The conditions in Theorem 4 may look like existential conditions:

essentially Afriat inequalities. Afriat inequalities are indeed the source

of equations (1) and (2), as evidenced by the proof of Theorem 4, but

note that the statements are equivalent to non-existential statements.

Equation (1) says that when (xkt − xks + xk
′
s − xk

′
t ) 6= 0,

ln(p
k
s

pkt

pk
′

t

pk′s
)

(xkt − xks + xk′s − xk
′
t )

is independent of k, t, k′ and s; and that when (xkt −xks +xk
′
s −xk

′
t ) = 0

then ln(p
k
s

pkt

pk
′

t

pk′s
) = 0. Similarly for Equation (2).

It is worth pointing out that, except in the case when for all obser-

vations, all prices are equal, and consumption of all goods are equal,

equation (1) can have only one solution. Hence, risk preferences are

uniquely identified. The next corollary also shows that beliefs are iden-

tified.

When π ∈ ∆(S) and a > 0, let Ua =
∑

s∈S πs (− exp(−ax)) denote

the associated subjective expected CARA utility.
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5. Corollary. α∗ > 0 solves (1) if and only if there is π ∈ ∆(S) such

that π and Uα∗ CARA rationalizes D. Further, for any such α∗ > 0,

there is a unique π∗ ∈ ∆(S) such that if π′ and Uα∗ CARA rationalizes

D, then π′ = π. Similarly for (2) and CRRA rationalizability.

6. Risk averse max-min with two states

The prior result is about risk neutral maxmin. Here we turn to

maxmin with risk aversion. A preference relation is maxmin if there is

a closed and convex set Π ⊆ ∆(S) and a concave utility u : RS → R

such that the utility function

inf
π∈Π

∑
s=1,2

πsu(xs)

represents �. If a data set is rationalizable by a maxmin preference

relation, we will say that the dataset set is maxmin-rationalizable.

Assume a dataset {(pk, xk)}Kk=1 in which xks 6= xk
′

s′ when (k, s) 6=
(k′, s′).

Let K1 be the set of all k such that xk1 < xk2, and K2 be the set of

all k such that xk1 > xk2. Suppose that K = K1 ∪K2.

Given a sequence of pairs (xkisi , x
k′i
s′i

)ni=1, consider the following nota-

tion: Let Il,s = {i : ki ∈ Kl and si = s} I ′l,s = {i : k′i ∈ K ′l and s′i = s},
for l = 1, 2 and s = 1, 2.

Strong Axiom of Revealed Maxmin Utility (SARMU): For

any sequence of pairs (xkisi , x
k′i
s′i

)ni=1 in which

(1) xkisi ≥ x
k′i
s′i

for all i;

(2) each k appears as ki (on the left of the pair) the same number

of times it appears as k′i (on the right);

(3) |I1,1| −
∣∣I ′1,1∣∣ =

∣∣I ′2,1∣∣− |I2,1| ≤ 0

The product of prices satisfies that

n∏
i=1

pkisi

p
k′i
s′i

≤ 1.

One can alternatively define the axiom with |I2,2| −
∣∣I ′2,2∣∣ =

∣∣I ′1,2∣∣ −
|I1,2| ≤ 0 in condition (3).
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6. Theorem. A dataset is maxmin rationalizable if and only if it sat-

isfies SARMU.

6.1. Discussion. Echenique and Saito (2013) show that the following

axiom characterizes rationalizability by subjective expected utility.

Strong Axiom of Revealed Subjective Expected Utility (SARSEU):

For any sequence of pairs (xkisi , x
k′i
s′i

)ni=1 in which

(1) xkisi ≥ x
k′i
s′i

for all i;

(2) each k appears as ki (on the left of the pair) the same number

of times it appears as k′i (on the right);

(3) |I1,1|+ |I2,1| =
∣∣I ′1,1∣∣+

∣∣I ′2,1∣∣
The product of prices satisfies that

n∏
i=1

pkisi

p
k′i
s′i

≤ 1.

Note that condition (3) of SARSEU is equivalent to |I2,2| + |I1,2| =∣∣I ′2,2∣∣+
∣∣I ′1,2∣∣ because

|I1,1|+ |I2,1|+ |I2,2|+ |I1,2| = n =
∣∣I ′1,1∣∣+

∣∣I ′2,1∣∣+
∣∣I ′2,2∣∣+

∣∣I ′1,2∣∣ .
Inspection of SARSEU and SARMU yields the following

7. Proposition. If a dataset satisfies SARSEU then it satisfies SARMU.

For a dataset to be maxmin rationalizable, but inconsistent with

subjective expected utility, it needs to contain a sequence in the con-

ditions of SARSEU in which |I1,1| + |I2,1| =
∣∣I ′1,1∣∣ +

∣∣I ′2,1∣∣, but where

|I1,1| −
∣∣I ′1,1∣∣ > 0.

As we have emphasized, the result in Theorem 6 is for two states.

There are two simplifications afforded by the assumption of two states,

and the two are crucial in obtaining the theorem. The first is that

with two states there are only two extreme priors to any set of priors.

With the assumption that u is monotonic, one can know which of

the two extremes is relevant to evaluate any given act. The second

simplification is a bit harder to see, but it comes from the fact that

one can normalize the probability of one state to be one and only keep
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track of the probability of the other state. Then the property of beign

an extreme prior carries over to the probability of the state that is left

“free.”2

7. Proofs

7.1. Proof of Theorem 1. That (3) =⇒(1) is obvious. We shall first

prove that (1) =⇒(4)

Suppose, towards a contradiction, D is a dataset satisfying (1) but

not (4). Then we have a cycle
∑M

l=1
pkl

‖pkl‖1
·(xkl+1−xkl) < 0. Let us with-

out loss assume the sequence is x1, . . . , xM so as to avoid cumbersome

notation. Let Z =
∑M

l=1
pl

‖pl‖1 · (x
l+1 − xl) < 0.

Define a new sequence (y1, . . . , yM) inductively. Let y1 = x1, and let

yk = xk +(ck, . . . , ck) where ck is chosen so that pk

‖pk‖1 · (y
k+1−yk) = Z

M
.

Specifically, c1 = 0 and

ck+1 = ck +
Z

M
− pk

‖pk‖1

· (xk+1 − xk)

for k = 1, . . . ,M − 1. Let qk = pk

‖pk‖1 and consider the dataset (qk, yk),

k = 1, . . .M .

Observe that

M−1∑
k=1

qk · (yk+1 − yk) + qM · (y1 − yM) =
M∑
k=1

pk

‖pk‖1

· (xk+1 − xk) = Z,

and that qk · (yk+1 − yk) = Z/M for k = 1, . . . ,M − 1. Therefore,

qM · (y1 − yM) = Z/M

The original dataset is rationalizable by some locally non-satiated

and translation invariant preference �. It is easy to see that the same

preference rationalizes the dataset (qk, yk). Indeed, if qk · yk ≥ qk · y
then pk · xk ≥ pk · (y − (ck, . . . , ck)), by definition of yk and qk. So

xk � (y− (ck, . . . , ck)), and thus yk � y by translation invariance of �.

Observe that

M−1∑
k=1

qk · (yk+1−yk)+qM · (y1−yM) =
M−1∑
k=1

pk

‖pk‖1

· (xk+1−xk)+cM = Z,

2This can be seen in the proof of Lemma 8 when we go from π̄ ≥ π to µ̄1 ≥ µ
1
.
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and that qk · (yk+1 − yk) = Z/M for k = 1, . . . ,M − 1. Therefore,

qM · (y1 − yM) = Z/M . In particular, qk · (yk+1 − yk) = Z/M < 0 for

k = 1, . . . ,M (mod M). Thus yk � yk+1 as (qk, yk) is rationalizable by

� and � is locally nonsatiated. This contradicts the transitivity of �.

Now we show that (4) =⇒(2). Let x ∈ RS. Let Σx be the set of

all subsequences {kl}Ml=1 ⊆ {1, . . . , K} for which k1 = 1 and define

xkM+1 = x. By (4), if {kl}Ml=1 ∈ Σx has a cycle (meaning that kl = kl′

for l, l′ ∈ {1, . . . ,M} with l 6= l′), then there is a shorter sequence

{kj}M
′

j=1 ∈ Σx with

M ′∑
j=1

pkj

‖pkj‖1

· (xkj+1 − xkj) ≤
M∑
l=1

pkl

‖pkl‖1

· (xkl+1 − xkl).

Therefore, u(x) = inf{
∑M

l=1
pkl

‖pkl‖1
· (xkl+1 − xkl) : {kl}Ml=1 ∈ Σx} is well

defined, as the infimum can be taken over a finite set.

That u : RS → R defined in this fashion is concave, strictly increas-

ing and continuous is immediate. To see that it rationalizes the data,

suppose that pk · xl ≤ pk · xk. Then pk

‖pk‖1 · x
l ≤ pk

‖pk‖1 · x
k. It is clear

then by definition that u(xl) ≤ u(xk) + pk

‖pk‖1 · (x
l − xk) ≤ u(xk).

Finally, to show that u(x) + (c, . . . , c)) = u(x) + c, note that for any

pk, we have pk

‖pk‖1 · (x+(c, . . . , c)) = c+ pk

‖pk‖1 ·x. The result then follows

by construction.

We end the proof by showing that (2) =⇒(3) Let u : RS → R be as

in the statement of (2). Define the concave conjugate of u by

f(π) = inf{π · x− u(x) : x ∈ RS}

= inf{π · x+ cπ · 1− u(x)− c : x ∈ RS, c ∈ R}

= inf{π · x− c(1− π · 1)− u(x) : x ∈ RS, c ∈ R},

where the second inequality uses that u(x+(c, . . . , c)) = u(x)+c. Now

note that f(π) = −∞ if (1−π ·1) 6= 0. Note also that the monotonicity

of u implies that f(π) = −∞ if there is s such that πS < 0. Hence the

domain of f is a subset of ∆(S).
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Now since u is continuous, we have that u(x) = infπ∈∆(S) π ·x−f(p).

Since u rationalizes the dataset, the dataset is variational rationaliz-

able.

7.2. Proof of Theorem 3. It is obvious that (3) =⇒(2) and that (2)

=⇒(1). Hence, to show the theorem, it suffices to show that (4) implies

(3) and that (1) implies (4).

For a dataset D, let πk = pk

‖pk‖1 . It is easy to see that (4) =⇒(3).

Let Π be the convex hull of {πk : k = 1, . . . , K}. Then it is immediate

that U(x) = minπ∈Π π · x rationalizes D.

We prove that (1) =⇒(4). Suppose that D satisfies (1) but not (4).

Then there is k and l for which πl · xk < πk · xk. Let � be a preference

relation as stated in (1). Homotheticity implies that � rationalizes the

data {(xj, πj) : j = 1, . . . , K} ∪ {(θxl, πl)} for any scalar θ > 0. Now,

πl · xk < πk · xk implies that

xk · (πl − πk) + θxl · (πk − πl) < 0

for θ > 0 small enough. But this is a violation of (4) in Theorem 1.

A contradiction because � is translation invariant and locally nonsa-

tiated.

7.3. Proof of Theorem 4. The idea in the proof is to solve the first-

order conditions for the unknown terms. Consider first the case of

CARA. Let π ∈ ∆(S) and α > 0 rationalize D. Then we know that xk

maximizes
∑

s πs−exp(−αxs) subject to pk ·x ≤ pk ·xk. By considering

the Lagrangean and the first order conditions, we may conclude that

for every s, t ∈ S and every k ∈ {1, . . . , K}, we have

πs exp(−αxks)
pks

=
πt exp(−αxkt )

pkt
.

Conclude that pksπt
pkt πs

= exp(−α(xks − xkt )). By taking logs, the system

becomes:

(3) ln(πs)− ln(πt) + α(xkt − xks) = ln(ps)− ln(pt).
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In the case of CRAA, the existence of a rationalizing π and parameter

α imply a first-order condition of the form

(4) ln(πs)− ln(πt) + α ln(xkt /x
k
s) = ln(ps)− ln(pt).

We can denote ln(πs) by zs in Equations (3) and (4). Thus we obtain

that D is rationalizable if and only if there exist zs ∈ R and α > 0

such that the following equation is solved for all s, t, k with s 6= t:

zs − zt + α(ykt − yks ) = ln(pks)− ln(pkt ),

where ykt = xkt for CARA rationalizability, and ykt = lnxkt for CRRA

rationalizability.

Now the necessity of the axioms is obvious. Let k 6= k′, then

α(ykt − yks )− ln(pks/p
k
t ) = zs − zt = α(yk

′

t − yk
′

s )− ln(pk
′

s /p
k′

t )

for any s and t. Thus

α(ykt − yks − yk
′

t + yk
′

s ) = ln(
pks
pkt

pk
′
t

pk′s
).

So (1) is satisfied for the case of CARA rationalizability, and (2) is

satisfied for the case of CRRA rationalizability.

To prove sufficiency, let

dp(s, t, k) = log(pks/p
k
t )

dx(s, t, k) = yks − ykt .

Let α∗ be such that for all k, k′, s, s′ and t,

α∗(ykt − yks − yk
′

t + yk
′

s ) = ln(
pks
pkt

pk
′
t

pk′s
).

Then in particular, for all k, k′, s, s′ and t,

(5) dp(s, t, k) + α∗dx(s, t, k) + dp(t, s, k′) + α∗dx(t, s, k′) = 0.

Note also that

dp(s, t, k) + dp(t, s′, k) + dp(s′, s, k)

+α∗(dx(s, t, k) + dx(t, s′, k) + dx(s′, s, k)) = 0.
(6)



14 CHAMBERS, ECHENIQUE, AND SAITO

Fix s0 ∈ S and let zs0 ∈ R be arbitrary. For any s ∈ S, define zs by

zs = zs0 + α∗dx(s0, s, k) + dp(s, s0, k),

for some k. In fact, by Equation (5) this definition is independent of k

because dp(s, s0, k) + α∗dx(s, s0, k) = dp(s, s0, k
′) + α∗dx(s, s0, k

′).

Given this definition, note that

zs − zt = α∗(dx(s0, s, k)− dx(s0, t, k)) + dp(s, s0, k)− dp(t, s0, k)

= α∗(dx(s0, s, k)− dx(s0, t, k)) + dp(s, s0, k)− dp(t, s0, k)

+ dp(s, t, k) + dp(t, s0, k) + dp(s0, s, k)

+ α∗(dx(s, t, k) + dx(t, s0, k) + dx(s0, s, k))

= dp(s, t, k) + α∗dx(s, t, k).

Where the second equality uses Equation (6).

Hence, with the constructed (zt)t∈S we have

zs − zt + α∗(ykt − yks ) = log(pks/p
k
t ),

for all s, t, and k. The first-order conditions for rationalizability are

therefore satisfied.

7.4. Proof of Theorem 6.

8. Lemma. A dataset D is rationalizable if and only if there are vks ,

λk, s = 1, 2, k = 1, . . . , K, and π̄, π ≥ 0 with π̄ ≥ π, such that:

πvk1 = λkpk1

vk2 = λkpk2,

for all k = 1, . . . , K, where π = π̄ when xk1 < xk2 and π = π when

xk1 > xk2. The numbers also satisfy that vks ≤ vk
′

s′ when xks > xk
′

s′ .

Proof. To prove sufficiency, let vks , λk, s = 1, 2, k = 1, . . . , K, and

π̄, π ≥ 0 with π̄ ≥ π be as in the statement of the lemma. Define

µ̄, µ ∈ ∆(S) as follows. Let µ̄1 = π̄/(1 + π̄) µ̄2 = 1/(1 + π̄) and

µ
1

= π/(1 + π) µ
2

= 1/(1 + π) Note that µ̄1 ≥ µ
1

and µ̄2 ≤ µ
2
, as

π̄ ≥ π. Define θk = λk/(1 + π̄) if xk1 < xk2 and θk = λk/(1 + π) if
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xk1 > xk2. Then we have that µsv
k
1 = θkpk2, with µs = µ̄s when xk1 < xk2;

and µs = µ
s

when xk1 > xk2.

Given the numbers vks it is now routine to define a correspondence

ρ such that if x ≤ x′, y ∈ ρ(x) and y′ ∈ ρ(x′) then y ≥ y′ > 0, and

with ρ(xks) 3 vks . This gives a concave and increasing function u with

∂u(c) = ρ(x). So θkpks
µs
∈ ∂u(xks) for all (x, s), and hence the first order

conditions are satisfied for maxmin rationalization.

We omit the proof of necessity. �

Let A be a matrix with 2K + 2 +K + 1 columns, and 2K rows. The

first 2K columns are labeled with a different pair (k, s). The next 2

columns are labeled π and π. The next K columns are labeled with a

k ∈ {1, . . . , K}. Finally the last column is labeled p.

For each (k, s) with k ∈ K1, A has a row with all zero entries with

the following exception. It has a 1 in the column labeled (k, s), among

the first group of 2K columns. It has a 1 in the column labeled k. In

the column labeled p it has − log(pks). Finally, if s = 1 then it has a

1 in the column labeled π̄. For each (k, s) with k ∈ K2, A has a row

defined as above. The only difference is that when s = 1 then it has a

1 in the column labeled π instead of having one in π̄.

Let B be a matrix with the same number of columns as A, and one

row for each pair (xks , x
k′

s′ ) with xks > xk
′

s′ . The columns of B are labeled

like those of A. The row for xks > xk
′

s′ has all zeroes except for a 1 in

column (k′, s′) and a −1 in column (k, s). Finally, B has one more row.

This row as a 1 in the column for π̄ and a −1 in the column for π, and

it is labeled s = 1 for future reference.

Let E be a matrix with the same number of columns as A, labeled

as above, and a single row. The row has all zeroes except for a 1 in

column p.

By Lemma 8, there is no rationalizing maxmin preference if and only

if there is no solution to the system of inequalities A · x = 0, B · x ≥ 0

and E · x > 0.
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Suppose that all log(pks) are rational numbers. We shall use the

following version of the Theorem of the Alternative, which can be found

as Theorem 1.6.1 in (Stoer and Witzgall, 1970).

9. Lemma. Let A be an m×n matrix, B be an l×n matrix, and E be

an r×n matrix. Suppose that the entries of the matrices A, B, and E

belong to a commutative ordered field F. Exactly one of the following

alternatives is true.

(1) There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u� 0.

(2) There is θ ∈ Fr, η ∈ Fl, and π ∈ Fm such that θ · A + η · B +

π · E = 0; π > 0 and η ≥ 0.

Then the non-existence of a solution to the system A·x = 0, B ·x ≥ 0

and E · x > 0 is equivalent to the existence of integer vectors η, θ and

γ such that θ ≥ 0, γ > 0, and η · A+ θ ·B + γE = 0.

For a matrix D with 2K + 2 + K + 1 columns, let D1 denote the

submatrix corresponding to the first 2K columns, D2 correspond to

the next 2, D3 to the next K, and D4 to the last column. Note that,

by construction of A, B and E, η · A + θ · B + γE = 0 implies that

η · A1 + θ · B1 = 0, η · A2 + θ · B2 = 0, η · A3 = 0, η · A4 + γ = 0.

In fact, we can without loss assume that η, θ and γ take values of −1,

0 or 1. (This assumption is without loss because we can replace each

row of matrices A, B and E with as many copies as indicated by the

corresponding vector η, θ or γ.)

From the existence of such vectors it follows that we can obtain a

sequence (xkisi , x
k′i
s′i

)ni=1 with xkisi > x
k′i
s′i

. The source of each pair (xkisi , x
k′i
s′i

)

is that the column (ki, si) of A is multiplied by η(ki,si) > 0 and the

column (k′i, s
′
i) of A is multiplied by η(k′i,s

′
i)
< 0. The vector η must

then have η(ki,si) > 0 and η(k′i,s
′
i)
> 0, with a −1 in the first column and

a 1 in the second.

We shall prove that the sequence (xkisi , x
k′i
s′i

)ni=1 satisfies the properties

stated in the axiom.

Firstly, η ·A3 = 0 means that for each k, the number of is for which

k = ki equals the number of is for which k = k′i.
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Secondly, η · A2 + θ ·B2 = 0 implies that:∑
k∈K1

η(k,1) + θs=1 = 0

∑
k∈K2

η(k,1) − θs=1 = 0.

Note that
∑

k∈K1
η(k,1) = |{i : ki ∈ K1, s = 1}| − |{i : k′i ∈ K1, s = 1}|,

and similarly for
∑

k∈K2
η(k,1). Hence,

|{i : ki ∈ K1 and si = 1}| − |{i : k′i ∈ K1 and si = 1}|

= |{i : k′i ∈ K2 and si = 1}| − |{i : ki ∈ K2 and si = 1}| ≤ 0,

as ∑
k∈K1

η(k,1) = −
∑
k∈K2

η(k,1) = −θs=1 ≤ 0.

Therefore the sequence (xkisi , x
k′i
s′i

)ni=1 satisfies the second property stated

in the axiom.

Finally,
n∑
i=1

log(p
k′i
s′i
/pkisi ) =

∑
(k,s))

η(k,s) = −γ < 0,

as η · A+ γ = 0. Hence
n∏
i=1

pkisi

p
k′i
s′i

> 1.

The above proof assumes that the log of prices is rational. The

proof of the theorem follows along the same lines as Echenique and

Saito (2013). Specifically, we have shown the following

10. Lemma. If {(xk, pk)} is a dataset satisfying SARMU, in which

log pk ∈ Q for all k, then the dataset is maxmin rationalizable.

One can then prove the following

11. Lemma. If {(xk, pk)} is a dataset that satisfies SARMU, and ε > 0

then there is a collection of prices {qk)} such that log qk ∈ Q+, ‖pk −
qk‖ < ε, and the dataset {(xk, qk)} satisfies SARMU.
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The proof of Lemma 11 is exactly as in (Echenique and Saito, 2013).

Lemma 10 establishes the result in datasets in which the log of prices

is rational. Consider an arbitrary data set {(xk, pk)}, with prices that

may not be rational.

Suppose towards a contradiction that the dataset satisfies SARMU,

but that it is not maxmin rational. Specifically then, by Lemma 8,

suppose that there is no solution to the system A ·x = 0, B ·x ≥ 0 and

E · x > 0. Then by Lemma 9 there are real vectors η, θ and γ such

that θ ≥ 0, γ > 0, and η · A+ θ ·B + γE = 0.

Let (qk)Kk=1 be vectors of prices such that the dataset (xk, qk)Kk=1

satisfies SARMU and log qks ∈ Q for all k and s. (Such (qk)Kk=1 exists

by Lemma 11.) Furthermore, the prices qk can be chosen arbitrarily

close to pk. Construct matrices A′, B′, and E ′ from this dataset in the

same way as A, B, and E above. Note that only the prices are different

in {(xk, qk)} compared to {(xk, pk)}. So E ′ = E, B′ = B and A′i = Ai

for i = 1, 2, 3. Since only prices qk are different in this dataset, only A′4
may be different from A4.

By Lemma 11, we can choose prices qk such that |θ·A′4−θ·A4| < γ/2.

We have shown that θ ·A4 = −γ, so the choice of prices qk guarantees

that θ · A′4 < 0. Let γ′ = −θ · A′4 > 0.

Note that θ · A′i + η ·B′i + γ′Ei = 0 for i = 1, 2, 3. And B4 = 0 so

θ · A′4 + η ·B′4 + γ′E4 = θ · A′4 + γ′ = 0.

We also have that η ≥ 0 and γ′ > 0. Therefore θ, η, and γ′ exhibit a

solution to the dual system for dataset {(xk, qk)}, a contradiction with

Lemma 10.
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