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THE AXIOMATIC STRUCTURE OF EMPIRICAL CONTENT

CHRISTOPHER P. CHAMBERS, FEDERICO ECHENIQUE, AND ERAN SHMAYA

Abstract. We define the empirical content of an economic theory as the

least restrictive observationally equivalent theory. We show that the empirical

content of a theory is captured by a certain kind of axiomatization, with axioms

that are universal negations of conjunctions of atomic formulae.

1. Introduction

The purpose of this study is to understand the notions of falsifiability and

empirical content, independently of their specific meaning in particular economic

theories. We1 introduce a framework for studying the empirical content of an

economic theory. Our main result is a description of the types of axioms that

characterize empirical content.

We define theories as hypothetical “extensions” of data sets. For example, if

one can observe revealed preference demand data, then a theory consists of a

class of preferences whose consistency with the data is to be tested. If there is a

preference in the theory that could rationalize the data, then the data would be

called rationalizable; otherwise, the data falsify the theory.

Some theories make non-testable claims, in that there are less restrictive, obser-

vationally equivalent theories. The theory of utility maximization is an example.
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It is observationally equivalent to the theory of weak order (complete and tran-

sitive preference) maximization, because every finite data set rationalizable by a

weak order is also rationalizable by a utility function. We define the empirical

content of a theory T as the weakest theory observationally equivalent to T .

The goal of this paper is to establish that the falsifiability of a theory is related

to the form (or syntax) of the axioms that characterize the theory. Our result

ties empirical content to a certain kind of axiom, called “UNCAF.” An UNCAF

axiom precludes certain simultaneous observations.

Two familiar examples of axioms are the weak axiom of revealed preference and

the completeness axiom (stating that any two alternatives must be comparable).

The weak axiom is UNCAF: for any pair x and y, it precludes the simultaneous

observation of x being revealed weakly preferred to y and y being revealed strictly

preferred to x. Therefore, it expresses a falsifiable property. The completeness

axiom is not UNCAF, and not falsifiable.

In Section 2, we present our framework for the well-known case of revealed

preference theory: the empirical content of the theories of utility maximization and

weak order maximization are captured by the strong axiom of revealed preference,

which is UNCAF. The remainder of the paper contains a rigorous exposition of

our results, together with some examples that are more involved than the basic

examples in Section 2. The mathematics used are simple but unfamiliar to many

economists. The ideas are borrowed from mathematical logic and model theory,

which are areas of mathematics studying the relationship between the structure

of mathematical statements and the mathematical objects to which they apply.

2. Illustration of empirical content

Two economists, Woland and Ulysses, present their theories about data on

agents’ choices. Woland’s theory, denoted Two, is the theory of weak order maxi-

mization. According to Two, agents have some complete and transitive preference
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relation over alternatives. Woland claims that weak and strong revealed prefer-

ences are instances of some theoretical weak order preference relation. Ulysses’s

theory, denoted Tu, is the theory of utility maximization. According to Tu, agents

have some utility function over alternatives, and revealed preferences are compat-

ible with this utility function.

Both Ulysses and Woland agree on which situations represent ‘weak revealed

preference’ and ‘strict revealed preference.’ For example, they both agree that

an individual reveals a weak preference for alternative x to alternative y when

the individual is willing to choose x over y in direct comparison, and that the

individual reveals a strict preference for x over y when the individual is willing

to choose x over y and some amount of money. Thus, both economists translate

behavior to revealed preference in the same way. However, they present different

theories about preferences.

Ulysses makes a stronger claim than Woland, because any utility function rep-

resents a weak order, while there are weak orders that have no representation by a

utility function. A well-known example is the lexicographic order on R2, which is

a weak order without a utility representation. So, it may seem as though Ulysses

takes more risks than Woland, since if one could demonstrate that an individual

has lexicographic preferences, Ulysses’s theory would be falsified while Woland’s

would not. It is easy to see, however, that this can never be demonstrated. Data

sets are finite, so even if a lexicographic order governs an individual’s choices,

any data set taken from her observed behavior can be rationalized by a utility

function.

So some claims made by Ulysses are not falsifiable. Is Woland guilty of the

same delinquency? The answer is yes. For example, Woland’s claim that the

agent’s weak preference relation is complete is not falsifiable. Under Woland’s

theory, Mark Twain must either weakly prefer coffee to tea or strictly prefer tea

to coffee. All the same, even if Twain holds neither preference, no data can reveal
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this fact. Woland can always claim that non-observation of these choices does not

imply their non-existence.

The non-falsifiability of Woland’s claims is a consequence of a phenomenon we

call partial observability. Data sets can affirm the existence of the entities and

relationships we observe, but cannot imply that relationships we do not observe

do not exist. Partial observability reflects a fundamental feature of scientific data.

In the words of Carl Sagan, “Absence of evidence is not evidence of absence.” We

shall see that partial observability has important consequences for the form of the

axioms that capture empirical content.

Of course, Two and Tu also make falsifiable claims. If Merlin is observed to

strictly prefer Sangrail to Excalibur, strictly prefer Excalibur to Ring of Dispel

and strictly prefer Ring of Dispel to Sangrail, then both Two and Tu are proven

false.

To sum up, Two and Tu make some falsifiable and some non-falsifiable claims.

There is a well-known way to separate the wheat from the chaff. Denote weak

and strict preference by � and �. The (common) falsifiable implications of Two

and Tu are captured by the strong axiom of revealed preference: For all n ≥ 1,

(1) ∀x1...∀xn¬

(
n∧

i=1

(xi Ri xi+1) ∧ (xn � xi)

)
,

where for all i, Ri is either � or �. Note that the “strong axiom of revealed pref-

erence” is actually a collection of axioms. These axioms include ∀x1∀x2¬((x1 �

x2) ∧ (x2 � x1)) (the weak axiom of revealed preference) and ∀x1∀x2∀x3¬((x1 �

x2) ∧ (x2 � x3) ∧ (x3 � x1)) (ruling out cycles of length 3). After purging all

non-falsifiable assertions made by Ulysses and Woland, their theories claim that

agents’ behavior does not exhibit cycles, as described by Axiom (1).

The structure of Axiom (1) is responsible for its falsifiability. It starts with

universal (∀) quantification, then negation (¬), and then a conjunction (∧) of
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statements of the form ‘y � z’ or ‘z � x’. The latter statements are called

atomic formulae in mathematics. In our framework, they are statements about the

observations that comprise a data set. Thus, axioms like (1) are falsifiable because

they are universal statements that negate a conjunction of basic statements about

observables: “universal negation of conjunctions of atomic formulae” (UNCAF).

The main result of the paper is that the empirical content of a theory is ax-

iomatized by the UNCAF axioms that are true in the theory. A theory with an

UNCAF axiomatization makes only falsifiable claims.

Much of modern decision theory is motivated by the idea that axioms provide

the testable implications of a theory. Our main result provides a guide as to which

kinds of axioms serve the stated purpose of decision theorists. Not all axioms used

in economics or decision theory are UNCAF. For example, the completeness axiom

∀x∀y(x � y)∨(y � x) and the non-satiation axiom ∀x∃y (y � x) are not UNCAF.

We present additional examples in Section 4.1.

3. A formal model for empirical content

In Section 2 we discussed empirical content in the context of classical revealed

preference. It was enough then to consider weak and strong revealed preference,

and our axioms used only the symbols � and �. But now these symbols may no

longer be enough. In order to accommodate other theories and frameworks, we

need to allow for other symbols. For example, to discuss some modern models

in decision theory, we need to introduce the union and intersection of sets (for

example, to accommodate the models of Kreps (1979) and Gul and Pesendorfer

(2001); see Section 4.1). Yet other models may need symbols to signify that an

object is a strategy, or that an element is chosen from a set of available actions.

We collect the symbols that we need into a language. A language comprises

symbols for the relations that can potentially be observed and that one can talk
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about in axioms. After formally introducing languages, we proceed to define data

and theories, and the empirical content of a theory.

A language L is given by a finite set of relation symbols and, for each relation

symbol R, a positive integer nR, the arity of R. For the revealed preference

example discussed in Section 2, the language is LRP = 〈�,�〉. It has two binary

relation symbols (i.e., relation symbols of arity 2): �, which is intended to express

revealed weak preference, and �, which is intended to express revealed strict

preference.

Let L be a language. An L-data set D is given by:

(1) A finite non-empty set D (the domain of D).

(2) An n-ary relation RD over D for every n-ary relation symbol R of L. 2

For each R, one should think of an element (x1, . . . , xnR
) ∈ RD as an observation.

We have observed that the elements x1, . . . , xnR
of D stand in relation RD. A

data set collects a finite number of observations.

Consider the language LRP discussed in Section 2. An example of an LRP-data

set is

D = {Sangrail,Excalibur,Ring of Dispel},

with

Sangrail �D Excalibur,

Excalibur �D Ring of Dispel,

Ring of Dispel �D Sangrail.

Less colorful examples abound in empirical studies of consumption.

We now turn to the definition of theory. The main building block is the concept

of structure. An L-structure M is given by the following:

2An n-ary relation on D is a subset of Dn. By convention, we write RD(x1, . . . , xn) if
(x1, . . . , xn) ∈ RD, and if RD is a binary relation, we use the more familiar x RD y instead
of RD(x, y).
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(1) A nonempty set M (the domain of M).

(2) An n-ary relation RM over M for every n-ary relation symbol R of L.

A structure is a hypothetical construct used to extend, or rationalize, data. A

structure describes objects and relations that were not necessarily observed, but

that might have been observed. In contrast, a data set describes actual observa-

tions.

Definition 1. An L-structure M rationalizes an L-data set D if the following

conditions are satisfied:

(1) D ⊆M , where D and M are the domains of D and M.

(2) RD ⊆ RM.

In the context of our recurring example of revealed preference theory, to ratio-

nalize data is to “complete” the relations by adding all unobserved relations to

render the agents’ full preference relation consistent with a given theory.

In Definition 1, note that we requireRD ⊆ RM and not thatRD is the restriction

of RM to D. This requirement reflects our assumptions that relations are only

partially observed in the data set. For example, a data set D = {coffee, tea}

in which we only observe the weak preference tea �D coffee is rationalized by a

structure in which tea is both weakly and strictly preferred to coffee. This is the

nature of partial observability.

We now turn to the definition of theory. We define a theory as a collection

of isomorphic structures in some language. Two structures are isomorphic if

we can identify the objects across the two structures so that all relations are

preserved: Let M and N be L-structures with domains M and N respectively.

Formally, an isomorphism from M to N is a bijective map η : M → N that

preserves the interpretations of all symbols of L: (a1, ..., anR
) ∈ RM if and only if

(η(a1), ..., η(anR
)) ∈ RN for every relation symbol R of L and a1, ..., anR

∈M .
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Definition 2. An L-theory T is a class of structures that is closed under isomor-

phism. A data set D is T -rationalizable if there is a structure in T that rationalizes

D. Otherwise, D falsifies T .

We note that the term ‘theory’ is used in model theory for a different purpose

than ours. For a similar use of the term in economics, see Schipper (2009).

Consider the example in Section 2. Woland’s theory and Ulysses’s theory are

both expressed in the same language LRP. As we emphasized in Section 2, we

assume that Woland and Ulysses interpret the symbols � and � of the language in

the same way. Woland’s theory Two consists of all structuresM = (M,�M,�M),

where M is a set, �M is a weak order on M , and �M is the strict preference

associated to �M. Ulysses’s theory Tu consists of all structures M = (M,�M

,�M), where M is a set, and there is a utility function u : M → R, such that

x �M y if and only if u(x) ≥ u(y) and x �M y if and only if u(x) > u(y). The data

set D = {Sangrail,Excalibur,Ring of Dispel}, whereby Sangrail �D Excalibur,

Excalibur �D Ring of Dispel, and Ring of Dispel �D Sangrail falsifies both Two

and Tu, as it cannot be rationalized by any weak order or utility function.

We are now in a position to introduce the main new concept in the paper, the

concept of empirical content. Recall that Ulysses’s theory is strictly more restric-

tive than Woland’s: Tu ( Two. The two theories are, however, observationally

equivalent. Any data set that falsifies the weaker theory Two also falsifies Tu. Ac-

cording to the definition we propose below, these theories have the same empirical

content.

The theory Two can also be weakened without changing its observable impli-

cations. Consider the structure (X,�X ,�X), in which X is a set of packages of

salt. Suppose that �X is the weak order in which x �X y whenever x has more

salt than y. Suppose, however, that x �X y only when x has at least 50 grams

more salt than y. The structure (X,�X ,�X) is not in Two, as �X is not the
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strict preference relation associated to �X (such objects are studied by decision

theorists in the literature on semiorders). However, the choices generated by an

agent with preferences �X and �X over X do not falsify Two.

For example, consider the data set with alternatives {x350, x375}, where xk is a

packet with k grams of salt. The observations consist of x375 �X x350 and �X= ∅,

so there is no observed strict comparison. Such data is rationalizable by Two,

because the data are silent on whether x375 is strictly preferred to x350 or x350 is

weakly preferred to x375. Note that partial observability plays a crucial role in

this example.

The idea that a theory can be weakened without observable consequences mo-

tivates the notion of empirical content. The empirical content of a theory is the

most permissive observationally equivalent weakening of the theory. Formally:

Definition 3. The empirical content of a theory T , denoted ec(T ), is the class of

all structures M that do not rationalize any data set that falsifies T .

4. Main result

We proceed to define UNCAF axioms and state our main result.

Given a language L, we can write formulae using the symbols in L. In addition

to the relation symbols specified by L, we shall use certain logical symbols. These

symbols are fixed, and we are allowed to use them regardless of the language

under consideration. The logical symbols are the quantifiers “exists” (∃) and “for

all” (∀); “not” (¬); the logical connectives “and” (∧) and “or” (∨); a countable

set of variable symbols x, y, z, u, v, w, . . . ; parentheses ‘(’ and ’)’; and equality and

inequality symbols ‘=’ and ‘6=’. The use of an inequality symbol is not standard

in mathematical logic (see Remark 1 for why we added it).

Certain strings of symbols can be put together to form axioms. We shall not

spell out the formal rules for forming axioms because we mostly consider a special

kind of axiom in this paper, UNCAF axioms, defined below. Rules for forming
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axioms are in, for example, Marker (2002). Such rules are intuitive and imme-

diately recognizable: The string ‘∀x∃y x � y’ is a legitimate axiom. The string

‘∀y∃ � x’ is not.

UNCAF axioms are built out of simple blocks. The first notion is that of an

atomic formula.

An atomic formula φ of a language L is either

(1) t1 = t2 or t1 6= t2, where t1, t2 are variable symbols.

(2) R(t1, . . . , tnR
) where R is a relation symbol of L and t1, . . . , tnR

are variable

symbols.

In the language LRP of revealed preference, all atomic formulae use at most two

variable symbols. The atomic formulae using one variable symbol, say x, are

x � x, x � x, x = x, and x 6= x. The atomic formulae using two variable

symbols, say x and y, are x � y, x � y, x = y, and x 6= y. Atomic formulae

represent the types of observations that data sets contain.

Definition 4. Let L be a language. A universal negation of a conjunction of

atomic formulae (UNCAF) axiom is a string of the form

∀v1∀v2 . . . ∀vn¬ (φ1 ∧ φ2 · · · ∧ φm)

where φ1, φ2, . . . , φm are atomic formulae with variables from v1, . . . , vn.

For a set Γ of axioms of L, let T (Γ) be the theory consisting of the structures

for which all axioms in Γ are true. If T = T (Γ) for some set Γ of axioms, we say

that Γ is an axiomatization of T . If all axioms in Γ are UNCAF, we say that Γ is

an UNCAF axiomatization of T .

For a theory T , denote by uncaf(T ) the set of UNCAF axioms that are true

in all members of T . The following theorem is the main result of the paper. It

asserts that the empirical content of a theory has an axiomatization (whether or



EMPIRICAL CONTENT 11

not the theory itself does), and that it can be axiomatized by the UNCAF axioms

true for every structure in the theory.

Theorem 1. For every theory T , ec(T ) is the theory axiomatized by the UNCAF

axioms that are true in T : ec(T ) = T (uncaf(T )).

In the revealed preference example of Section 2, ec(Tu) = ec(Two). The empirical

content of these theories is the class of structures satisfying (1), the strong axiom

of revealed preference, which constitutes an UNCAF axiomatization of ec(Two)

and of ec(Tu).

Remark 1. The use of an inequality symbol is not standard in mathematical logic.

Adding this symbol as a primitive, while not affecting the expressional power of

the language, increases the set of UNCAF axioms. To see why, consider a language

with a single unary predicate R representing the property of being red, and the

theory that says that there exists exactly one red object. The empirical content

of the theory is that there exists at most one red object. It is axiomatized by the

UNCAF axiom

∀x∀y¬
(
(x 6= y) ∧R(x) ∧R(y)

)
.

We can write an equivalent axiom without using the inequality symbol

∀x∀y¬
(
¬(x = y) ∧R(x) ∧R(y)

)
,

however, the latter axiom is not UNCAF.

Remark 2. In the working version of the paper (Chambers, Echenique, and Shmaya,

2011), we establish results for languages with function and constant symbols, as

well as an infinite list of relation symbols. We dismiss these concepts here in the

interest of exposition.
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4.1. Examples. We review examples of axioms taken from Kreps (1979), Gul

and Pesendorfer (2001), Dekel, Lipman, and Rustichini (2009), as well as two

classical axioms.

The following examples of axioms provide illustrations of Theorem 1. The

first two are in the language LRP. The remaining examples are in the language

LK = 〈∈,∪,∩,�,�〉 (for LK we write ∪ and ∩ in the usual ways, even though

they are relation symbols; see below).

(1) ∀x∀y¬((x � y) ∧ (y � x))

(2) ∀x∀y((x � y) ∨ (y � x))

(3) ∀x∀y(x � y → x � x ∪ y � y)

(4) ∀x∃y((y ∈ x) ∧ (y � x))

(5) ∀x∀y∀z(x ∼ x ∪ y → x ∪ z ∼ x ∪ y ∪ z)

Axiom (1) is UNCAF; it is a version of the weak axiom of revealed preference.

Axiom (2) is the completeness axiom discussed in Section 2; it is not UNCAF

since it uses the disjunction symbol ∨.

Axiom (3) is the Set Betweenness axiom from Gul and Pesendorfer (2001).

Strictly speaking, this axiom should read ∀x∀y∀z((x � y) ∧ (∪(z, x, y)) → x �

z � y), where the relation ∪ of arity 3 is meant to say that z is the union of x

and y. The reason is that, in our language, ∪ is a relation symbol, not a function

symbol. Under the assumption of completeness, Set Betweenness is equivalent to

the pair of UNCAF axioms:

∀x∀y¬((x � y) ∧ (x ∪ y � x))

∀x∀y¬((x � y) ∧ (y � x ∪ y)).

(In every structureM such that �M is complete and �M is its strict part, axiom

(3) is true if and only if its equivalent UNCAF form is true. We often need to
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use such “relative” notions, and we explain how they work in Section 4.2.) We

develop the implications for Gul and Pesendorfer’s theory in Section 5.1 below.

Axiom (4) is Axiom 3 in Dekel, Lipman, and Rustichini (2009). It is not

UNCAF because it requires an existential quantifier. Hence the theory described

by this axiom makes non-falsifiable claims.

Axiom (5) is the main axiom in Kreps (1979), where we have used the notation

∼ to express the two directions of weak preference in the usual way. Similarly to

(3), Axiom (5) is equivalent to an UNCAF axiom under completeness.

4.2. Relative theories. Often a researcher wants to take certain assumptions

as given, and find the empirical content of his theory relative to such given as-

sumptions. For example, decision theorists often regard axioms such as continuity

or completeness as “technical”; they want to build on such axioms by studying

other, more substantive, axioms.

Consider two theories, T and T ′, where T ⊆ T ′. We can define the empirical

content of T relative to T ′, written ecT ′(T ), as the class of all structures M ∈ T ′

that do not rationalize any data set that falsifies T , i.e.,

(2) ecT ′(T ) = ec(T ) ∩ T ′.

The following is an immediate consequence of Theorem 1.

Corollary 1. For any theories T and T ′ such that T ⊆ T ′, ecT ′(T ) = T (uncaf(T ))∩

T ′

We say that a collection of UNCAF axioms Λ is a UNCAF axiomatization of

T relative to T ′ if T = T (Λ) ∩ T ′. Then Corollary 1 implies that the empirical

content of T relative to T ′ admits an UNCAF axiomatization relative to T ′.

4.3. Observing absence of relations. The previous discussion has emphasized

the role of partial observability: the phenomenon that data affirms the existence
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of certain relations, but cannot certify the non-existence of the relations one does

not observe. We shall now expand on this issue by introducing the possibility that

absence of relations may be observed.

To do so, we add, for every relation symbol R, a relation R̃ that represents

absence of R.

Say that a language L supports negation of relations if its relation symbols are

divided into pairs (R, R̃) with the same arity. The idea is that R̃ should represent

the relation ‘R does not hold’. If L supports negation of relations, we denote by

ON (observed negation) the theory of all structures M of L such that R̃M is the

complement of RM for every relation symbol R of L; so that for any x1, . . . , xn,

R̃M(x1, . . . , xn) if and only if it is not the case that RM(x1, . . . , xn). Say that T

respects negation of relations if T ⊆ ON.

We denote by universal(T ) the set of universal axioms that are true in every

structure of T . Universal axioms are more general than UNCAF axioms. They

are axioms in which all the quantifiers over all the variables are “for all”; they

have no existential quantifiers. The completeness axiom ∀x∀y((x � y) ∨ (y � x))

is an example of a universal axiom that is not UNCAF.

The following corollary of Theorem 1 is proved in the appendix. It is based on

the fact that, for theories that respect negation of relations, every universal axiom

is equivalent to an UNCAF axiom.

Corollary 2. Let L be a language that supports negation of relations and let T

be a theory that respects negation of relations. Then ecON(T ) = T (universal(T )).

Corollary 2 illustrates the relation between our results and the discussion in

Popper (1959). Popper advocated universal theories. The distinction between

UNCAF and universal axiomatizations is rooted in partial observability.
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5. Applications

We develop two simple applications of our framework to recent theories in

behavioral economics and decision theory. In each case, we show that the theories

in question have UNCAF axiomatizations. This result is important because it

implies that the theories only make falsifiable claims.

The first application is to the theory of temptation and self-control, a model

in decision theory dealing with the choice of menus of alternatives. Our second

application (Section 5.2) is to models of multiple selves, which are used frequently

in behavioral economics. No axiomatization is known for this application, but we

can still show that the theory has an UNCAF axiomatization, and therefore that

all the claims made by the theory are testable.

5.1. Temptation and self-control (Gul and Pesendorfer, 2001). Consider

the language LK = 〈∈,∪,∩,�,�〉, which we used in Section 4.1. We consider the

theory of Gul and Pesendorfer’s set-betweeness axiom, relative to a basic theory

that we take as given, using the framework of relative theories from Section 4.2.

Let T ′ be the theory of all the structures (X,∈X ,∪X ,∩X ,�X ,�X) in which:

• X = 2A for some set A;

• ∪X and ∩X represent union and intersection of subsets of A;

• �X is a complete binary relation on 2A, and �X is its strict part;

and all structures that are isomorphic to a structure as just described. Thus T ′

collects basic properties of the primitives of the model, and it would not be very

interesting to test for these primitives.

Let TGP be the set of all structures in T ′ that satisfy Gul and Pesendorfer’s Set

Betweenness axiom, equivalent (under completeness) to:

∀x∀y¬((x � y) ∧ (x ∪ y � x))
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and

∀x∀y¬((x � y) ∧ (y � x ∪ y))

written as two axioms. Each of these axiom(s) is UNCAF, so that according to (2)

and Theorem 1, ecT ′(TGP ) = TGP .

5.2. Multiple selves preferences. We apply our concepts to a popular model

without a known axiomatization, the model of multiple selves. The purpose of this

exercise is to demonstrate that the concepts we introduce are useful for studying

theories that have no known axiomatizations (and whose empirical content is

therefore not completely understood). Models of multiple selves are motivated

by empirical observations (see e.g. Ambrus and Rozen (2008), Green and Hojman

(2008), Manzini and Mariotti (2007), O’Donoghue and Rabin (1999) or Fudenberg

and Levine (2006)), but often they lack an axiomatization in terms of observables.

Here we exhibit a broad class of such models that make only falsifiable claims.

In our framework, given is a fixed and finite set of agents, the “selves.” Given

is also a rule for aggregating agents’ preferences into a single preference. The

interpretation is that an individual has conflicting preferences and reconciles these

preferences with a preference aggregation rule. Suppose an aggregate preference

(a revealed preference) is observed. We ask whether it could have been generated

by the rule for some profile of agents’ preferences.

Let n, the number of agents, be fixed. A preference aggregation rule maps every

set X of alternatives and every preference profile (R1, ..., Rn) of linear orders3

over X to a complete binary relation over X. We write �f(R1,...,Rn) for the binary

relation that results (suppressing notation for dependence on X). We assume the

following property:

Definition 5 (Neutrality and Independence of irrelevant alternatives). For all

sets X and Y , for all x, y ∈ X and all w, z ∈ Y and all preference profiles

3A linear order is complete, transitive, and anti-symmetric
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(R1, ..., Rn) over X and (R′1, ..., R′n) over Y , if for all i ∈ N , x Ri y ⇔ w R′i z,

then x�f(R1,...,Rn) y ⇔ w �f(R′1,...,R′n) z.

Fix a preference aggregation rule f . Consider the language with two binary

relation symbols � and �̃. A structureM is f -rationalizable if �M=�f(R′1,...,R′n)

for some profile of linear orders (R1, ..., Rn) and �̃M
is the complement of �M.

The class of f -rationalizable structures is denoted Tf . Note that Tf is in fact a

theory, as it is closed under isomorphism (this is the content of neutrality).

Proposition 1. For every f , ecON(Tf ) = Tf .

Proposition 1 follows from Corollary 2 and results in Chambers, Echenique, and

Shmaya (2012) that imply that Tf admits a universal axiomatization. We omit

the details.

6. Related literature

We are not the first to investigate empirical content; results exist in the lit-

eratures of philosophy of science and mathematical psychology. Popper (1959)

is a seminal reference, viewing falsifiable theories as those that admit universal

axiomatizations (see Section 4.3 on how universal and UNCAF axiomatizations

differ).

Much early literature in philosophy of science was concerned with whether the

restrictions on observable relations imposed by axioms involving unobservable

relations could be expressed in terms of observable relations alone. Craig (1956)

provides a seminal result in this direction.

Adams, Fagot, and Robinson (1970) seem to be the first social scientists to

discuss empirical content in a formal sense (see also Pfanzagl, Baumann, and

Huber (1971) and Adams (1992)). This work defines two theories to be empirically

equivalent if the set of all axioms (of a certain type) consistent with one theory is

equivalent to the set of all axioms consistent with the other. These works do not
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provide a general characterization of the axiomatic structure of empirical content,

but rather focus on characterizing the empirical content of specific theories.

Simon and Groen (1973) present a formal study of the testable implications of

scientific theories (see also Simon (1979, 1983, 1985); Rynasiewicz (1983); Shen

and Simon (1993)). Their notion of data does not allow for partial observability.

Finally, some of our formal arguments are close to results by Tarski (1954).

Tarski characterizes those theories that have a universal axiomatization. As we

demonstrated in Section 4.3, the issue of universal axiomatization is related to

falsification, but Tarski never explored this aspect of his result. We discuss Tarski’s

Theorem and its relation to our theorem in Appendix B.

The discussion in Brown and Kubler (2008) also provides a general framework

for falsification in economic theories. The focus is on mathematical environments

that admit quantifier elimination, and on economic theories that can be expressed

using these environments.

7. Discussion

We develop a theory of empirical content. Many studies in decision and choice

theory aim to provide testable axioms characterizing individual behavior. We

investigate when such axioms are indeed testable, and argue that our analysis is

useful for understanding and advancing modern decision and choice theory. Our

leading examples are borrowed from revealed preference theory and should be

familiar to most economists, but we have also shown that the results are applicable

to less well-understood theories, and can give new substantive results.

There is a recurring methodological debate in economics over the importance

of the falsifiability of a theory. Early literature was sparked by Milton Friedman’s

1953 position that the truth of assumptions does not matter. In our terminology,

a non-UNCAF axiomatization may be preferable to an UNCAF axiomatization

because it is a more tractable description of the theory. (We thank an anonymous
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referee for phrasing the issue in this way.) We agree that this may be the case,

but to verify that the two descriptions are observationally equivalent, we must

understand their empirical content in the first place. This is why our results are

useful. The two axioms of decision theory that seem to have generated the greatest

amount of research are the independence axiom and the sure thing principle, each

of which have been experimentally falsified and each of which can be specified in

UNCAF form.

Paul Samuelson (see Archibald, Simon, and Samuelson (1963)) counters Fried-

man’s position with ideas that we have formalized. Samuelson claims that as-

sumptions matter because either a theory T (described by its “assumptions”)

only makes falsifiable claims and is thus equivalent to its empirical content, in

which case Friedman’s point is moot; or it makes non-falsifiable claims, in which

case the failure to refute the theory is uninformative about the theory’s non-

falsifiable claims. In fact, Samuelson argues by Occam’s Razor, one should choose

the weaker theory, consisting of the empirical content of T (what we have formally

termed ec(T )), rather than unnecessary claims in T . Regardless of one’s position

on the question of realism, this example shows how our notions may be useful.

Finally, we have studied basic ideas from philosophical positivism. As scientists

may have agendas other than falsification, philosophy of science since Popper

has focused on the sociology of actual research. It seems that most economists

still find the problem of falsification important. In fact, recent methodological

discussions in Gul and Pesendorfer (2008), Dekel and Lipman (2009), and Gilboa

(2009) all take for granted that one wants to understand a theory’s empirical

content (possible exceptions are Hicks (1983) and Rubinstein (2006)). In addition,

Olszewski and Sandroni (2009) study a falsifiability problem for non-deterministic

theories. We believe that a formal understanding of empirical content is useful,

independently of the complexities involved in the actual production of research.
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Appendix A. Proofs

A.1. Proof of Theorem 1. Let L be a language and D a L-data set. For every

d ∈ D let vd be a variable. Let φD be the following UNCAF formula of L:

φD = ∀dvd ¬φ̄D, where

φ̄D =
∧

(vd 6= vd′)
∧

R
(
vd1 , . . . , vdn

)(3)

where ∀dvd stands for concatenation of universal quantifiers over all the variables

vd for d ∈ D. In the definition of φ̄D, the first conjunction ranges over all pairs

d 6= d′ ∈ D, and the second conjunction ranges over all relation symbols R and

every (d1, . . . , dn) ∈ RD.

Lemma 1. Let D be a finite data set. Then φD is not true in M if and only if

D is rationalized by some isomorphic copy of M.

Proof of Lemma 1. If a structure M rationalizes D then substituting d for vd we

get that φ̄D is true in M under this substitution, and therefore φD is not true in

M. Since truth is preserved under isomorphisms, it follows that if an isomorphic

copy of M rationalizes D then φD is not true in M.

Assume now that M is an L-structure such that φD is not true in M, and

assume without loss of generality that the domains M and D of M and D are

disjoint (otherwise replaceM with an isomorphic structure and use the fact that

truth is preserved under isomorphism). Since φD is not true in M there exist

elements m̄ = (md)d∈D of M such that φ̄D is true in M under the substitution s

given by s(vd) = md. Consider the isomorphic structure of M′ which is obtained

by replacing every element md with d. (Note that this replacement is possible since

md 6= m′
d whenever d 6= d′, which follows from the fact that φ̄D is true inM under

s.) Then φ̄D is true in M′ under substitution s′ given by s′(vd) = d. It follows

that (d1, . . . , dn) ∈ RM′
for every relation symbol R and every (d1, . . . , dn) ∈ RD.
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Thus, RD ⊆ RM′
for every relation symbol R, and so property (2) in Definition 1

is satisfied. Therefore M′ is an isomorphic copy of M that rationalizes D. �

Proof of Theorem 1. We divide the proof into two steps:

Step 1: If M∈ T (uncaf(T )) then M∈ ec(T ).

Let D be a data set that falsifies T . Then from Lemma 1, and the fact that

T is closed under isomorphism it follows that φD is true in all structures of T ,

so that that φD ∈ uncaf(T ). Therefore φD is true in M, as by hypothesis M ∈

T (uncaf(T )). By Lemma 1 again it follows that M does not rationalize D.

Thus, we proved that M does not rationalize any data set that falsifies T . By

Definition 3, it follows that M∈ ec(T ) as desired.

Step 2: If M /∈ T (uncaf(T )) then M /∈ ec(T ).

Let φ ∈ T (uncaf(T )) be not true inM. Let V be the finite set of variables of φ

so that φ = ∀v∈V v¬φ̄ where φ̄ is a conjunction of atomic formulae with variables in

V and ∀v∈V v stands for a concatenation of universal quantifiers over all variables

v ∈ V .

Since φ is not true inM, it follows that there exists some assignment s : V →M

of elements in the universe ofM to variables such that φ̄ becomes true inM under

the substitution s(v) for every variable v of φ̄.

Let D be a finite data set defined as follows: The domain D of D is given by

D = s(V ). For every relation symbol R,

RD = {(s(v1), . . . , s(vk)) |R (v1, . . . , vk) appears in φ̄},

Then D is a data set that is rationalized byM and φ is not true in any structure

that rationalizes D. But φ is true in every structure of T , and therefore D falsifies



22 CHAMBERS, ECHENIQUE, AND SHMAYA

T . Thus, we proved that M contains a data set D that falsifies T . Therefore

M /∈ ec(T ) by Definition 3. �

A.2. Proof of Corollary 2. The corollary follows immediately from Theorem 1

and the following Lemma.

Lemma 2. Let L be a language that supports negation of relations. Then for

every universal axiom φ in L there exist UNCAF axioms φ1, . . . , φn such that

φ↔ φ1 ∧ · · · ∧ φn is true for ON.

Proof of Lemma 2. We provide a purely syntatic proof. Consider the universal

axiom ∀v̄φ̄(v̄), where φ is quantifier free and v̄ are the variables that appear in

φ. Writing φ̄ in its conjunctive normal form,4 we get that φ is equivalent to a

formula of the form

∀v̄
m∧
i=1

n∨
j=1

φi,j

where each φi,j is a literal, i.e. an atomic formula or a negation of an atomic

formula. Changing the order of the conjunction and the universal quantifier we

obtain a formula of the form
m∧
i=1

∀v̄
n∨

j=1

φi,j.

Using De Morgan’s law and replacing each φi,j with its negation we get a formula

of the form

(4)
m∧
i=1

∀v̄¬
n∧

j=1

φi,j.

Finally, under ON every literal is equivalent to an atomic formula since ¬R(v1, . . . , vk)

is equivalent to R̃(v1, . . . , vk) for every variables v1, . . . , vk. Therefore we can

change the formulae φi,j in (4) to atomic formulae and arrive at a conjunction of

UNCAFs, as desired. �

4The conjunctive normal form of a quantifier free formula is a logically equivalent formula in
which all conjunctions and disjunctions occur at the beginning of the formula, the conjunction
coming first.
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Appendix B. Comparison with Tarski’s Theorem

As discussed in Section 6, Karl Popper regarded universality, rather than UN-

CAF, as the defining characteristic of falsifiability. Popper’s theory “all swans are

white” is not an UNCAF theory, yet Popper regarded it as falsifiable. Tarski’s

Theorem characterizes those theories that admit a universal axiomatization. The

aim of this section is to explain how our theorem relates to Tarksi’s Theorem.

We first reformulate Tarski’s Theorem to highlight the relationship with our

theorem. Let L be a language without constant symbols. Recall that, given two

L-structures M and N with universes M and N , we say N is a substructure of

M if N ⊆ M , and for all x, . . . , xn ∈ N and all relations R, R(x1, . . . , xn) holds

in N if and only if it holds in M.

Finally, we say that an axiom is universal if it has the form ∀v1 . . . ∀vnφ(v1, . . . , vn),

where φ is quantifier free, and a theory admits a universal axiomatization if there

is a collection of universal axioms Λ such that T = T (Λ).

Tarski (1954) proved the following theorem:

Tarski’s Theorem. Let L be a language without constant symbols and let T be an

L-theory. Then T admits a universal axiomatization if and only if the following

condition holds: Every structureM that is not in T contains a finite substructure

N such that N is not sub-structure of any member of T .

We note that the condition in Tarski’s Theorem is very similar to the condition

that Simon and Groen (1973) call finitely and irrevocably testable.5 The similar-

ity between Tarski’s Theorem and our theorem is now transparent: We replace

Tarksi’s finite substructure with data sets and get an UNCAF axiomatization

instead of a universal axiomatization.

5Under two qualifications: Simon and Groen (1973) added the restriction that there exists some
structure M such that M /∈ T . In addition, instead of using our definition of theory as a class
of structures closed under isomorphism, they assume that the class of structures all share the
same domain.
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Falsifiability was not Tarski’s motivation. Indeed, substructures are unsatis-

factory as mathematical models for observed data since they correspond to a

situation in which the scientist observes the presence or absence of every possi-

ble relation among the elements in his data and therefore cannot accommodate

partial observability. In contrast, our definition of data set assumes that, when a

relation is present, the scientist can potentially observe it, but will not necessarily

observe it.
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