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Abstract. We study the testable implications of models of dynamically

inconsistent choices when planned choices are unobservable, and thus only

“on path” data is available. First, we discuss the approach in Blow, Brown-

ing, and Crawford (2021), who characterize first-order rationalizability of

the model of quasi-hyperbolic discounting. We show that the first-order ap-

proach does not guarantee rationalizability by means of the quasi-hyperbolic

model. This motivates consideration of an abstract model of intertemporal

choice, under which we provide a characterization of different behavioral

models – including the naive and sophisticated paradigms of dynamically

inconsistent choice.

1. Introduction

A dynamically inconsistent decision-maker will make plans that she later

does not carry out. If her plan is not carried out, it cannot be observed from the

decision-maker’s actions. This non-observability of inconsistent plans presents

a unique challenge when we want to understand the testable implications of

dynamically inconsistent models, because it means that the most obvious im-

plication of dynamic inconsistency (its defining characteristic) is inherently

unobservable. Of course, in experimental settings, one may imagine eliciting

the decision-maker’s plans, but such elicitation is in general very challeng-

ing, and certainly not possible with the non-experimental, observational, data

that is often used in empirical work. Our purpose in the present paper is to

discuss, and ultimately characterize, the testable implications of dynamically

inconsistent model when plans are unobservable.

Imagine a decision-maker, Alice, who has to make choices in periods one and

two: this week and next. She may have certain preferences over the sequence

of choices, perhaps how much to consume in each week; but her preferences
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in the second week may be governed by different preferences than she holds

initially over sequences of choices throughout the two-week span. Her week-two

self may then deviate from her planned choices in week one. Such behavior is

called dynamically inconsistent: the notion of dynamic inconsistency requires

comparing planned to actual behavior. The problem, however, is that if we

only have access to choice data, then Alice’s plan is unobservable because her

planned choices are not carried out. How can we then determine that Alice’s

week-two self deviated from her initial week-one plan?

The literature often assumes that Alice’s two selves are engaged in a non-

cooperative game, and that a game-theoretic equilibrium outcome is deter-

mined by backward induction. Alice’s week-two preferences determine an op-

timal choice, for each choice of her week-one self. So in week one she chooses

an optimal action, understanding that in week two she will choose optimally

given her second-week preferences. The equilibrium outcome is what we call

on-path data. It contrasts with the possibility of observing a plan for Alice’s

first-week preferences, or observing a full contingent strategy for her second-

week self. We focus on settings where such planned “counterfactual” evidence

is unavailable, and assume that one can only observe on-path behavior.

Our paper proceeds in two parts. First we assess the main existing effort

to characterize the testable implications of dynamically inconsistent behavior

using on-path data. We find that this problem is very challenging, and discuss

the proposed solutions. In second place, we consider general preferences in

an abstract model of choice, with multiple on-path observations. Here we are

able to characterize the testable implications of equilibrium behavior. The

combination of the lack of structure, and multiple observations, renders the

problem tractable.

Our starting point is Blow et al. (2021), the main existing effort to study dy-

namic inconsistency and revealed preferences, who present a revealed-preference

characterization of quasi-hyperbolic discounting preferences in a demand-theory

setting. A consumer chooses over time, according to intertemporal utility

tradeoffs that change over time because of the quasi-hyperbolic assumption.

Following Afriat (1967) (in the general utility-maximization framework), and

Browning (1989) (for dynamically consistent intertemporal choice), the au-

thors use a first-order approach. That is, Blow et al. (2021) interpret the

consistency of data with the model as the existence of a solution to a system
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of equations that captures the first-order conditions for utility maximization.

In the case of dynamically inconsistent quasi-hyperbolic discounting agents,

these first-order conditions come from Euler equations derived in, for exam-

ple, Harris and Laibson (2001).

Now, in the case of Afriat and Browning, one can show that the first-order

approach is equivalent to saying that there is an instance of the model that

explains the data. Indeed, in the general model of utility maximization, and in

the model of a dynamically consistent consumer with exponential discounting,

a dataset is consistent with the first-order approach if and only if one can find

a utility function that satisfies the conditions laid out in the model, and that

generates the data as optimal choices. Actually, proving this fact is, arguably,

Afriat’s main contribution.

We show that the no-loss-of-generality of the first-order approach does not

hold for the model of a dynamically inconsistent quasi-hyperbolic agent. In

other words, the first-order approach is too permissive. To explain, let us

say that a dataset is FOCs rationalizable if there are model parameters

such that the system of inequalities in Blow et al. (2021) is satisfied. We

also say that a dataset is equilibrium rationalizable if there are model

parameters such that observed consumption is an equilibrium outcome of the

quasi-hyperbolic discounting model. Our Theorem 2 shows that there are

datasets that are FOCs rationalizable, but not equilibrium rationalizable.

The conclusion in our Theorem 2 matters, beyond its theoretical implica-

tions, because Blow et al. carry out an empirical application in which they em-

phasize the added empirical explanatory power of the quasi-hyperbolic model.

The gap between equilibrium rationalizability and FOCs rationalizability may

call into question the conclusion about the explanatory power of the quasi-

hyperbolic model.

We should emphasize that the problem is difficult, and Blow et al. (2021)

make clear progress. Our Theorem 2 points out issues with the first-order

approach, but we are unable to provide a characterization of the testable

implications in the one-observation consumption setting of Blow et. al. The

first-order approach is tractable, even if subject to the critiques of our paper.

In search for a tractable formulation, we turn to a general and abstract model

of choice with dynamic inconsistency. We consider a dataset of choices from

multiple budgets, and assume that only on-path choices are observed. Our
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model allows for very general preferences, nesting the quasi-hyperbolic model,

as well as many other models of intertemporal choice. The behavioral models

that we consider involve naive and sophisticated agents. A naive Alice will

make week-one choices unawares that her week-two self may not comply with

her planned choices in week one. A sophisticated Alice will engage in strategic

behavior vis-a-vis her week-two self. She will choose consumption in week one,

fully internalizing the optimal response that her preferences will implement in

week two. A sophisticated Alice’s choices are equilibrium outcomes of a game

between the preferences she holds at different points in time.

We provide characterizations of the datasets that are rationalizable by means

of the naive, and of the sophisticated, models. The key ideas, as in most

studies of revealed preference theory, is to connect the theoretical behavioral

models to the configurations in the data that allow us (as analysists) to draw

conclusions about the direction of the agents’ preferences. In other words, to

identify the configurations of data that define the correct notion of revealed

preference. The axioms then take the form of standard “strong axiom of

revealed preference,” acyclicity, conditions. These are discussed in detail in

Section 3, where we also provide examples that illustrate when the axioms are

violated. Our results are stated in Section 3.4 and proven in Section 6.

Related Literature. To deal with the problem of unobservability of dynamic

inconsistency, behavioral economists usually look for what O’Donoghue and

Rabin (1999) call “smoking guns,” such as a costly effort to constraint one’s

future actions. A review of the empirical literature may be found in Frederick

et al. (2002).

Separately from the pure models of dynamic inconsistency emphasized in

our paper, there are good reasons to think that attitudes towards risk and

uncertainty lie behind some forms of non-exponential discounting. These ar-

guments are developed in Halevy (2008) and Chakraborty et al. (2020).

The closest paper to our work is Blow et al. (2021), who provide a charac-

terization of the datasets that are consistent with the model of a sophisticated

quasi-hyperbolic consumer. We argue here that their notion of rationalization

does not coincide with our definition, and discuss some of the differences. We

take their work as a motivation for ours, but there are of course important

differences. Their tests are truly meant for survey data, and therefore they

insist on a single observation for each consumer. Our datasets require multiple
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observations — which is standard, on the other hand, in revealed preference

theory (for example, Afriat (1967), who does not explicitly deal with dynamic

decision making). As applicable to intertemporal choice, our test are more

suitable for laboratory experiments. We discuss these issues further in Sec-

tion 5.

When turning to the model of abstract choice in Section 3, we follow the

tradition in Arrow (1959) of pursuing the general empirical content of ratio-

nal choice, aside from the specific structure of consumer choice in Euclidean

consumption spaces and Walrasian budgets. The closest work to ours in this

setting is Ray and Zhou (2001) and Bossert and Sprumont (2013), who con-

sider the testable implications of game-theoretic models of dynamic choice (in

a sense, following up on McGarvey (1953), who studies binary voting trees).

Ray and Zhou (2001) characterize the testable implications of subgame-perfect

Nash equilibrium when all subgames of a given extensive form game are ob-

served, which essentially means that “planned” (off-path) choices are observed.

Bossert and Sprumont (2013) characterize the testable implications (and lack

thereof) for choice that is the outcome of an unobserved dynamic strategic in-

teraction (see also the extension by Rehbeck (2014)). In our model, in contrast,

the extensive-form game in question is observable and fixed by the dynamic

multiple-self interaction we have described in the introduction. What is not

observed in our model are the agents’ off-path choices.1 Finally, we should

mention Manzini and Mariotti (2007) who characterize a model of sequential

choice but restricted to the same choice problem. This means that they do

not face the same equilibrium questions that are present in our model.

The work of Echenique et al. (2020) characterizes the testable implications

of several different models of intertemporal choice, including quasi-hyperbolic

discounting with a concave utility function. Their work, however, is restricted

to a single planned choice made in the first period of choice. Our paper instead

considers on-path choices, when plans are not observable.

The issues with the first-order approach that we discuss in Section 2 are, to

some extent, predicted by Peleg and Yaari (1973), who point out the difficul-

ties with preserving convexity of preferences when solving for equilibrium by

backward induction (see, however, Goldman (1980)).

1The literature on revealed preference and game theoretic models is reviewed in Chambers
and Echenique (2016).
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2. A special model: quasi-hyperbolic discounting and

consumption choice.

We first turn our attention to dynamically inconsistent consumer choice,

and in particular to quasi-hyperbolic discounting: the most popular model

used to capture dynamically inconsistent choices in applied economic theory.

We focus on a three-period model because it is the simplest case in which the

assumption of hyperbolic discounting has any bite. The three-period model is

really a model of two-period choice, because period three is purely “residual;”

which we then generalize in Section 3. We should, however, emphasize that

the results we discuss here and in Section 2.3 hold for any finite number of

periods.

A consumer is choosing quantities of a single good in periods t = 1, 2, 3. She

has a wealth m, and faces prices pt for consumption in period t. These prices

may be interpreted as encoding interest rates. In the paper, we normalize any

price vector so that p3 = 1. Given prices and wealth, a consumption stream

(x1, x2, x3) is affordable if p · x =
∑3

t=1 ptxt ≤ m.

The standard exponential-discounting model assumes that preferences over

a consumption stream x = (x1, x2, x3) ∈ R3
+ are described by a pair (u, δ),

with u : R+ → R, and δ > 0. The consumer evaluates a consumption stream

x = (x1, x2, x3) by

u(x1) + δu(x2) + δ2u(x3),

and chooses an optimal affordable consumption stream. We shall soon impose

additional assumptions on u and δ.

When her preferences satisfy the exponential discounting model, we can

either imagine the consumer choosing a consumption stream as a plan, or al-

ternatively as choosing consumption over time. The assumption of exponential

discounting means that the consumer is dynamically consistent. When choos-

ing over time, she has no reason to deviate from her planned consumption.

Under quasi-hyperbolic discounting, the consumer’s preferences are described

by a tuple (u, β, δ), with u : R+ → R, and β, δ > 0. The consumer evaluates

a consumption path x = (x1, x2, x3) by

u(x1) + β[δu(x2) + δ2u(x3)].

A sophisticated quasi-hyperbolic consumer chooses consumption that results

from an equilibrium between their period-1 preferences and their period-2
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preferences. We phrase this as a game played between two agents.2 Agent 1

chooses consumption in period 1, x1. Agent 2 chooses consumption in period 2,

and thus in period 3 because consumption in period 3 is determined by the

consumer’s overall budget. So Agent 2 chooses (x2, x3).

The relevant equilibrium notion embodies a form of sequential rationality:

it is a subgame-perfect Nash equilibrum. A subgame-perfect equilibrium can

be described by backward induction: In period 2, given x1, agent 2 maximizes

u(x1) + βδu(x2),

subject to x2, x3 ≥ 0 and p2x2 + p3x3 ≤ m− p1x1. Let s(x1) = (s2(x1), s3(x1))

denote a solution to Agent 2’s problem, as a consumption vector in periods 2

and 3, and as a function of the period-1 choice x1.

Agent 1 then solves the problem of choosing period-1 consumption x1 to

maximize

u(x1) + βδu(s2(x1)) + βδ2u(s3(x1)),

subject to x1 ≥ 0 and p1x1 ≤ m. If x∗
1 is an optimal choice for Agent 1, we say

that the pair (x∗
1, s) is a subgame-perfect Nash equilibrium of the game

induced by (u, β, δ). In the sequel, we simply write equilibrium to refer to a

subgame-perfect Nash equilibrium.

An equilibrium outcome of the game defined by (u, β, δ), for fixed prices

p = (p1, p2, p3) and budget m, is then a consumption stream x = (x1, x2, x3)

for which there exists an equilibrium (x∗
1, s) with x∗

1 = x1 and (x2, x3) = s(x1).

When u is smooth (C2), we observe that a sufficient condition for an interior

equilibrium outcome is the equation:

(1) u′(xt) = λ
pt
δt

t∏
i=1

1

1− (1− β)µi

,

where λ is a Lagrange multiplier. The numbers µt are marginal propensities

to consume from wealth.

A standard calculation, assuming interior solutions and using the Implicit

Function Theorem (which requires u′′ ̸= 0 at a solution), yields that

(2) µ2 =
βδp22 u

′′(x3)

u′′(x2) + βδp22 u
′′(x3)

,

2The game-theoretic formulation is standard in the literature. See, for example, O’Donoghue
and Rabin (1999) or Harris and Laibson (2001).
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while µ3 = 1 (µ1 plays no role in the equilibrium analysis as λ is a free

parameter).

Equation (1) is due to Definition 1 of Blow et al. (2021) and Equation (2)

is due to Lemma 1 of Blow et al. (2021) (see also Harris and Laibson (2001)).

We also derive them directly in Section 6.1.

2.1. Data. A dataset is a pair (x, p), where x ∈ R3
++ and p ∈ R3

++. The

interpretation is that we observe a consumption stream x, chosen when the

prices are p, and income (or budget) is m = p · x. Importantly, x is the

observed, or realized, consumption choice. Not a plan.

Note that we restrict attention to data with strictly positive consumption.

We will discuss the viability of the “first-order approach,” so we assume away

the obvious question of whether corner solutions could mean that interior first-

order conditions are incorrect. The points we wish to make are orthogonal to

the existence of corner choices (in fact, our main results continue to hold if we

assume data to be non-negative).

Finally, in this section we shall restrict attention to datasets with a single

observation; see the discussion in Section 5.

2.2. Rationalizability and FOCs rationalizability. We now introduce the

relevant notions of rationalizability: what it means for a dataset to be consis-

tent with a particular theory of consumer choice.

Let U be the set of all monotone increasing, C2, and concave functions

u : R+ → R. And let U+ be the set of all u ∈ U that are strictly concave.

Definition 1. A dataset (x, p) is rationalizable by the exponential dis-

counting model if there exist u ∈ U and δ ∈ (0, 1] for which x solves the

problem of maximizing u(z1) + δu(z2) + δ2u(z3) over the budget set

{z ∈ R3
+ : p1z1 + p2z2 + z3 ≤ p · x}.

When this occurs, we say that (u, δ) is a rationalization of the data by

means of the exponential discounting model.

We note that one may be interested in exponential discounting without

imposing smoothness or concavity of utility, but we follow Blow et al. (2021)

in these assumptions because we want to address the results in their paper.

Definition 2. A dataset (x, p) is equilibrium rationalizable by the so-

phisticated quasi-hyperbolic model if there exists (u, β, δ), with u ∈ U+,
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β ∈ (0, 1), and δ ∈ (0, 1], for which (xt)
3
t=1 is an equilibrium outcome of the

game defined by (u, β, δ) for prices p and budget m = p · x. When this oc-

curs, we say that (u, δ, β) is a rationalization of the data by means of the

sophisticated quasi-hyperbolic discounting model.

Again, we follow Blow et al. (2021) in imposing strict concavity of utility,

δ ≤ 1 and β < 1.3 Indeed, Blow et al. emphasize that if one allows for δ > 1

then their conditions amount to checking for GARP.

The definitions of rationalizability by exponential discounting, or by the so-

phisticated quasi-hyperbolic discounting models, require checking complicated

optimization and equilibrium properties. The literature on revealed preference

theory, following the seminar work of Afriat (1967), often focuses on the data

satisfying the first-order conditions in the model.

Definition 3.

i) A dataset (x, p) is FOCs rationalizable as exponential discount-

ing if there is δ > 0 and u ∈ U so that

u′(xt) =
pt
pt+1

δu′(xt+1).

Such a pair (u, δ) is a FOCs rationalization of exponential discounting.

ii) A dataset (x, p) is FOCs rationalizable by the sophisticated quasi-

hyperbolic model if there exists (u, β, δ, (µt)
3
t=1) such that u ∈ U+,

λ > 0, β ∈ (0, 1), δ ∈ (0, 1], µt ∈ (0, 1) for t = 1, 2, and µ3 = 1; so

that Equation (1) is satisfied. We say that the triple (u, β, δ, (µt)
3
t=1) is

a FOCs rationalization by the sophisticated quasi-hyperbolic

model.

iii) A dataset (x, p) is strong FOCs rationalizable by the sophisti-

cated quasi-hyperbolic model if there exists a FOCs rationalization

(u, β, δ, (µt)
3
t=1) that satisfies Equation (2).

3The definition in Blow et al. (2021) explicitly requires concavity, not strict concavity; but
they assume that the consumption function is differentiable, which (as far as we know)
relies on an application of the Implicit Function Theorem that rules out a zero of the second
derivative of the instantaneous utility function. Blow et al. refer to Harris and Laibson
(2001), who do assume strict concavity of utility. So do Krusell and Smith (2003), in a
paper that studies a closely related model.
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Definition 3(i) simply imposes the well-known first-order condition (or Euler

equation) for maximizing a discounted utility function. FOCs rationalizability

for exponential discounting was developed, and applied, by Browning (1989).

Definition 3(ii) of FOCs rationalizability for sophisticated quasi-hyperbolic

discounting was introduced by Blow et al. (2021). FOCs rationalizability does

not connect the numbers µt with the rationalizing instantaneous utility func-

tion u, so we present the stronger definition 3(iii) which imposes such a con-

nection by way of Equation (2).

Afriat (1967) shows that the first-order approach is valid for the general

model of utility maximization in consumer theory. A similar statement is true

for exponential discounting. It is presented here without proof.

Proposition 1. A dataset is FOCs rationalizable by the exponential discount-

ing model if and only if it is rationalizable by the exponential discounting model.

Moreover, any FOCs rationalization is also a rationalization as the exponential

discounting model.

2.3. FOCs rationalizability for the quasi-hyperbolic model. Let FOC

(respectively SFOC and EQ) be the set of all datasets that are FOCs (re-

spectively strong FOCs and equilibrium) rationalizable. Let D be the set of

datasets (x, p) that satisfy xt ̸= xs for all t ̸= s, and I be the set of datasets

with p1 > p2 > p3 and p1/p2 > p2/p3.

Theorem 2.

(1) EQ ⊆ SFOC ⊊ FOC,

(2) D ∩ FOC ⊊ SFOC,

(3) and I ⊆ FOC.

A proof of Theorem 2 is in Section 6, as are the proofs of all results in the

paper.

To unpack the theorem, we discuss the different claims it contains. First it

states the obvious logical relation among the different notions or rationaliza-

tion: EQ ⊆ SFOC ⊆ FOC; but in contrast with the message of Proposition 1

for exponential discounting, there is a gap between the notion of equilibrium

and FOCs rationalization (EQ ̸= FOC), with the latter being strictly more

permissive. The gap already shows up in comparing FOCs and strong FOCs

rationalizations, so that SFOC is a strict subset of FOC.
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The second statement addresses the, perhaps, most glaring issue with the

notion of FOCs rationalization: The disconnect between u and µts. One could

try to amend the first-order approach by insisting on strong FOCs, but Theo-

rem 2 says that, as long as consumption in different time periods is distinct, it

is always possible to line up the µt numbers with the intended rationalization.

So strong FOCs seems to be too permissive as well.4

The third statement provides additional evidence about the weakness of

FOCs rationalization. No matter what the values of consumption are, as

long as a dataset satisfies the assumption on prices in I, then it is FOCs

rationalizable. It is worth mentioning that such prices are compatible with

data that refute the exponential discounting model.5

Our next result speaks to the use of FOCs rationalizability to recover, or

estimate, the parameters of a quasi-hyperbolic utility function.

Theorem 3.

(1) Let δ∗ ∈ (0, 1) and β∗ ∈ (0, 1). There is an equilibrium rationalizable

dataset (x, p) such that: a) δ = δ∗ and β = β∗ for any equilibrium ratio-

nalization (u, β, δ) of (x, p), and b) there is also a FOCs rationalization

(u, β′, δ′) of (x, p) with δ′ = 1.

(2) There exists (x, p) ∈ SFOC with a (strong FOCs) rationalization (u, β, δ)

so that x is not an equilibrium outcome of (u, β, δ).

Estimating β and δ is an important empirical exercise. Discount factors mat-

ters critically for welfare comparisons, and is a key input in policy decisions.

But the proof of Proposition 1 in Blow et al. (2021) shows that whenever a

dataset is FOCs rationalizable, it is without loss of generality to assume δ = 1.

Theorem 3 claims that the reason is the permissiveness of FOCs. The assump-

tion that δ < 1, for example, has additional empirical content when we focus

on equilibrium rationalizability rather than FOCs.

Finally, the second statement in Theorem 3 speaks to the possibility of using

a FOCs, or strong FOCs, rationalization in order to recover utility parameters.

The theorem says that a rationalization may not have an equilibrium outcome

4See Theorem 9 in Appendix A for further evidence on this claim. When we allow for
multiple observations, we exhibit a dataset that is in SFOC but not in EQ.
5For example, consumption x = (3, 2, 4) at prices p = (8, 2, 1) violate the SAR-EDU of
Echenique et al. (2020) by means of the balanced sequence (x1, x2), (x3, x2).
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that coincides with the data, which would mean that the rationalizing pa-

rameters could not generate the observed data. This problem is a particular

challenge for the analysis in Section 3.4 of Blow et al. (2021), in which the

authors set out to recover preferences based on a FOCs rationalization. The

recovered preferences may not explain the data according to the sophisticated

quasi-hyperbolic model.

3. A general model of two-period choice

We now turn to an analysis of a general model of two-period choice, again

with two periods being the bare minimum needed to discuss dynamically in-

consistent choices. The case of more than two periods is treated in Section 4,

where it becomes clear that the two-period analysis already captures the em-

pirical content of sophisticated dynamically inconsistent choice.

We assume given a set X = X1 × X2 of possible alternatives, or choices,

that can be made. First, Agent 1 chooses x1 ∈ X1. Second, after observing

1’s choice of x1, Agent 2 chooses x2 ∈ X2. The outcome is the pair x =

(x1, x2) ∈ X; and agents have potentially different preferences ≿1 and ≿2 over

X. We allow for very general preferences, nesting the quasi-hyperbolic model

discussed until now, as well as many other models of intertemporal choice.

When agents 1 and 2 have different preferences, the outcome may be dy-

namically inconsistent in the following sense: Agent 1 chooses x1 ∈ X1 as part

of a “plan” (x1, x
′
2) ∈ X. Agent 2, however, may not comply with the intended

plan of 1, and choose x2 ∈ X2 according to their preference ≿2.

For example, to accommodate the setting in Section 2, we can have X1 =

R+ and X2 = R2
+. In this case, Agent 1 chooses period-1 consumption x1

and has preferences over X represented by u(x1) + βδu(y2) + βδ2u(y3); while

Agent 2 chooses consumption in periods 2 and 3, x2 = (y2, y3) ∈ R2
+, with

preferences over X that are represented by u(y2) + βδu(y3). The source of

dynamic inconsistency is that 1’s marginal rate of substitution for consumption

in periods 2 and 3 is δu′(y3)/u
′(y2), while it is βδu′(y3)/u

′(y2) for Agent 2.

More generally, any setting with choices over many periods can be accom-

modated by considering choices in the first period and the rest. In stationary

environments with a recursive formulation, one could study the full dynamic

problem by means of two-period decisions.
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Our focus is on observable choices from a family of feasible sets of choices:

budgets B ⊆ X. Given a budget B, we denote by B1 = {x1 ∈ X1 : (x1, x2) ∈
B for some x2 ∈ X2} its projection onto X1; and by B2(x1) = {x2 ∈ X2 :

(x1, x2) ∈ B} its section at x1 ∈ X1. Given a budget B, Agent 1 may choose

x1 ∈ B1 as part of a plan (x1, x
′
2) ∈ B. Then Agent 2 chooses x2 ∈ B2(x1). For

example, in the model of Section 2, a budget is defined by prices p and income

m, and takes the form B(p,m) = {(x1, y2, y3) ∈ X : p1x1 + p2y2 + p3y3 ≤ m}.

3.1. Behavioral assumptions. Now we may envision different behavioral

assumptions. The first, naive, model has Agent 1 choosing a plan (x1, x
′
2) ∈ B,

unawares that Agent 2 is not committed to following the plan, and may choose

x2 ̸= x′
2. The observed outcome is then (x1, x2). As analysts, we never get to

see 1’s intended x′
2.

The second, “Nash,” model assumes that Agent 1 chooses x1 ∈ B1 whilst

correctly predicting that Agent 2 will choose x2 ∈ B2(x1). This model cor-

responds to a Nash equilibrium between the players, if they were to move

simultaneously. As analysts, we again observe the realized choices (x1, x2).

Finally, the fully sophisticated model envisions the dynamic game between

Agent 1 and 2 that we have emphasized in Section 2. Agent 1 fully understands

that Agent 2 is choosing x2 according to her preferences, and that her choices

are constrained to B2(x1). This model is Stackeleberg to the Nash model’s

Cournot. Key to Agent 1’s behavior is her understanding of all the choices

that 2 will make in response to different x1. As analysts, however, we only

observe the on-path choices (x1, x2). We must infer that x2 is optimal for

Agent 2 in B2(x1), and that x1 is optimal for Agent 1 among all the pairs

(x′
1, x

′
2) that she could obtain by selecting x′

1 ∈ B1, and predicting an optimal

choice x′
2 ∈ B2(x

′
1) by Agent 2.

3.2. Data. Key to our analysis is the assumption of choice from multiple

budgets. So we depart from the assumption of a single budget in Section 2. A

dataset is a collection D = {xk, Bk}k∈K where Bk ⊆ X and xk ∈ Bk. Each

dataset is comprised of a finite collection of observations (xk, Bk), where Bk is

a budget and xk = (xk
1, x

k
2) ∈ Bk. The interpretation is that, when faced with

budget Bk, Agent 1 chose xk
1 ∈ Bk

1 and Agent 2 chose xk
2 ∈ Bk

2 (x
k
1).

3.2.1. Notational conventions. Preference relations, which are denoted as ≿,

over X are assumed to be complete and transitive (that is, weak orders). The
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set of maximal elements according to a preference ≿ is denoted by

max(B,≿) = {x ∈ B|x ≿ y for any y ∈ B}.

Finally, we use Bk(x1) = {x ∈ X|∃x2 ∈ X2 s.t. x = (x1, x2) ∈ Bk} and

Bk(·, x2) = {x ∈ X|∃x1 ∈ X1 s.t. x = (x1, x2) ∈ Bk}.6

3.2.2. Notions of rationalization. Given our notion of data, and the different

behavioral models one may use to explain it, there are still some questions

regarding the exact nature of a rationalization. For example, if one allows for

preferences that are indifferent among all outcomes, then in principle there

are no testable implications from any model. The problem of discipline is

discussed in detail in Chambers and Echenique (2016), who propose two dif-

ferent paradigms: weak and strong rationalization. Here we are essentially

adopting the strong viewpoint, which means that we insist that the predicted

theoretical outcomes exactly match the observed choices. (The alternative,

weak, notion would only require that observations are among the theoretically

predicted outcomes, but that preferences satisfy some additional properties

that rule out trivial rationalizations.)

We first consider the naive model outlined above, whereby the agent who

moves first does not know, or realize, that the second agent has different

preferences.

A data set D is naively rationalizable if there exist preference relations

≿1 and ≿2 on X such that for each observation k ∈ K,

(3) max
(
Bk,≿1

)
∈ Bk(xk

1)

and

(4) max
(
Bk(xk

1),≿2

)
= xk.

The meaning of max
(
Bk,≿1

)
∈ Bk(xk

1) is that there is a uniquely optimal

choice for ≿1 in Bk, and it involves choosing xk
1 ∈ X1. It also involves some

unobserved zk2 ∈ X2, so max
(
Bk,≿1

)
= (xk

1, z
k
2 ), but the rationalization is

free to construct this counterfactual “planned” choice. The second choice,

made by Agent 2, is then the best element xk of Bk(xk
1).

6Note that Bk(x1) is a subset of X while Bk
2 (x1) is a subset of X2.
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A data set D is naively Nash rationalizable if there exist preference

relations ≿1 and ≿2 on X such that for each observation k ∈ K,

(5) xk ∈ max
(
Bk(·, xk

2),≿1

)
and

(6) max
(
Bk(xk

1),≿2

)
= xk.

Going back to the discussion of the different possible behavioral assumptions

one could use, this definition says that there are preferences for which the

observed outcomes constitute a Nash equilibrium between Agent 1 and 2.

One may desire a stricter discipline on the rationalization, and impose that

the observed choice by Agent 1 is their unique optimal action. This leads to

the next notion of rationalization.

A data set D is strictly naively Nash rationalizable if there exist pref-

erence relations ≿1 and ≿2 such that for each observation k ∈ K,

(7) max
(
Bk(·, xk

2),≿1

)
= xk

and

(8) max
(
Bk(xk

1),≿2

)
= xk.

A data set D is sophisticated rationalizable if there exist preferences ≿1

and ≿2 on X such that for each observation k ∈ K,

(9) max
( ⋃

x1∈Bk
1

max
(
Bk(x1),≿2

)
,≿1

)
= xk.

It should be clear that the definition corresponds to our third behavioral

model, in which Agent 2 will choose, for each possible x1 ∈ Bk
1 , a maximal

element of Bk(x1). Given that, the Agent 1 chooses xk
1 that maximizes her pref-

erence and the second agents chooses xk
2 given xk

1. In the setting of Section 2,

sophisticated rationalizability corresponds to sophisticated quasi-hyperbolic

rationalizability.

3.3. Axioms. A property analogous to the strong-axiom of revealed prefer-

ence (SARP) is obviously going to be important in characterizing rationality.

The first such axiom is easy to formulate and interpret, once we understand

that xkl ∈ Bkl+1(x
kl+1

1 ) means that xkl+1 is revealed preferred to xkl :
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P1

P2 P2

x1 x′
1

x2 x′
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x2 x′
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x1x2 x1x
′
2 x1x
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2 x′′
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′
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1x
′
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1x
′′
2x′

1x2

Figure 1. A Violation of N-SARP

N-SARP: There is no sequence k1, . . . , kL of K such that for each l ≤ L,

xkl ̸= xkl+1 and

(10) xkl ∈ Bkl+1(x
kl+1

1 ).

Figure 1 exhibits a violation of N-SARP. In the figure, X1 = {x1, x
′
1} and

X2 = {x2, x
′
2, x

′′
2}. There are two observations, shown on the left and the

right in the figure. In the figure on the left, we have that B1 is either {x1}
or {x′

2}. The feasible choices for Agent 2 are illustrated in the game tree. So,

B1 = X \ {(x′
1, x

′′
2)} and B2 = X \ {(x1, x

′′
2)}. Agents choices are depicted in

blue, x1 = (x1, x2) and x2 = (x1, x
′
2). The figure shows a violation of N-SARP

because x1 ∈ B2(x2
1) and x2 ∈ B1(x1

1).

In the current model, the sections of two budget sets that correspond two

different period-1 choices do not intersect, so the acyclicity for Agent 2’s choices

has no bite when Agent 1’s choice are always distinct.

Remark 1. When xk
1 ̸= xs

1 for any k, s ∈ K, N-SARP is vacuous.

A similar notion of acyclicity is meaningful for an Agent 1 who takes Agent

2’s choice as given. If we denote by Bk(·, xk
2) the section of Bk at xk

2, then we

obtain our next version of SARP:

NN-SARP. There is no sequence k1, . . . , kL of K such that for each l ≤ L,

xkl ̸= xkl+1 and

(11) xkl ∈ Bkl+1(·, xkl+1

2 ).
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Figure 2. A Violation of Condition 1 (but not Condition 2)

We now consider an axiom that tackles the non-observability of plans in

the naive model. Imagine a dataset where Bk(xk
1) ⊆ Bk′ \ Bk′(xk′

1 ). Then we

must infer that, no matter what Agent 1 planned to choose in period 2 from

Bk′(xk′
1 ), it must be preferred by Agent 1 to whatever outcome she planned

to choose in period 2 from Bk(xk
1). This means, then, that we could not

have Bk′(xk′
1 ) ⊆ Bk \ Bk(xk

1), as that would lead to the opposite conclusion.

In consequence, Bk(xk
1) ∪ Bk′(xk′

1 ) ⊆ Bk \ Bk(xk
1) ∪ Bk′ \ Bk′(xk′

1 ) leads to a

refutation of the naive model.

More generally, the property we need is:

Condition 1: For any subset S of K,

(12)
⋃
k∈S

Bk(xk
1) ̸⊆

⋃
k∈S

Bk \Bk(xk
1).

The choices in Figure 1 satisfy Condition 1, but Figure 2 exhibits a violation

of this condition. In the figure, we have the same X and budgets as in the

previous example, but now x1 = (x′
1, x2) and x2 = (x1, x2). No matter what

Agent 1 plans to choose in period 2 following x1, this option was available

to her in B1 when she picked x′
1 from B1. So it is clear that such data is

incompatible with the naive model, and Condition 1 is violated.

Next, to get a handle on Agent 1’s revealed preferences, consider a situation

where xk ∈ Bk′(xk
1) ⊆ Bk(xk

1). This means that 2’s choice in Bk remains

feasible in budget Bk′ after 1 chooses xk
1, and all of 2’s feasible choices in

budget Bk′ after 1 chooses xk
1 were feasible in feasible Bk. Since 2 picked xk

2 as
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Figure 3. A Violation of Condition 2 (but not Condition 1)

an optimal response to xk
1 in budget Bk, she would still choose it as an optimal

response to xk
1 in budget Bk′ . We can then infer, by the usual logic of one

object being chosen when another was feasible, that Agent 1 reveals preferred

xk′
1 to xk

1. The acyclicity of this revealed preference relation is expressed as

Condition 2: There is no sequence k1, . . . , kL of K such that for each l ≤ L,

xkl ̸= xkl+1 and

(13) xkl ∈ Bkl+1(xkl
1 ) ⊆ Bkl(xkl

1 ).

Condition 2 is satisfied in the examples we presented in Figures 1 and 2.

Consider, however, the situation in Figure 3. The choice sets and budgets are

as before, but x1 = (x1, x2) and x2 = (x′
1, x

′
2). We have B2(x1) ⊆ B1(x1) and

x1 ∈ B2(x1), which means that Agent 2 knows that by choosing x1 ∈ B2
1 she

will ensure x1. Choosing x′
1 ∈ B1 that is different from x1 reveals a preference

for this choice. However, we may make the opposite inference if we reason

from the fact that B1(x′
1) ⊆ B2(x′

1). This data will, then, contradict the

sophisticated model.

It is worth mentioning that the data in Figure 3 satisfy Condition 1, N-

SARP, and NN-SARP.

3.4. Characterizations. Our strongest result requires the assumption that

no two observed first-period choices are the same. For data that satisfy the

assumptions, we can precisely characterize the naive and the sophisticated

model. It becomes clear, then, that the gap between these models is exactly

the gap between Conditions 1 and 2.
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Figure 4. A Violation of NN-SARP (Consequently, Condition 2)

Theorem 4. Let D be a dataset in which xk
1 ̸= xs

1 for any two distinct k, s ∈ K.

(1) D is naively rationalizable iff it satisfies Condition 1.

(2) D is sophisticated rationalizable iff it satisfies Condition 2.

(3) D is strictly naively Nash rationalizable iff it satisfies NN-SARP.

When the assumption in Theorem 4 is not satisfied, we can still characterize

the naive and naively-Nash models.

Theorem 5. Let D be a dataset.

(1) D is naively rationalizable iff it satisfies N-SARP and Condition 1.

(2) D is naively Nash rationalizable iff it satisfies N-SARP.

(3) D is strictly naively Nash rationalizable iff it satisfies N-SARP and

NN-SARP.

3.5. Example on NN-SARP. We end with an example exhibiting a vio-

lation of NN-SARP. Again the choice and budget sets are as in the previ-

ous examples. Consider an example where B1 = X \ {(x′
1, x

′′
2)} and B2 =

X \ {(x1, x
′′
2)}.

Consider the choices in Figure 4, x1 = (x1, x2) and x2 = (x′
1, x2). In this

example, NN-SARP is violated (consequently Condition 2 is also violated)

since x1 ∈ B2(·, x2
2) and x2 ∈ B1(·, x1

2), but Condition 1 and N-SARP are

satisfied.
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4. Sophisticated and naive rationalizations with more than two

periods

We now extend our analysis of sophisticated and naive rationalizations for

choice problems with more than two periods. Let T ≥ 2 be the number

of periods and X =
∏T

t=1Xt be the set of all possible alternatives. First,

Agent 1 chooses x1 ∈ X1 in period 1. Then, for any t ≤ T , after observing

choices xt−1, Agent t chooses xt ∈ Xt in period t. The outcome is the vector

x = (x1, x2, . . . , xT ) ∈ X; and agents have potentially different preferences

{≿t}t∈T over X.

For example, to accommodate the quasi-hyperbolic discounting model, we

can have Xt = R+ for each t < T and XT = R2
+. In this case, Agent t < T

chooses period-t consumption xt and has preferences ≿t over X represented

by u(xt) +
∑T−t−1

s=1 βδsu(xt+s) + βδT−tu(yT ) + βδT−t+1u(yT+1), while agent T

chooses consumption in periods T and T + 1, xT = (yT , yT+1) ∈ R2
+, with

preferences over X that are represented by u(yT )+βδu(yT+1). It is immediate

that when β < 1, preferences ≿t are different.

Notations. We write xt = (x1, . . . , xt) and x−t = (x1, . . . , xt−1, xt+1, . . . , xT )

for a given x = (x1, . . . , xT ) and t ∈ T . Given a budget set B ⊆ X, we also

write

B(xt−1) = {x ∈ X|∃(xt, . . . , xT ) s.t. x ∈ B},

Bt(xt−1) = {xt ∈ Xt|∃(xt+1, . . . , xT ) s.t. x ∈ B},

and

B−t(x−t) = {x ∈ X|∃xt ∈ Xt s.t. x ∈ B}.

For simplicity, we abuse notation and denote B−t(x−t) as B(x−t).

A dataset is a collection D = {xk, Bk}k∈K where Bk ⊆ X is a budget

and xk ∈ Bk. Each dataset is comprised of a finite collection of observations

(xk, Bk), where Bk is a budget and xk = (xk
t )t∈T ∈ Bk. The interpretation is

that, when faced with budget Bk, Agent t chose xk
t ∈ Bk

t (x
k
t−1).

A data set D is naively rationalizable if there exist preferences {≿t}t∈T
on X such that for each observation k ∈ K,

(14) max
(
Bk(xk

t−1),≿t

)
∈ Bk(xk

t )
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for each t < T and

(15) max(Bk(xk
T−1),≿T ) = xk.

Note that Equation (14) says that Agent t’s optimal choice inBk(xk
t−1) coincide

with xk
t in period t.

A data set D is naively Nash rationalizable if there exist preferences

{≿t}t∈T on X such that for each observation k ∈ K,

(16) xk ∈ max
(
Bk(xk

−t),≿t

)
for each t < T and

(17) max
(
Bk(xk

T−1),≿T

)
= xk.

One may desire a stricter discipline on the rationalization, and impose that

the observed choice by Agent t is their unique optimal action. This leads to

the next notion of rationalization.

A data set D is strictly naively Nash rationalizable if there exist pref-

erences {≿t}t∈T such that for each observation k ∈ K and t ≤ T ,

(18) max
(
Bk(xk

−t),≿t

)
= xk.

A data set D is sophisticated rationalizable if there exist preferences

{≿t}t∈T on X such that for each observation k ∈ K,

(19) max
(
Mk

1 ,≿1

)
= xk,

where Mk
1 , . . . ,M

k
T are defined recursively as follows:

(20) Mk
t (xt−1) =

⋃
xt∈Bk

t (xt−1)

max
(
Mk

t+1(xt),≿t+1

)
for each t < T and Mk

T (xT−1) = Bk(xT−1).

4.1. Axioms and Characterization. To characterize the naive model in this

environment, we provide appropriate modifications of N-SARP and Condition

1. For each t ∈ T , we define the following.

t-SARP: There is no sequence k1, . . . , kL of K such that for each l ≤ L,

xkl ̸= xkl+1 and

(21) xkl ∈ Bkl+1(x
kl+1

−t ).
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Note that N-SARP is equivalent to 2−SARP and NN-SARP is equivalent

to 1-SARP when T = 2.

Condition 5: For any subset S of K and t ≤ T ,

(22)
⋃
k∈S

Bk(xk
t ) ̸⊆

⋃
k∈S

Bk(xk
t−1) \Bk(xk

t ).

The behavioral implications of N-SARP and Condition 1 remain the same.

Given our definitions of Bk(x1), Condition 2 is well-defined and has the same

behavioral implications in this general environment as we show below.

Again, our strongest result requires the assumption that no two observed

first-period choices are the same. For data that satisfy the assumptions, we

can precisely characterize the naive and the sophisticated model.

Theorem 6. Let D be a dataset in which xk
1 ̸= xs

1 for any two distinct k, s ∈ K.

(1) D is sophisticated rationalizable iff it satisfies Condition 2.

(2) D is naively rationalizable iff it satisfies Condition 5.

(3) D is strictly naively Nash rationalizable iff it satisfies 1-SARP.

Remark 1. The sufficiency proof of Statement (1) of Theorem 6 essentially

reduces to the two-period problem treated in the body of the paper. When we

construct a rationalizing preference, we rely heavily on the two-period result

from Section 3.4, and we argue that we may set the preferences of the period

t agent to equal those of the second period agent, for all t > 2. In a sense,

the only tension that has real empirical consequences is between the first and

subsequent agents.

When the assumption in Theorem 6 is not satisfied, we can still characterize

the naive and naively-Nash models.

Theorem 7. Let D be a dataset.

(1) D is naively rationalizable iff it satisfies T -SARP and Condition 5.

(2) D is naively Nash rationalizable iff it satisfies T -SARP.

(3) D is strictly naively Nash rationalizable iff it satisfies t-SARP for each

t ∈ T .
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5. Discussion and conclusion

Our paper spans two different approaches to revealed preference theory. The

first uses the structure of consumption space, in which assumptions regarding

convexity (and possibly monotonicity) are meaningful and can be important.

Smoothness assumptions are useful as well. To the extent that the theory is

meant to be used with survey data, it is important to obtain testable implica-

tions even when we have a single observation of intertemporal consumption.

The second, more abstract setting, seeks to isolate the problem of testing for

rationality from the consumption environment. Think of Arrow’s (or Sen’s)

formulation of the choice problem, in contrast to the theory of Samuelson and

Hicks. The simplification afforded by the abstract setting is that there is no

need to ensure that rationalizing preferences possess any special structure, as

long as some discipline avoids a trivial rationalization. In the abstract set-

ting, it is crucial to have multiple observations in order to obtain any testable

implications.

We proceed to discuss these aspects of our paper further.

Our characterization results rely on datasets that involve multiple observa-

tions. This is a key difference from Blow et al. (2021) (and the earlier work of

Browning (1989)), who are primarily interested in survey data of consumers

making choices over time. In survey data, one would typically only observe

each consumer making a unique choice in every period. Our results are, in con-

trast, applicable to experimental data. It is common in experiments to have

participants make more than one choice, and then pay out a choice selected

at random.

The multiplicity of observations in our model raises two issues. The first is

that, perhaps, having access to many observations gives FOCs rationalizabil-

ity more power to reject the property of being quasi-hyperbolic rationalizable

by the sophisticated model. To this end, we present an example in Appen-

dix A that shows how, with an arbitrarily large dataset, there is still a gap

between the FOCs notion of rationalizability, and equilibrium rationalizability

by means of the sophisticated quasi-hyperbolic model. Indeed the gap is, in

that case, between strong FOCs rationalizability and equilibrium rationaliz-

ability.

The second issue regards the motivation. If datasets with multiple obser-

vations make most sense for experimental data, then one could also design
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experiments in which plans are observable by having experiment participants

first formulate a plan, and then coming back to the lab to revise their choices.

Such experiments have been run, but are notoriously difficult to implement,

and raise questions about the exact inferences that one can make from the

agents’ choices. So we still believe that there is value in having a characteriza-

tion that will make sense for standard experimental designs implemented over

time.

Turning to the abstract choice model, it allows us to get a handle on the

sophisticated problem, which seems (to us) intractable for the consumption

environment. In the abstract choice model, there is no structure on the ratio-

nalizing preferences, because there is really no structure in the choice environ-

ment. This lack of discipline on rationalizing preference does not inherently

render the problem easier, but it allows us to identify the relevant revealed

preference inference that can be made from observed intertemporal choices.

In consequence, we obtain quite naturally necessary conditions that the data

must satisfy to be consistent with the sophisticated model. Such necessary

conditions turn out, for the most part, to be sufficient. Further necessary

conditions are discussed and explored in Appendix B.

6. Proofs

As a preparation for the proof of Theorem 2, we derive convenient expres-

sions for the model’s first- and second-order conditions.

6.1. First-Order Conditions. Agent 2’s objective function is strictly con-

cave, so the interior solutions to 2’s optimization problem are characterized by

the first-order condition

(23)
u′(x2)

u′(x3)
= p2 β δ.

By strict concavity, the optimum is unique, and we may write the choice of

x3 as a function of x2 by g(x2), where g(x2) = (u′)−1(Au′(x2)), and A = 1
βδp2

.

We may also write period-1 consumption as

x1 = f(x2) =
m− p2 x2 − g(x2)

p1

(recall that p3 = 1). Note that the function g is smooth and strictly monotone

increasing, while f is smooth and strictly decreasing.
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In Section 2, we formulated the game between the two agents using optimal

strategies s2 and s3 for Agent 2; but note that s2 and f are inverses of each

other, and that s3 is determined from s2 by the budget constraint.7

It is convenient to represent Agent 1’s problem as choosing x2 to maximize

u(f(x2)) + βδ u(x2) + βδ2 u(g(x2)),

subject to the relevant non-negativity constraints. The first-order condition

for an interior solution is then

(24) u′(f(x2))f
′(x2) + βδ u′(x2) + βδ2 u′(g(x2))g

′(x2) = 0.

By definition of f and g, we then obtain

(25)
u′(x1)

u′(x2)
=

δ p1
p2

g′(x2) + β p2
g′(x2) + p2

.

Lemma 8. Let (x, p) be a dataset and (u, β, δ) ∈ U+ × (0, 1) × (0, 1] be such

that (23) and (25) are satisfied. Let µ1 ∈ (0, 1) be arbitrary,

µ2 =
p2

u′′(x2)
p2 β δu′′(x3)

+ p2
,

and µ3 = 1, then Equations (1) and (2) are satisfied. In other words, (u, β, δ)

is a strong FOCs rationalization of (x, p).

Proof. Define λ = δ u′(x1)(1−(1−β)µ1)
p1

. We then obtain Equation (1) for t = 1.

From Equation (25), we obtain

u′(x2) = u′(x1)
p2
δ p1

g′(x2) + p2
g′(x2) + β p2

= λ
p2
δ2

1

1− (1− β)µ1

g′(x2) + p2
g′(x2) + β p2

= λ
p2
δ2

2∏
i=1

1

1− (1− β)µi

,

7Indeed, the budget constraint is p2s2(x1)+s3(x1) = m−p1x1 (when p3 = 1). So p2s
′
2(x1)+

s′3(x1) = −p1. Agent 1’s FOC is: u′(x1) + βδu′(x2)s
′
2(x1) + βδ2u′(x3)s

′
3(x1) = 0, which

becomes u′(x1) = βδ[−u′(x2)s
′
2 + δu′(x3)(p1 + p2s

′
2)]. So u′(x1)

u′(x2)
= δ

[
p1

p2
+ (1− β)s′2

]
since

u′(x3) = u′(x2)/βδp2. The formulation in Blow et al. (2021) uses a consumption function
that depends on current period wealth. Let the consumption function be c2(A2) and note
that s2(x1) = c2(m−p1x2), so s′2 = −p1c

′
2 = −p1

p2
µ2; where we have used that µt = ptc

′
t(At).

Putting these together we get u′(x1)
u′(x2)

= δ p1

p2
[1− (1− β)µ2]. This is the equation used in Blow

et. al.
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where we have used that

µ2 =
p2

u′′(x2)
p2 β δu′′(x3)

+ p2
=

p2
g′(x2) + p2

∈ (0, 1),

as g′(x2) =
Au′′(x2)
u′′(x3)

and A = 1
βδp2

.

Equation (23), implies that

u′(x3) =
u′(x2)

p2 βδ
= λ

1

δ3

2∏
i=1

1

1− (1− β)µi

1

β
= λ

p3
δ3

3∏
i=1

1

1− (1− β)µi

,

where µ3 = 1 and p3 = 1. In other words, we have derived Equation (1) for

each t ≤ 3.

Finally, we obtain Equation (2) from

µ2 =
p2

u′′(x2)
p2 β δu′′(x3)

+ p2
=

β δ p22 u
′′(x3)

u′′(x2) + β δ p22 u
′′(x3)

.

□

Indeed, strong FOCs rationalizability is equivalent to Equations (23) and (25).

Note that the derivations hold for any µ1 ∈ (0, 1) as we can freely choose λ.

Hence, the FOC rationalizability is equivalent to

u′(x1)

u′(x2)
= δ

p1
p2

(1− (1− β)µ2) and
u′(x3)

u′(x2)
= β δ p2.

6.2. Deriving the Second-Order Conditions. Since Agent 1’s objective

function is

u
(
f(x2)

)
+ β δ u(x2) + β δ2 u

(
g(x2)

)
,

the SOC is

u′′(x1) (f
′(x2))

2+β δ u′′(x2)+β δ2 u′′(x3) (g
′(x2))

2+g′′(x2)
(
β δ2 u′(x3)−

u′(x1)

p1

)
≤ 0.

Using Equations (23) and (25), we can further simplify and obtain

(26)

u′′(x1) (f
′(x2))

2+β δ u′′(x2)+β δ2 u′′(x3) (g
′(x2))

2+g′′(x2)u
′(x2)

δ(1− β)

g′(x2) + p2
≤ 0.

When there is no present-bias, β = 1, the above term is strictly negative

since u is strictly concave. Similarly, when A = 1 (which occurs for some of

our examples), we obtain g(x2) = x2 and again the second-order condition is

satisfied. However, with present bias, β < 1, or when g′′ > 0, the term above

can be strictly positive and the second-order condition violated.
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6.3. Proof of Theorem 2. It is obvious that EQ ⊆ SFOC ⊆ FOC. We

proceed to show that the other statements in the theorem.

Part 1: There exists a dataset in FOC that is not in SFOC. Consider a

dataset with x1 = x2 = x3, p2 = 3, and p1 = 4. This is FOCs rationalizable

by the sophisticated quasi-hyperbolic model by setting λ = δ = 1, β = 1/3,

µ1 = 1/2, µ3 = 1 and µ2 = 3/8. It is then easy to verify the definition of

FOCs rationalizability. We obtain that

λ
pt
δt

t∏
i=1

1

1− (1− β)µi

= pt

t∏
i=1

1

1− (1− β)µi

= 6

for t = 1, 2, 3. Now setting u′(xt) = 6, and letting u be any utility func-

tion in U+ that has derivative = 6 at the point x1, renders the data FOCs

rationalizable as desired.

The data is, however, not strong FOC rationalizable. Suppose it were, and

let (u, β, δ) be such a rationalization. Then (23) and x2 = x3 imply that

1 =
u′(x2)

u′(x3)
= βδp2.

So βδ = 1/3. Consequently, g(x2) = (u′)−1( 1
βδp2

u′(x2)) = x2, as βδp2 = 1. So

g′(x2) = 1. On the other hand, (25) and x1 = x2 imply that

1 =
δ p1
p2

g′(x2) + β p2
g′(x2) + p2

= δ
4

3

1 + 3β

1 + 3
=

δ + 3βδ

3
=

δ + 1

3

and hence that δ = 2. A contradiction.

Part 2. Any dataset in FOC that has xt ̸= xs for all t ̸= s is strong FOCs

rationalizable.

To prove this, we claim that, if (û, β, δ, (µt)
3
t=1) is a FOCs rationalization,

then we may find a strong FOCs rationalization (u, β, δ, (µt)
3
t=1) for which

u′(xt) = û′(xt) for all t. To this end, let at = û′(xt) > 0, and choose bt < 0 so

that µ2 = A−1 b3 p2
b2+A−1 b3 p2

holds. Note that (u, β, δ, (µt)
3
t=1) will be a FOCs ratio-

nalization if u′(xt) = at. Moreover, Equation (2) will be satisfied if u′′(xt) = bt.

Consider the function ht(x) = at + bt(x − xt). Note that ht is monotone

decreasing and that at = ht(xt) < hs(xs) = as when xs < xt, as û is strictly

concave. Given that xs ̸= xt for t ̸= s we may find disjoint neighborhoods

Nt of each xt so that ht is smaller on Nt than hs on Ns when xs < xt, and

greater on Nt than hs on Ns when xs > xt. Define a function h : R+ → R

by letting h equal ht on Nt, h(0) > sup{ht(x) : x ∈ Nt, 1 ≤ t ≤ 3}, and by
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linear interpolation on R+ \ ({0} ∪ (∪tNt)). Then h is monotone decreasing,

h(xt) = û′(xt), and h′
t = bt for all t. Letting u(x) =

∫ x

0
h(z) dz, we have

u′(xt) = h(xt) = at and u′′(xt) = h′(xt) = bt.

Part 3. I ⊆ FOC directly follows from Proposition 1 of Blow et al. (2021).

6.4. Proof of Theorem 3. Part 1: To prove the first statement in the The-

orem, fix δ∗ ∈ (0, 1) and β∗ ∈ (0, 1) and consider a dataset with x1 = x2 = x3

and

p2 =
1

β∗δ∗
and p1 =

1 + β∗δ∗

(β∗δ∗)2(1 + δ∗)
.

Let (u, β, δ) be an equilibrium rationalization. We claim that δ = δ∗ and

β = β∗.

Since x2 = x2, by Equation (23), we have 1 = βδp2; i.e., βδ = β∗δ∗. More-

over, we also obtain A = 1, which means that g′(x2) = 1. Since x1 = x2, by

Equation (25), we have

1 = δ
p1
p2

g′(x2) + βp2
g′(x2) + p2

= δ
1 + β∗δ∗

β∗δ∗(1 + δ∗)

1 + β
β∗δ∗

1 + 1
β∗δ∗

=
δ + 1

1 + δ∗
.

Hence, δ = δ∗ and β = β∗.

Observe that the data we have proposed are strong FOCs rationalizable,

as we may choose any strictly concave utility that has the requisite value of

u′(xt) (given x1 = x2 = x3). In fact, it is equilibrium rationalizable because

βδp2 = 1 means that g(x) = x, which in turn implies that Agent 1’s objective

function, u(f(x2))+βδu(x2)+βδ2u(g(x2)), is strictly concave. So the dataset

is certainly FOCs rationaliable.

On the other hand, the proof of Proposition 1 in Blow et al. (2021) shows

that whenever a dataset is FOCs rationalizable then it is without loss of gener-

ality to set δ = 1. It is in fact easy to show that the data is FOCs rationalizable

with (u, β′, δ′) with δ′ = 1 and β′ = β∗δ∗ by setting µ2 =
1−β∗(δ∗)2

1−(β∗)2(δ∗)2
.

Part 2: Finally, we prove the second statement in Theorem 3.

Consider a dataset with x1 = 0.04, x2 = 0.05, x3 = 0.4698, and prices

p2 = 2 and p1 = 3.0969 (consequently, m = 0.694). We claim that (u, β, δ),

with β = δ = 0.8, and u(x) = x − x3

3
when x ∈ (0, 1), is a strong FOCs

rationalization by the sophisticated quasi-hyperbolic model.
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Indeed, note that g(x) =
√

1− A (1− x2) where A = 0.78125. By direct

calculation, we obtain

g′(x2) =
Ax2√

1− A (1− x2
2)

= 0.083147 and g′′(x2) =
A (1− A)

(1− A (1− x2
2))

3
2

= 1.648.

To verify strong FOCs rationalizability, note that Equation (23) is satisfied

since
u′(x2)

u′(x3)
=

1− x2
2

1− x3
2

=
1− 0.052

1− 0.46982
=

1

0.78125
= β δ p2.

Moreover, Equation (25) is satisfied since

u′(x1)

u′(x2)
=

1− 0.042

1− 0.052
=

0.8× 3.1

2

(
0.083147 + 1.6

0.083147 + 2

)
=

δ p1
p2

(
g′(x2) + β p2
g′(x2) + p2

)
.

To check the equilibrium rationalizability, let us now consider the second

order condition for Agent 1. However, we have

g′′(x2)u
′(x2)

δ(1− β)

g′(x2) + p2
= 0.1263 > 0.1035

= |u′′(x1) (f
′(x2))

2 + β δ u′′(x2) + β δ2 u′′(x3) (g
′(x2))

2|,

which means Equation (26) is violated. Hence, the observed consumption

bundle (x1, x2, x3) is a local minimizer for Agent 1’s optimization problem.

6.5. Proof of Theorem 4. Suppose xk
1 ̸= xs

1 for any k, s ∈ K with k ̸= s.

Under this assumption, N-SARP becomes vacuous. Hence, the first and third

parts of this theorem directly follow from Theorem 5. We now shall prove the

second part of Theorem 4.

Necessity. To prove the necessity of Condition 2, we define the following

revealed preference relation.

Revealed Preference 1. xk R1 x
s if xk ̸= xs and

xs ∈ Bk(xs
1) ⊆ Bs(xs

1).

To show the acyclicity of R1, we will prove that xk R1 x
s implies xk ≻1 x

s.

Take any k, s such that xk R1 x
s. Since

max
( ⋃

x1∈Bs
1

max
(
Bs(x1),≿2

)
,≿1

)
= xs,

we have

max
(
max

(
Bs(xs

1),≿2

)
,≿1

)
= xs;
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which implies

xs ∈ max
(
Bs(xs

1),≿2

)
.

Moreover, since

max
({

max
(
Bk(x1),≿2

)}
x1∈Bk

1
,≿1

)
= xk and xs

1 ∈ Bk
1 ,

we have

xk ≻1 max
(
max

(
Bk(xs

1),≿2

)
,≿1

)
or max

(
max

(
Bk(xs

1),≿2

)
,≿1

)
= xk.

Since xs ∈ Bk(xs
1) and Bk(xs

1) ⊆ Bs(xs
1),

xs ∈ max
(
Bs(xs

1),≿2

)
⇒ xs ∈ max

(
Bk(xs

1),≿2

)
.

Therefore, since xs ∈ max
(
Bk(xs

1),≿2

)
, then we have xk ≻1 xs, the desired

result.

Sufficiency. We now show the sufficiency of Condition 2. By Condition 2, R1

is acyclic. Let ≿1 be a preference relation that extends R1 such that xk ≻1 x
s

if xk R1 x
s. Moreover, let xk ≻1 x for any x ∈ X \

⋃
s∈K{xs}.

Let ≿2 be a preference relation such that

xk ≻2 x for any x ∈ Bk(xk
1) \ {xk}

and

x ≻2 x
k for any x ∈

(
{xk

1} ×X2

)
\Bk(xk

1).

Observe that ≿2 is well-defined. Note that there is no x such that xk ≻2 x

and x ≻2 x
2 because the former requires that x be an element of Bk(xk

1), while

the latter requires x to be not an element of Bk(xk
1). Moreover, longer cycles

of ≻2 cannot occur because xk
1 ̸= xs

1 for any k, s ∈ K with k ̸= s. Hence there

exists a relation ≿2 that satisfies the stated properties.

Hence,

max
(
Bk(xk

1),≿2

)
= xk.

We shall show that

max
( ⋃

x1∈Bk
1

max
(
Bk(x1),≿2

)
,≿1

)
= xk.

It is enough to prove that whenever x ∈ max
(
Bk(x1),≿2

)
and x1 ̸= xk

1,

we have xk ≻1 x. By the construction of ≿1, we have xk ≻1 x for any x ∈
X\

⋃
s∈K{xs}. Hence, it is enough to show that xs ∈ max

(
Bk(xs

1),≿2

)
implies
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xk ≻1 x
s. First, xs ∈ max

(
Bk(xs

1),≿2

)
implies that xs ∈ Bk(xs

1). Moreover,

by the construction of ≿2, xs ∈ max
(
Bk(xs

1),≿2

)
implies that Bk(xs

1) ⊆
Bs(xs

1). That is because, if Bk(xs
1) ̸⊆ Bs(xs

1), then Bk(xs
1) \ Bs(xs

1) ≻2 xs;

i.e., xs ̸∈ max
(
Bk(xs

1),≿2

)
. Therefore, we have xs ∈ Bk(xs

1) ⊆ Bs(xs
1); i.e.,

xk R1 x
s. Hence, xk ≻1 x

s.

6.6. Proof of Theorem 5.1. Necessity. Let us first prove the necessity of

N-SARP and Condition 1.

N-SARP. Take any sequence k1, . . . , kL of K such that for each l ≤ L − 1,

xkl ̸= xkl+1 and Equation (10) holds. Note that xkl ∈ Bkl+1(x
kl+1

1 ) and xkl ̸=
xkl+1 imply that xkl+1 ≻2 xkl . Therefore, we cannot have xkL ≻2 xk1 ; i.e.,

Equation (10) does not hold when l = L.

Condition 1. Take any subset S of K. For any k ∈ S, Equation (3),

max(Bk,≿1) ∈ Bk(xk
1), implies that

max(Bk(xk
1),≿1) ≻1 max(Bk \Bk(xk

1),≿1).

Consequently, we have

max(
⋃
k∈S

Bk(xk
1),≿1) ≻1 max(

⋃
k∈S

Bk \Bk(xk
1),≿1).

Hence, max(
⋃

k∈S B
k(xk

1),≿1) ̸∈
⋃

k∈S B
k \ Bk(xk

1); i.e., we obtain Equa-

tion (12).

Sufficiency. To prove the sufficiency direction, we first define the following

revealed preference relation.

Revealed Preference 2. xk R2 x
s if xk ̸= xs and xs ∈ Bk(xk

1).

By N-SARP, R2 is acyclic. Let ≿2 be a complete extension of R2 such that

xk ≻2 x for any x ∈ X \ {xs}s∈K . Take any k ∈ K. For any s with xk ̸= xs

and xs ∈ Bk(xk
1), x

k ≻2 xs. Hence, max
(
Bk(xk

1),≿2

)
∈ X \ {xs}s:xk ̸=xs . By

the construction of ≿2, max
(
Bk(xk

1),≿2

)
= xk.

Finally, we construct ≿1 as follows. By Condition 1, the set

Bs(xs
1) \

( ⋃
k∈K

Bk \Bk(xk
1)
)



32 ECHENIQUE AND TSERENJIGMID

is not empty for at least one s ∈ K. Without loss of generality, suppose that

this happens for s = 1; and let B1(x1
1) \

(⋃
k∈K Bk \ Bk(xk

1)
)
be a non-empty

and y1 be an element of this set. Similarly, the set

Bs(xs
1) \

( ⋃
k>1

Bk \Bk(xk
1)
)

is non-empty for at least one s > 1. Again, without loss of generality, let

B2(x2
1) \

(⋃
k>1B

k \Bk(xk
1)
)
be non-empty, and y2 be an element of this set.

We follow the same procedure and obtain ys, for each s ∈ K, as an element of

Bs(xs
1) \

( ⋃
k≥s

Bk \Bk(xk
1)
)
.

Let ≿1 be a preference relation such that ys ≻1 ys+1 for each s < K and

yK ≻1 x for any x ∈ X \ {yk}k∈K . Since ys ∈ Bs(xs
1) and ys ≻1 x for any

x ∈ X \ {yk}k<s,

max
(
Bs,≿1

)
∈ {y1, . . . ,ys}.

Suppose for some t ≤ s,

max
(
Bs,≿1

)
= yt.

By the construction, yt ∈ Bt(xt
1) \

(⋃
k≥t B

k \Bk(xk
1)
)
, which implies

yt ∈ Bt(xt
1) \

(
Bs \Bs(xs

1)
)
.

Since yt ∈ Bs, yt ∈ Bt(xt
1) \

(
Bs \Bs(xs

1)
)
implies that yt ∈ Bs(xs

1), i.e.,

yt = max
(
Bs,≿1

)
∈ Bs(xs

1).

6.7. Proof of Theorem 5.2. It is immediate from standard results that ra-

tionalization via Equation (6) is equivalent to N-SARP. Hence, N-SARP is

necessary. Moreover, N-SARP is necessary since Equation (5) can be always

satisfied by setting ≿1 to be indifferent among all elements of X.

6.8. Proof of Theorem 5.3. It is immediate from standard results that ra-

tionalization via Equation (8) is equivalent to N-SARP and rationalization via

Equation (7) is equivalent to NN-SARP.

6.9. Proof of Theorems 6 and 7. Theorem 6.3 and Theorem 7.2-3 im-

mediately follow from the following two observations. First, from standard

results, Equation (18) is characterized by t-SARP. Second, Equation (16) has
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no testable implications as we can set ≿t to be indifferent between all alter-

natives of X. Theorem 6.2 follows from Theorem 7.1. Hence, we only prove

Theorem 6.1 and Theorem 7.1.

6.9.1. Proof of Theorem 6.1. First we show necessity. Suppose that the dataset

D is sophisticated rationalizable by means of the preference relations ≿t, 1 ≤
t ≤ T . To prove the necessity of Condition 2, recall the revealed preference

relation R1 defined in the proof of Theorem 4: xk R1 xs if xs ∈ Bk(xs
1) ⊆

Bs(xs
1). We shall prove that R1 is acyclic. Take any k, s with xk R1 xs. To

prove acyclicity, we will show that xk ≻1 x
s.

Since xs = max(M s
1 ,≿1), we have

xs ∈ M s
1 =

⋃
x1∈Bk

1

max
(
Mk

2 (x1),≿2

)
,

consequently, xs ∈ M s
2 (x

s
1). Since xs ∈ Bk(xs

1) ⊆ Bs(xs
1), we then have xs ∈

Bk(xs
t) ⊆ Bs(xs

t) for each t < T . Hence, xs ∈ M s
2 (x

s
1) implies xs ∈ Mk

2 (x
s
1).

8

Finally, since xk = max(Mk
1 ,≿1), we have xk ≻1 x

s.

We now prove the sufficiency of Condition 2. Let X̂2 =
∏T

t=2 Xt. Then

X = X1 × X̂2. By Theorem 4, there are preferences ≿1 and ≿2 over X such

that for each observation k ∈ K,

(27) max
( ⋃

x1∈Bk
1

max
(
Bk(x1),≿2

)
,≿1

)
= xk.

Let ≿t=≿2 for each t ≥ 3. We can show that Equation (19) is satisfied.

Take any k ∈ K.

Fact 1. For any A,B ⊆ X,

max(A ∪B,≿2) = max
(
max(A,≿2) ∪max(B,≿2),≿2

)
.

Fact 1 is the usual path independence property of rational choice. We pro-

vide a proof for completeness: Take any x ∈ max(A∪B,≿2) and x ∈ A. Then

x ∈ max(A,≿2). Since x ≿2 max(B,≿2), x ∈ max
(
max(A,≿2) ∪max(B,≿2

),≿2

)
. Conversely, consider any x ∈ max

(
max(A,≿2) ∪ max(B,≿2),≿2

)
.

In other words, x ≿2 max(A,≿2) and x ≿2 max(B,≿2). Hence, x ∈ max(A ∪
B,≿2).

8Observe that working with a strong rationalization is key here, as otherwise there an agent
who moves later could choose a different optimal response in observation k from what they
do in s.
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Fact 2. max(Bk(x1),≿2) = max(Mk
2 (x1),≿2).

We proceed to prove Fact 2. By Fact 1, Equation (20) and ≿t=≿2 implies

that

(28) max(Mk
t (xt−1),≿2) = max

( ⋃
xt∈Bk

t (xt−1)

Mk
t+1(xt),≿2

)
.

By repeatedly using Fact 1, the above equation implies

(29)

max(Mk
1 (x1),≿2) = max

( ⋃
x2,...,xt:x∈Bk(x1)

Mk
T (xT−1),≿2

)
= max(Bk(x1),≿2),

which establishes Fact 2.

Finally, by Facts 1 and 2, Equation (27) implies that

(30) max
( ⋃

x1∈Bk
1

max
(
Mk

2 (x1),≿2

)
,≿1

)
= xk,

which implies Equation (19).

6.9.2. Proof of Theorem 7.1. We first prove the necessity of T -SARP and

Condition 5.

T -SARP. Consider the following revealed preference relation: xk RT xs if

xk ̸= xs and xs ∈ Bk(xk
T−1). By Equation (15), xk RT xs implies xk ≻T xs.

Hence, RT is acyclic; i.e., T -SARP is satisfied.

Condition 5. Take any subset S of K and t ≤ T . By Equation (14), we have

max(Bk(xk
t−1),≿t) ∈ Bk(xk

t ), which implies

max(Bk(xk
t ),≿t) ≻t max(Bk(xk

t−1) \Bk(xk
t ),≿t).

By adding across k ∈ S, we obtain

max(
⋃
k∈S

Bk(xk
t ),≿t) ≻t max(

⋃
k∈S

[Bk(xk
t−1) \Bk(xk

t )],≿t).

Hence, ⋃
k∈S

Bk(xk
t ),≿t) ̸⊆

⋃
k∈S

[Bk(xk
t−1) \Bk(xk

t )].
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Sufficiency. We now prove the sufficiency of T -SARP and Condition 5. By

T -SARP, RT is acyclic. Let ≿T be a complete extension of RT such that

xk ≻T x for any x ∈ X \ {xs}s∈K . Take any k ∈ K. For any s with xk ̸= xs

and xs ∈ Bk(xk
T−1), x

k ≻T xs. Hence, max
(
Bk(xk

T−1),≿T

)
∈ X \{xs}s:xk ̸=xs .

By the construction of ≿T , max
(
Bk(xk

T−1),≿T

)
= xk.

Finally, we construct ≿t as follows. By Condition 5, the set

Bs(xs
t) \

( ⋃
k∈K

Bk(xk
t−1) \Bk(xk

t )
)

is not empty for at least one s ∈ K. Without loss of generality, suppose that

this happens for s = 1. So B1(x1
t ) \

(⋃
k∈K Bk(xk

t−1) \ Bk(xk
t )
)
is non-empty,

and we may choose y1 to be an element of this set. Similarly, the set

Bs(xs
t) \

( ⋃
k>1

Bk(xk
t−1) \Bk(xk

t )
)

is non-empty for at least one s ̸= 1. Again, without loss of generality, let

B2(x2
t ) \

(⋃
k>1B

k(xk
t−1) \ Bk(xk

t )
)
be non-empty, and y2 be an element of

this set. We follow the same procedure and obtain ys, for each s ∈ K, as an

element of

Bs(xs
t) \

( ⋃
k≥s

Bk(xk
t−1) \Bk(xk

t )
)
.

Let ≿t be a preference relation such that ys ≻t y
s+1 for each 1 ≤ s < K,

and yK ≻t x for any x ∈ X \ {yk}k∈K . We shall prove that, for any s,

max(Bs(xs
t−1),≿t) ∈ Bs(xs

t), which guarantees that the period t agent with

preferences ≿t chooses x
s
t .

Since ys ∈ Bs(xs
t) ⊆ Bs(xs

t−1) and ys ≻t x for any x ∈ X \ {yk}k≤s,

max
(
Bs(xs

t−1),≿t

)
∈ {y1, . . . ,ys}.

Suppose for some s′ ≤ s,

max
(
Bs(xs

t−1),≿t

)
= ys′ .

By the construction, ys′ ∈ Bs′(xs′
t ) \

(⋃
k≥s′ B

k(xk
t−1) \Bk(xk

t )
)
, which implies

ys′ ∈ Bs′(xs′

t ) \
(
Bs(xs

t−1) \Bs(xs
t)
)
.

Since ys′ ∈ Bs′(xs′
t ) and ys′ ∈ Bs(xs

t−1), we must have ys′ ∈ Bs(xs
t), i.e.,

max
(
Bs(xs

t−1),≿t

)
∈ Bs(xs

t).
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Appendix A. FOCs rationalization with many observations

Theorem 9. There is a dataset of arbitrarily large size that is strong FOCs

rationalizable by the sophisticaed quasi-hyperbolic model, but not equilibrium

rationalizable by the sophisticated hyperbolic model.

Proof. Fix two numbers, θ = 3/100 and θ̄ = 90/100. Consider a dataset with

K + 2 observations (xk, pk), 1 ≤ k ≤ K + 2. These are as follows:

(1) xk
2 = xk

3 = 0.1 and pk2 =
1

(0.8)2
for 1 ≤ k ≤ K

(2) xk
1 = θ̄ k

K
and pk1 =

1+.82

.99(1.8).84
(1− (θ̄ k

K
)2) for 1 ≤ k ≤ K

(3) xK+1
1 = xK+1

2 = xK+1
3 = 0.2, pK+1

2 = 1
(0.8)2

, and pK+1
1 = 5125

2304
.

(4) xK+2
1 = 0.0757, xK+2

2 = 0.0367, xK+2
3 = 0.4688, pK+2

2 = 2, and pK+2
1 =

3.0884.

As we will see below the data is strong FOCs rationalizable with (û, β, δ)

where û(x) = x− x3

3
when x ∈ [θ, θ] and β = δ = 0.8.

Suppose now that (u, β, δ) equilibrium rationalizes the data. By a positive

affine transformation, we may normalize u so that u(θ) = θ−θ3/3 and u′(0.1) =

.99. By Equation (23), then, xk
2 = xk

3 = 0.1 and pk2 = 1
(0.8)2

for any k ≤ K

imply that 1 = pk2βδ, so βδ = .82.

Consider now observation K + 1, where we also have xK+1
2 = xK+1

3 and

pK+1
2 = 1

(0.8)2
. Then Equation (23) implies that A = (βδpK+1

2 )−1 = 1 for

this observation, and therefore g(x2) = x2 for Agent 2’s strategy in the game

defined by observation K+1. As a consequence we have that g′(x2) = 1. Then

by Equation (25), and using the numbers in observation K+1, we obtain that

1 =
u′(0.2)

u′(0.2)
=

δ 5125
2304
1
.82

1 + β
.82

1 + 1
.82

=
5125

2304

δ + 1

0.8−2 + 0.8−4
=

δ + 1

1.8
.
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Hence, β = δ = 0.8

We turn next to the observations k = 1, . . . , K. Again the fact that con-

sumption in periods 2 and 3 are the same, and that pk2βδ = 1 means that

g′(x2) = 1 for such observations. Then Equation (25) implies

u′(xk
1) = u′(0.1)δ

pk1
pk2

1 + βpk2
1 + pk2

=
u′(0.1)βδ(1 + δ)

1 + .8−2
pk1

=
u′(0.1)0.82(1.8)

1 + .8−2
[

1 + .82

.99(1.8).84
(1− (θ̄k/K)2)]

= 1− (xk
1)

2

Let û(x) = x − x3/3. The calculations above mean that u′(x) = û′(x) for

all x ∈ {z1, . . . , zK}, with 0 < z1 < . . . < zK = θ̄ and zk+1 − zk < 1/K. Then

for any x ∈ [z1, θ̄] we have that

u′(x)− û′(x) ≤ u′(zk)− û′(zk+1) = û′(zk)− û′(zk+1) = z2k+1 − z2k

= (zk+1 − zk)(zk+1 + zk) <
2

K
,

where we have chosen k so that zk ≤ x ≤ zk+1, and used the concavity of u′

and û′. Similarly, û′(x)− u′(x) < 2/K.

In consequence we have sup{u′(x)− û′(x) : x ∈ [θ, θ̄]} < 2/K and therefore

|u(x)− û(x)| < 2/K for all x ∈ [θ, θ̄] as u(θ) = û(θ).

Now consider the last observation K+2. Observe that in, the budget set for

observation K + 2, all affordable bundles involve quantities that are smaller

than θ̄.

Here u and û both match the first order conditions (25) and (23). For this

observation we obtain A∗ = (pK+2
2 βδ)−1 = 0.78125. Let ĝ and f̂ denote the

functions f and g corresponding to utility function û, A∗, p2 = pK+2
2 , p1 = pK+1

1

and m = mK+1. We use f and g to denote these functions for utility u and

the parameters of the K + 2 budget.

To check the second-order condition for û, recall Equation (26). Since

ĝ′k(x2) =
A∗x2√

1− A∗ + A∗(x2)2
= 0.0611 and ĝ′′k(x2) =

A∗(1− A∗)

(1− A∗ + A∗(x2)2)
3
2

= 1.658,

we have

ĝ′′k(x2)û
′(x2)

δ(1− β)

ĝ′(x2) + pK+2
2

=0.128

> |û′′(x1)(f̂
′(x2))

2 + βδû′′(x2) + βδ2û′′(x3)(ĝ
′(x2))

2| = 0.116.
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So the second-order condition, Equation (26), is violated.

This means that there is ∆ > 0 so that û(xK+2
1 )+βδû(xK+2

2 )+βδ2û(xK+2
3 )+

∆ < M , where M is the optimal utility for Agent 1’s maximization program.

Let (x̂1, x̂2, x̂3) achieve utility M . So x̂3 = ĝ(x̂2), x̂1 = f̂(x̂2), and M =

û(x̂1) + βδû(x̂2) + βδ2û(x̂3).

First, choose ε > 0 and K ′ > 1
θ
so that

(31) ε+ 2/K ′ + 0.82(2/K ′) + 0.83(ε+ 2/K ′) < ∆/3

Next, choose K ≥ K ′ so that

(32) (A∗ + 1)
2

K
< ε2.

Consider the utility under utility function u when Agent 1 chooses con-

sumption x̂2, the optimal choice under utility function û. Let x3 = g(x̂2) and

x1 = f(x̂2).

Then we have û′(x̂3) = A∗û′(x̂2) and u′(x3) = A∗u′(x̂2). So

A∗(û′(x̂2)− u′(x̂2)) + u′(x3)− û′(x3) = û′(x̂3)− û′(x3),

which implies that

A∗(2/K) + 2/K ≥ A∗ |û′(x̂2)− u′(x̂2))|+ |u′(x3)− û′(x3)| ≥ |û′(x̂3)− û′(x3)|

=
∣∣x̂2

3 − x2
3

∣∣ = |x̂3 − x3| (x̂3 + x3).

Now we claim that |x̂3 − x3| < ε. There are two cases. If x̂3 + x3 < ε then we

are done because the difference between two positive numbers is smaller than

their sum. If, instead, x̂3 + x3 ≥ ε then (32) and our choice of K implies that

ε > 1
ε
(A∗(2/K) + 2/K) so we also conclude that |x̂3 − x3| < ε.

As a consequence, we obtain that

|û(x̂3)− u(g(x̂2))| ≤ |û(x̂3)− û(x3)|+|û(x3)− u(x3)| ≤ |x̂3 − x3|+2/K < ε+2/K,

as û′ is monotone decreasing and û′(0) = 1.

Finally, ∣∣∣f̂(x̂2)− f(x̂2)
∣∣∣ = 1

pK+2
1

|ĝ(x̂2)− g(x̂2)| < |x̂3 − x3| < ε,

as pK+2
1 = 3.0884. So, by the same reasoning as above, we have that |û(x̂1)− u(f(x̂2))| <

ε+ 2/K.
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Putting everything together we conclude, by (31), that

[u(f(x̂2))+βδu(x̂2)+βδ2u(g(x̂2))]−[u(xK+2
1 )+βδu(xK+2

2 )+βδ2u(xK+2
3 )] > ∆/3

since the above is equal to the sum of C1, C2, and C3, where

C1 = u(f(x̂2))− û(x̂1) + βδ[u(x̂2)− û(x̂2)] + βδ2[u(g(x̂2))− û(x̂3)] > −∆/3

C2 = û(x̂1)− û(xK+2
1 ) + βδ[û(x̂2)− û(xK+2

2 )] + βδ2[û(x̂2)− û(xK+1
2 )] > ∆

C3 = û(xK+2
1 )− u(xK+2

1 )

+ βδ[û(xK+2
2 )− u(xK+2

2 )] + βδ2[û(xK+2
3 )− u(xK+2

3 )] > −∆/3

where the inequalities for C1 and C2 follow from (31) and the bounds we have

established above.

Finally, we note that the optimal choices (x̂1, x̂2, x̂3) for û, achieving utility

M , can be calculated to be x̂1 = 0.06, x̂2 = 0.06, and x̂3 = 0.4707, all of which

are in [θ, θ̄]. We conclude then that xK+2
2 is not an optimal choice for Agent 2

when the utility is (u, β, δ).

□

Appendix B. Necessary Conditions for Sophisticated

Rationalization

Condition 3: There is no sequence k1, . . . , kL of K such that for each l ≤ L,

xkl ̸= xkl+1 and

(33) xkl ∈ Bkl+1(xkl
1 ) ⊆

⋃
t:xt∈Bkl (x

kl
1 )

Bt(xt
1).

Remark 2. Condition 3 implies Condition 2 as Equation (13) implies Equa-

tion (33). When xk
1 ̸= xs

1 for any k, s ∈ K, Conditions 2 and 3 are equivalent.

Revealed Preference 3. xkR1x
s if xk ̸= xs and

xs ∈ Bk(xs
1) ⊆

⋃
t:xt∈Bs(xs

1)

Bt(xt
1).

Under Condition 3, R1 is acyclic. We write xk tran(R1)x
s if there is k1, . . . , kL

such that xk1 = xk, xkL = xs, and xklR1x
kl+1 for each l < L.
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Condition 4: There is no sequence k1, . . . , kL, s1, . . . , sL of K such that for

each l ≤ L,

(34) xsltran(R1)x
kl and xsl ∈ Bkl(xsl

1 ) and xsl
1 ̸= xkl

1 ,

and

(35)
⋃
l

Bkl(xsl
1 ) \

[ ⋃
t:xt∈Bsl (x

sl
1 )

Bt(xt
1)
] ⊆

⋃
s∈S

Bs(xs
1),

for any s ∈ S,

(36) xslR2x
s or xsl = xs for some l.

Proposition 10. If D is sophisticated rationalizable, then it satisfies N-SARP

and Conditions 3-4.

B.1. Proof of Proposition 10. N-SARP. To prove the necessity of N-

SARP, it is now enough to show the acyclicity of R2. Take any k, s such

that xkR2x
s; i.e., xk ̸= xs and xs ∈ Bk(xk

1). Since

max
( ⋃

x1∈Bk
1

max
(
Bk(x1),≿2

)
,≿1

)
= xk,

we have

max
(
max

(
Bk(xk

1),≿2

)
,≿1

)
= xk and xk ∈ max

(
Bk(xk

1),≿2

)
.

First, xk ∈ max
(
Bk(xk

1),≿2

)
and xs ∈ Bk(xk

1) imply xk ≿2 xs. Moreover,

if xk ∼2 xs, max
(
max

(
Bk(xk

1),≿2

)
,≿1

)
= xk implies xk ≻1 xs. In other

words, xkR2x
s implies that either xk ≻2 x

s or xk ∼2 x
s and xk ≻1 x

s. There-

fore, R2 is acyclic.

Condition 3. To prove the necessity of Condition 3, it is enough to prove the

acyclicity of R1. Take any k, s such that xkR1x
s. Since

max
( ⋃

x1∈Bs
1

max
(
Bs(x1),≿2

)
,≿1

)
= xs,

we have

max
(
max

(
Bs(xs

1),≿2

)
,≿1

)
= xs;

which implies

xs ∈ max
(
Bs(xs

1),≿2

)
.
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Moreover, since

max
({

max
(
Bk(x1),≿2

)}
x1∈Bk

1
,≿1

)
= xk and xs

1 ∈ Bk
1 ,

we have

xk ≻1 max
(
max

(
Bk(xs

1),≿2

)
,≿1

)
or max

(
max

(
Bk(xs

1),≿2

)
,≿1

)
= xk.

If xs ∈ max
(
Bk(xs

1),≿2

)
, then we have xk ≻1 xs. Suppose now xs ̸∈

max
(
Bk(xs

1),≿2

)
. Since

xs ∈ max
(
Bs(xs

1),≿2

)
,

we have

max
(
Bk(xs

1) \Bs(xs
1),≿2

)
≻2 x

s.

However,

Bk(xs
1) ⊆

⋃
t:xt∈Bs(xs

1)

Bt(xt
1)

and the definition of R2 imply that

Bk(xs
1) \Bs(xs

1) ⊆
⋃

xsR2xt

Bt(xt
1).

Therefore,

max(
⋃

xsR2xt

Bt(xt
1),≿2) ≿2 max

(
Bk(xs

1) \Bs(xs
1),≿2

)
≻2 x

s.

However, by the proof of the acyclicity of R2, x
sR2x

t implies that xs ≿2 x
t.

Moreover, since

max
(
max

(
Bt(xt

1),≿2

)
,≿1

)
= xt,

we have

xt ∈ max
(
Bt(xt

1),≿2

)
.

Therefore, we have

xs ≿2 max(
⋃

xsR2xt

Bt(xt
1),≿2),

a contradiction.

Condition 4. To prove the necessity of Condition 4, by way of contradiction,

suppose there is a sequence k1, . . . , kL, s1, . . . , sL of K such that for each l ≤ L,

(37) xsltran(R1)x
kl and xsl ∈ Bkl(xsl

1 ) and xsl
1 ̸= xkl

1 ,



DYNAMICALLY INCONSISTENT 43

and

(38)
⋃
l

Bkl(xsl
1 ) \

[ ⋃
t:xt∈Bsl (x

sl
1 )

Bt(xt
1)
] ⊆

⋃
s∈S

Bs(xs
1),

for any s ∈ S,

(39) xslR2x
s or xsl = xs for some l.

First, xsltran(R1)x
kl implies that xsl ≻1 x

kl . Then, since xsl ≻1 x
kl and

max
( ⋃

x1∈B
kl
1

max
(
Bkl(x1),≿2

)
,≿1

)
= xkl ,

we need to have xsl ̸∈ max
(
Bkl(xsl

1 ),≿2

)
. Since, xsl ∈ Bkl(xsl

1 ) and xsl
1 ̸= xkl

1

imply that there is some x ∈ Bkl(xsl
1 ) \

[⋃
t:xt∈Bsl (x

sl
1 ) B

t(xt
1)
]
such that x ≻2

xsl . By Equation (38), there is s such that x ∈ Bs(xs
1). Hence, xs ≿2 x. In

other words, xs ≻2 x
sl . Let xs∗ ∈ max({xs}s∈S,≿2). Then xs∗ ≻2 x

sl for each

l. In other words, there is no l that satisfies Equation (39).


