Inflation, Spending, and Output: The Aggregate Demand Curve

- Inflation, the Fed, and the AD Curve
 - The Keynesian model assumes output adjusts to demand at preset prices in the short run.
 - Prices do not remain fixed indefinitely.
 - The Keynesian model does not explain the behavior of inflation.

Inflation, Spending, and Output: The Aggregate Demand Curve

Effect of An Increase In Exogenous Spending

- Inflation, the Fed, and the AD Curve
 - The Fed can reduce autonomous expenditure by raising the interest rate.
 - π increases r increases autonomous spending decreases Y decreases (AD curve)
A Shift In The Fed’s Policy Reaction Function

Fed “tightens” monetary policy – shifting reaction curve

New policy reaction function

Old policy reaction function

AD

AD’

Inflation, Spending, and Output: The Aggregate Demand Curve

• Movements Along the AD Curve
 • \(\pi \) and \(Y \) are inversely related
 • Changes in \(\pi \) cause a change in \(Y \) or a movement along the AD curve
 • \(\pi \) increases \(r \) increases \(\)planned spending decreases \(Y \) decreases

Inflation, Spending, and Output: The Aggregate Demand Curve

• Shifts of the AD Curve
 • Any factor that changes \(Y \) at a given \(\pi \) shifts the AD curve.
 • Shifts of the AD curve can be caused by:
 • Changes in exogenous spending.
 • Changes in the Fed’s policy reaction function.

Inflation and Aggregate Supply

• Three factors that can increase the inflation rate
 • Output gap
 • Inflation shock
 • Shock to potential output

Inflation and Aggregate Supply

• Inflation Inertia
 • In industrial economies (U.S.), inflation tends to change slowly from year to year.
 • The inflation inertia occurs for two reasons:
 • Inflation expectations
 • Long-term wage and price contracts

A Virtuous Circle of Low Inflation and Low Expected Inflation

Low inflation

Slow increase in wages and other production costs

Low expected inflation
Inflation and Aggregate Supply

- Long-term Wage and Price Contracts
 - Union wage contracts set wages for several years.
 - Contracts setting the price of raw materials and parts for manufacturing firms also cover several years.
 - These long-term contracts reflect the inflation expectations at the time they are signed.

The Output Gap and Inflation

<table>
<thead>
<tr>
<th>Relationship of output to potential output</th>
<th>Behavior of inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. No output gap (Y = Y^*)</td>
<td>Inflation remains unchanged</td>
</tr>
<tr>
<td>2. Expansionary gap (Y > Y^*)</td>
<td>Inflation rises (\pi \uparrow)</td>
</tr>
<tr>
<td>3. Recessionary gap (Y < Y^*)</td>
<td>Inflation falls (\pi \downarrow)</td>
</tr>
</tbody>
</table>

Inflation and Aggregate Supply

- The Output Gap and Inflation
 - If \(Y^* = Y \)
 - An increase in exogenous spending creates and expansionary gap \((Y > Y^*) \) – inflation increases
 - A decrease in exogenous spending creates a recessionary gap \((Y < Y^*) \) and inflation decreases

Inflation and Aggregate Supply

- The Aggregate Demand—Aggregate Supply Diagram
 - Long-run aggregate supply (LRAS)
 - A vertical line showing the economy’s potential output \(Y^* \)

Inflation and Aggregate Supply

- The Aggregate Demand—Aggregate Supply Diagram
 - Short-run Aggregate Supply (SRAS)
 - A horizontal line showing the current rate of inflation, as determined by past expectations and pricing decisions

Inflation and Aggregate Supply

- The Aggregate Demand—Aggregate Supply Diagram
 - Short-run Equilibrium
 - A situation in which inflation equals the value determined by past expectations and pricing decisions and output equals the level of short-run equilibrium output that is consistent with that inflation rate
 - Graphically, short-run equilibrium occurs at the intersection of the AD curve and the SRAS line
The Aggregate Demand-Aggregate Supply (AD-AS) Diagram

Output
Nominal interest rate
\(i \)

Aggregate demand, \(AD \)

Long-run aggregate supply, LRAS

Short-run aggregate supply, SRAS

The Adjustment of Inflation When a Recessionary Gap Exists

\(Y \)
\(Y^* \)
\(\pi \)
\(\pi^* \)

The Adjustment of Inflation When an Expansionary Gap Exists

\(Y \)
\(Y^* \)
\(\pi \)
\(\pi^* \)

Inflation and Aggregate Supply

- The Aggregate Demand—Aggregate Supply Diagram
 - Long-run Equilibrium
 - A situation in which actual output equals potential output and the inflation rate is stable
 - Graphically, long-run equilibrium occurs when the AD curve, the SRAS line, and the LRAS line all intersect at a single point

A Review of the Adjustment Process to a Recessionary Gap

- Firms that are selling less than they want to will start to lower prices.
- As \(\pi \) falls the Fed lowers \(r \) and \(AD \) increases.
- Falling \(\pi \) reduces uncertainty which also increases \(AD \)

A Review of the Adjustment Process to a Recessionary Gap

- As \(Y \) increases, cyclical unemployment falls (Okun’s Law)
- Adjustment continues until long-run equilibrium is reached.
The Self-Correcting Economy

- In the long-run the economy tends to be self-correcting.
- The Keynesian model does not include a self-correcting mechanism.

The Self-Correcting Economy

- A slow self-correcting mechanism
 - Fiscal and monetary policy can help stabilize the economy.
- A fast self-correcting mechanism
 - Fiscal and monetary policy are not effective and may destabilize the economy.

The speed of correction will depend on:

- The use of long-term contracts.
- The efficiency and flexibility of labor markets.
- Fiscal and monetary policy are most useful when attempting to eliminate large output gaps.

War and Military Buildup As A Source of Inflation

- Increase in military spending causes AD to increase
- Creates an expansionary gap $Y > Y^*$
- Increases shifting $SRAS$ to $SRAS'$
- Long-run equilibrium back to Y^* with π^*

Sources of Inflation

Economic Naturalist

- How did inflation get started in the United States in the 1960s?
 - 1959-63 inflation averaged about 1%
 - By 1970 inflation was 7%
Sources of Inflation

- **Inflation Shock**
 - A sudden change in the normal behavior of inflation, unrelated to the nation’s output gap

Examples

- OPEC embargo of 1973
- Drop in oil prices in 1986

Sources of Inflation

- **Aggregate Supply Shock**
 - Either an inflation shock or a shock to potential output
 - Adverse aggregate supply shocks of both types reduce output and increase inflation

Economic Naturalist

- Why did inflation escalate in the United States in the 1970s?

The Effects of An Adverse Inflation Shock

- **Equilibrium** at \(A \) -- \(Y^* = Y \)
- **Inflation shock** -- \(\pi \) increases to \(\pi' \)
- **Recessionary gap** and higher inflation (stagflation)
- **With policy** -- \(AD \) shifts to \(AD' \), \(Y = Y^* \), \(\pi \) rises to \(\pi' \)

The Effects of a Shock To Potential Output

- **Equilibrium** at \(B \) -- \(Y > Y^* \)
- **Expansionary gap**
- **Increase** in \(\pi \)
- **SRAS** rises to \(SRAS' \)
- **Equilibrium** at \(B' \) -- \(Y = Y^* \)
- **Decline** in output is permanent

Sources of Inflation

- **Inflation Shock -- Examples**
 - OPEC embargo of 1973
 - Drop in oil prices in 1986

Sources of Inflation

- **Aggregate Supply Shock**
 - Either an inflation shock or a shock to potential output
 - Adverse aggregate supply shocks of both types reduce output and increase inflation
Sources of Inflation

- Shocks to Potential Output
 - Aggregate supply shock
 - Inflation shocks
 - Stagflation
 - Temporary reduction in output
 - Potential output shocks
 - Stagflation
 - Permanent reduction in output

From: Economic Naturalist

- Equilibrium at B -- $Y^* = Y$
- Productivity increases
- Y^* shifts to Y''
- Recessionary gap -- $Y < Y''$
- π falls to π
- Equilibrium at A
- Lower inflation; higher output

Short-Run Effects of an Anti-inflationary Monetary Policy

- Fed shifts AD to AD'
- Short run eq. At B
- $Y < Y^*$ -- recessionary gap
- Long run correction occurs

Long-Run Effects of an Anti-inflationary Monetary Policy

- Short-run eq. at B
- Recessionary gap -- $Y < Y''$
- π falls to 3% and Y rises to Y''
- Long-run eq. -- lower prices @ Y''

Summary

- AD downward sloping (inflation vs output)
- SRAS (Inflation Adjustment Line) level of inflation in SR
- SR Equil: $AD=SRAS$
- LRAS potential output
- LR Equil: $AD=SRAS=LRAS$
- Rec Output Gap: Inflation falls
- Exp Output Gap: Inflation rises
- Shifts of AD (Fed Policy Shifts, Exogenous Spending Change)
- Shifts of SRAS (inflation shock)
- Shift of LRAS (potential output shock)
- Economy self-corrects in LR. If slow/big gap, stabilize

Exchange Rates

- Some Definitions
 - $e = \text{nominal exchange rate}$
 - $e = \text{the number of units of foreign currency that the domestic currency will buy}$
 - If e increases, it is an appreciation of the domestic currency.
 - If e decreases, it is a depreciation of the domestic currency.
Exchange Rates

- **Appreciation**
 - An increase in the value of a currency relative to other currencies

- **Depreciation**
 - A decrease in the value of a currency relative to other currencies

Exchange Rates

- **Flexible Exchange Rate**
 - An exchange rate whose value is not officially fixed but varies according to the supply and demand for the currency in the foreign exchange market
 - Foreign Exchange market: currencies of various nations are traded for one another

Exchange Rates

- **Fixed Exchange Rate**
 - An exchange rate whose value is set by official government policy

Exchange Rates

- **The Real Exchange Rate**
 - Nominal exchange rate
 - The price of the domestic currency in terms of a foreign currency
 - Real exchange rate
 - The price of the average domestic good or service relative to the price of the average foreign good or service, when the prices are expressed in terms of a common currency

Exchange Rates

- **Example**
 - Should you buy a Japanese or American computer for your company?
 - Price of U.S. computer = $2,400
 - Price of Japanese computer = 242,000 yen
 - Exchange rate = 110 yen/dollar
 - Price in yen = price in dollars x value of dollar in terms of yen
 - Price in dollars = price in yen/yen-dollar exchange rate
 - Price in dollars = 242,000 yen/110 = $2,200
 - Real exchange rate = ______________
 - buy _________________

Exchange Rates

- **Example**
 - Should you buy a Japanese or American computer for your company?
 - Price in yen = price in dollars x value of dollar in terms of yen
 - Price in dollars = price in yen/yen-dollar exchange rate
 - Price in dollars = 242,000 yen/110 = $2,200
 - Real exchange rate = ______________
 - buy _________________
Exchange Rates

- Real Exchange Rate

\[
\text{Real Exchange Rate} = \frac{\text{Price of domestic good (P)}}{\text{Price of foreign good, in dollars (P')}}
\]

\[
\text{Real Exchange Rate} = \frac{P}{P'/e}
\]

\[
\text{Real Exchange Rate} = \frac{eP}{P'}
\]

The Real Exchange Rate

- A high real exchange rate implies that domestic producers will have difficulty exporting to other countries.
- A high real exchange rate will attract imports.
- \(NX\) will tend to be low when the real exchange rate is high.
- Real and nominal exchange rates tend to move in the same direction

Economic Naturalist

- Does a strong currency imply a strong economy?

The Determination of the Exchange Rate

- Law of One Price

- If transportation costs are relatively small, the price of an internationally traded commodity must be the same in all locations

Example

- How many Indian rupees equal to one Australian dollar?
 - Bushel of grain cost 5 Australian dollars or 150 rupees
 - 5 Australian dollars = 150 rupees
 - Nominal exchange should equal 30 rupees/Australian dollar

Purchasing Power Parity (PPP) THEORY

- The theory that nominal exchange rates are determined as necessary for the law of one price to hold
The Determination of the Exchange Rate

- Purchasing Power Parity (PPP)
- **PREDICTION OF THEORY**
 - In the long run, the currencies of countries that experience significant inflation will tend to depreciate.

The Determination of the Exchange Rate

- Limits to the PPP Theory
 - Not all goods and services are traded internationally.
 - The greater the share of non-traded goods, the less precise the PPP theory
 - Not all internationally traded goods and services are perfectly standardized commodities.
 - PPP Theory more valid in LR than (not in SR)

The Supply and Demand for Dollars In The Yen-Dollar Market

- The equilibrium exchange rate (e^*) or fundamental exchange rate equals the quantity of dollars supplied and demanded

The Determination of the Exchange Rate

- Changes in the Supply of Dollars
 - Factors that increase the supply of dollars
 - An increase in the preference for Japanese goods
 - An increase in U.S. real GDP
 - An increase in the real interest rate on Japanese assets

The Determination of the Exchange Rate

- Changes in the Demand for Dollars
 - Factors that increase the demand for dollars
 - Increased preference for U.S. goods
 - Increase in real GDP abroad
 - An increase in the real interest rate on U.S. assets
A Tightening of Monetary Policy Strengthens the Dollar

- Tighter monetary policy raises the domestic real interest rate.
- Foreign demand for U.S. assets increase.

The demand for dollars rises.
- Exchange rate appreciates from \(e^* \) to \(e^*' \).

Monetary Policy and the Exchange Rate

- The Exchange Rate as a Tool of Monetary Policy
 - When the exchange rate is flexible:
 - Tighter monetary policy reduces net exports.
 - Easier monetary policy stimulates net exports.
 - Monetary policy is more effective in an open economy with flexible exchange rates.

An Overvalued Exchange Rate

- The peso’s official value is greater than the fundamental value; the peso is overvalued.
- To maintain the value, the government must purchase a quantity of pesos (A-B).

Fixed Exchange Rates

- International Reserves
 - Foreign currency assets held by a government for the purpose of purchasing the domestic currency in the foreign exchange market.

A Speculative Attack on the Peso

- Peso overvalued at 0.125.
- Central bank buys pesos.
- Investors launch a speculative attack – sell peso dominated assets.

Fixed Exchange Rates

- Can a speculative attack occur under flexible exchange rates?
A Tightening of Monetary Policy Eliminates An Overvaluation

- Pesos overvalued at 0.125
- Tightening monetary policy increases D to D'
- Official value = fundamental value

Fixed Exchange Rates

- Observation
 - The conflict monetary policymakers face, between stabilizing the exchange rate and stabilizing the domestic economy, is most severe when the exchange rate is under a speculative attack.

Should Exchange Rates Be Fixed or Flexible?

- Monetary Policy
 - Flexible exchange rates can strengthen the impact of monetary policy.
 - Fixed exchange rates prevent the use of monetary policy to stabilize the economy.