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Abstract
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I. Introduction

A common goal of empirical work is to assess the impact of a non-randomized program on a subpopulation of interest.

Estimates of program impacts are often based on reweighting or on matching on covariates or the propensity score.

Empirical literatures, particularly in economics, but also in medicine, political science, sociology and other disciplines,

feature an extraordinary number of program impact estimates based on these estimators. Propensity score matching is

particularly popular and is described by Smith and Todd (2005) as “the estimator du jour in the evaluation literature.”

Frölich (2004) uses simulation to examine the finite sample properties of various propensity score matching

estimators and compares them to those of a particular reweighting estimator. To the best of our knowledge, his is

the first paper in the literature to explicitly compare the finite sample performance of propensity score matching

and reweighting.1 The topic is an important one, both because large sample theory is currently only available for

some matching estimators and because there can be meaningful discrepancies between large and small sample

performance.2

Summarizing his findings regarding the mean squared error of the various estimators studied, Frölich (2004, p. 86)

states that the “the weighting estimator turned out to be the worst of all [estimators considered]... it is far worse than

pair matching in all of the designs.” This conclusion is at odds with some of the conclusions from the large sample

literature. For example, pair matching is well understood to have higher variance than other matching estimators

and Hirano et al. (2003) show that reweighting with a nonparametric estimate of the propensity score can be

semiparametrically efficient.3 The seeming juxtaposition of these conclusions motivated us to re-examine the evidence.

We build on the analysis in Frölich (2004) by presenting evidence on the finite sample performance of a broad set of

matching and reweighting estimators a broad set of data generating processes (DGPs). We consider nearest-neighbor

matching on covariates and on the propensity score with and without bias correction, local linear matching on the

propensity score, and three types of reweighting estimators. The DGPs we consider are based on hypothetical data,

following Frölich (2004), as well as more empirical DGPs based on the National Supported Work (NSW) Demonstration

program data that have previously been studied by Dehejia and Wahba (1999), Smith and Todd (2005), and others.

We conclude that reweighting is a much more effective approach to estimating average treatment effects than

is suggested by the analysis in appropriate reweighting estimator nearly always outperforms pair matching and

is often competitive with the more sophisticated matching estimators in DGPs where overlap is good.

On the other hand, in DGPs where overlap is poor, reweighting tends not to perform as well as some of the more

1More recently, Huber, Lechner and Wunsch (2010, 2013) have investigated these issues as well.
2Large sample properties of these estimators are studied in Heckman, Ichimura and Todd (1998), Hirano, Imbens and Ridder (2003),

Lunceford and Davidian (2004), and Abadie and Imbens (2006), among others.
3As we discuss below in greater detail, we study the properties of parametric reweighting, or reweighting with a parametric logit

model for the propensity score, as in Wooldridge (2007). Hirano et al. (2003) focus on semiparametric reweighting, or reweighting
with a series logit model for the propensity score where the series approximation is more complex in larger samples.
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effective matching estimators. One of the most effective of these is bias-corrected matching with a fixed number of

neighbors. Because the relative performance of estimators hinges so powerfully on features of the DGP, we suggest

that researchers estimate average treatment effects using a variety of approaches; researchers may further want

to conduct a small-scale simulation study designed to mimic their empirical context.

The remainder of the paper is organized as follows. Section II defines notation and estimators. In Section III,

we replicate and extend the findings of Frölich (2004). We consider matching and reweighting on the parametrically

estimated propensity score, rather than the true propensity score, and we further examine the performance of

several estimators not considered in that article, including normalized reweighting and bias-corrected matching.

A limitation of this analysis is that the DGPs examined are rather stylized and involve only a single covariate.

In Section IV, we use a more empirically grounded DGP with multiple covariates to assess estimator performance

in a more realistic setting. Following the recent literature on this topic, we focus on the context of the NSW

observational data. The analyses in Sections III and IV are based on well-specified estimators only and consequently

do not allow an examination of robustness to common forms of misspecification. To examine the extent to which

misspecification affects relative estimator performance, we turn in Section V to an examination of DGPs in which

linear and interaction terms of multiple covariates may affect both the treatment selection process and the regression

functions of the counterfactual outcomes. Section VI concludes.

II. Background and Estimators

In this section we provide a brief discussion of the context in which the estimators we evaluate are applied and then

define the estimators considered. For further detail regarding context, see the excellent review by Imbens (2004).

The data observed by the researcher are (Yi, Ti,Xi)
n

i=1, where Yi is an outcome, Ti is a treatment indicator, and

Xi is a vector of covariates. The outcome observed is either Yi(0) if Ti = 0 or Yi(1) if Ti = 1, where Yi(0) and

Yi(1) are counterfactual outcomes, or outcomes that would be observed under the control and treatment regimes,

respectively (Rubin 1974).

The estimators we evaluate are consistent under the assumptions of conditional independence and overlap.

Conditional independence asserts that counterfactual outcomes are independent of the treatment indicator conditional

on the covariates. Overlap asserts that the propensity score, p(x), or the conditional probability of treatment given

the covariates, is strictly between 0 and 1 for all x.4 Recently, Khan and Tamer (2010) establish that the overlap

assumption is not sufficient for
√
n-consistency, but that strict overlap is. Strict overlap requires that p(x) be strictly

between c and 1− c for all x and for some c > 0.

4The dual assumptions of conditional independence and overlap are referred to as strongly ignorable by Rosenbaum and Rubin (1983).
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There are many possible parameters of interest associated with this model. The literature focuses primarily, although

not exclusively, on two parameters: the effect of treatment on the treated (TOT), defined as E[Yi(1)−Yi(0)|Ti = 1] ≡ θ,

and the average treatment effect (ATE), defined as E[Yi(1)− Yi(0)]. We focus on TOT in the interest of space.

Aside from bias-corrected matching, the matching estimators we examine can be written as

θ̃ =

∑
i Ti
{
Yi − Ŷi(0)

}∑
i Ti

(1)

where the sums are over all of the data, Ŷi(0) =
∑

j (1− Tj)W(i, j)Yj
/∑

j (1− Tj)W(i, j) is the out-of-sample

forecast for treated unit i based only on control units j, and the function W (i, j) gives the distance between observa-

tions i and j in terms of either covariates or propensity scores, depending on the context.5 For propensity score based

estimators, we use an estimate of the propensity score, rather than the true propensity score, since it is unusual to find

empirical applications in which the true propensity score is known.6 We use a parametric approach where the propensity

score model is fixed across samples and the complexity of the model is modest relative to the number of observations.

The other matching estimator we study is bias-corrected matching (Abadie and Imbens 2011). Motivated by the

finding that nearest-neighbor matching is no longer
√
n-consistent when matching more than one continuous variable

(Abadie and Imbens 2006), this approach subtracts an estimate of the asymptotic bias of nearest-neighbor matching

from the nearest-neighbor matching estimator itself. We follow the suggestions of Abadie and Imbens (2011, Sections 4

and 5) and regression adjust using a linear regression on the relevant covariates among the matched control units.

Matching estimators require the researcher to choose one or more tuning parameters. Nearest-neighbor matching

requires choosing a number of neighbors, and local linear matching requires choosing a bandwidth. For nearest-

neighbor matching, we focus on a fixed number of matches. In empirical applications, the number is chosen in

order to successfully balance features of the covariate distribution between treatment and control units. Although

many of our simulation experiments are based on quite small samples (e.g., n = 100), 4 matches performs quite

well in terms of covariate balance and mean-squared error. Consequently, we report results for 1 and 4 matches.

Choosing the bandwidth for local linear matching is more challenging. Whereas for nearest-neighbor matching

there is always the conservative option of a single match (pair matching), there is no such conservative option for

choosing a bandwidth. We follow the suggestion in Frölich (2004) of cross-validation for choosing the bandwidth,

5For example, for nearest-neighbor matching with m matches, W(i, j) is 1/m̃ for the control observations j that are as close to
a treated observation i as the mth closest control observation, where m̃ ≥m is the number of such controls. For details, see Abadie,
Drukker, Herr and Imbens (2004). For local linear matching, W (i, j) = Kij/

∑
`(1− T`)Ki` +Kij∆j∆i/((

∑
`(1− T`)Ki`∆

2
`) + rh|∆i|),

where Kij = K((pj − pi)/h) for K(·) a kernel function and h a bandwidth, ∆i = pi − pi, ∆j = pj − pi for j 6= i,
pi =

∑
j(1− Tj)Kijpj/

∑
j(1− Tj)Kij, and r = 0.3125 is an adjustment factor suggested by Seifert and Gasser (2000).

6This point is noted in Abadie and Imbens (2012) and Lunceford and Davidian (2004), among many others. Note that while it
is relatively efficient to use the estimated propensity score rather than the true propensity score when estimating the ATE, this does
not carry through for estimating the TOT. On this point, see Hirano et al. (2003, Section 4.3) for the case of semiparametric reweighting
and Abadie and Imbens (2012, Section III) for the case of matching.
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which is a common choice in empirical applications (e.g., Black and Smith 2004).7 We are unaware of any theoretical

support for cross-validation of matching estimators, but consider the performance of local linear matching, as it

exhibited the lowest mean squared error (MSE) of the estimators considered in Frölich (2004).

In summary, we report results for 9 matching estimators: nearest-neighbor matching on the propensity score and

on covariates with 1 and 4 matches, with and without bias correction, and local linear matching on the propensity

score with the bandwidth chosen by cross-validation.8

In addition to matching estimators, we study unnormalized reweighting, normalized reweighting, and a specific

variety of normalized reweighting due to Graham, Pinto and Egel (2012), which we term GPE reweighting.

Unnormalized and normalized reweighting estimators are given by

θ̂U =

∑
i TiYi∑
i Ti

−
∑

j(1− Tj)WjYj∑
j Tj

(2)

θ̂N =

∑
i TiYi∑
i Ti

−
∑

j(1− Tj)WjYj∑
j(1− Tj)Wj

(3)

respectively, where Wj = p̂(Xj)
/

(1− p̂(Xj)) and p̂(Xj) = Λ(Z′jβ̂) is the estimated propensity score for unit j based

on a logit model, where Λ(v) = 1/(1 + exp(−v)) and Zi is a vector of functions of Xi including a constant term. We

choose a small number of functions of Xi where that number is fixed as the sample size grows, as noted above. By

focusing on parametric reweighting, rather than the semiparametric reweighting that was the focus of Hirano et al.

(2003), we hope to approximate the standard practice of applied researchers, most of whom estimate a parsimonious

propensity score model based on prior considerations, rather than estimating the propensity score nonparametrically.

However, this brings up the issue of specifying the propensity score model, which in a sense is analogous to selecting

tuning parameters in covariate matching. In Sections III and IV we consider well-specified propensity score models,

and in Section V we investigate the consequences of misspecification of the propensity score model.

GPE reweighting is given by equation (3), but p̂(Xj) is not based on a logit model. To explain the approach, note

that if the true propensity score is of the form Λ(Z′iβ0) for some parameter β0, then 0 = E[(Ti −Λ(Z′iβ0))g(Zi)]

for any function g(·). This suggests by the analogy principle a class of moment-based estimators for the propensity

score indexed by g(·). The logit model uses g(Zi) = Zi. GPE reweighting with logit functional form uses g(Zi) =

Zi/(1−Λ(Z′iβ0)). This leads to exact finite-sample balance, or
∑

i TiZi/
∑

i Ti =
∑

j(1−Tj)WjZj/
∑

j(1−Tj)Wj,

and thus regression adjustment for Zi is redundant in the reweighted sample.9 This redundancy makes GPE

7This procedure chooses a bandwidth, h, to minimize Q(h) =
∑

j (1− Tj)(Yj − Ỹ−j,h)2 where Ỹ−j,h is the out-of-sample forecast

for control unit j based only on control units ` 6= j. We evaluate Q(h) for h = 0.01× 1.2g−1 for g ∈ {1,2, . . . ,28,29,∞}. An emerging
literature (Flossmann 2007, Flossmann 2008, Galdo, Smith and Black 2008) considers cross-validation routines specialized to this context,
but we leave a full consideration of competing cross-validation proposals to future research.

8For matching on covariates, we use the normalized Euclidean metric in light of the sample size.
9from E[(Ti − p(Xi))g(Zi)] = E[(1/(1− p(Xi))) (Ti − Tip(Xi) + Tip(Xi)− p(Xi))Zi] = E[(Ti − (1− Ti)Wi)Zi].
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reweighting double-robust in the sense of Robins, Rotnitzky and Zhao (1994): the estimator is consistent if either

the propensity score model is correctly specified, or if E[Yi(0)|Xi] is linear in Zi.

These three variations of reweighting differ in their prominence in the literature. Asymptotically, GPE has

smallest bias to second order in a class of double robust reweighting estimators for estimating the ATE (Graham et

al. 2012), but it has only recently been proposed and so has not been extensively studied or used in empirical work.

However double-robust estimators more broadly have been studied extensively in the recent theoretical statistics

literature (see Tan (2010) for a recent review). The unnormalized reweighting estimator dates at least to Horvitz

and Thompson (1952) and features prominently in the theoretical statistics and econometrics literatures. The

normalized reweighting estimator receives less attention in the theoretical literature, but features prominently in

empirical work.10 In our context, normalized reweighting is of particular interest because nearest-neighbor and local

linear matching estimators can be interpreted as normalized reweighting estimators.11 Consequently, a meaningful

comparison of matching and reweighting requires that the normalized reweighting estimator be considered. In Frölich

(2004), the only reweighting estimator considered is the unnormalized version based on the true propensity score.

III. Previous Results

We turn now to a re-examination of the performance of propensity score reweighting and matching estimators

in the context of the DGPs utilized by Frölich (2004). Those DGPs can be expressed as

Yi(0) = m(Zi) + σεi (4)

T ∗i = α+ βZi −Ui (5)

where Zi = Λ(
√

2Xi) is a function of the single standard normal covariate Xi, the error term εi is independent

and identically distributed (iid) uniform with a mean of zero and a variance of one and is independent of Xi, the

regression function m(·) is one of a list of functions specified in Frölich (2004, Table A1), Yi(0) is the counterfactual

outcome under control, Yi(1) = Yi(0) is the counterfactual outcome under treatment, the error term Ui is iid

standard uniform and is independent of εi and Xi, T
∗
i is the latent variable corresponding to treatment (i.e.,

Ti ≡ 1(T ∗i > 0) is the treatment indicator), and α and β are parameters given in Table 1 of Frölich (2004).12

10A brief list of studies discussing the unnormalized estimator, but not the normalized estimator, include Rosenbaum (1987, Equation
(3.1)), Dehejia and Wahba (1997, Proposition 4), Wooldridge (2002, Equation (18.22)), and Hirano et al. (2003, pp. 1175-1176). The
normalized reweighting estimator is discussed in Lunceford and Davidian (2004), Imbens (2004), and Robins, Sued, Lei-Gomez and
Rotnitzky (2007), for example.

11See, for example, equations (3) and (4) of Abadie and Imbens (2006).
12Strictly speaking, Frölich (2004) does not use a model for Yi(1) at all. This omission is motivated by the recognition that the

DGP for Yi(1) does not affect the relative performance of estimators for TOT. We prefer to be able to discuss the results in terms
of traditional notation and models, however, and use the convention that Yi(1) = Yi(0).
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Given this setup, p(Xi) = α+ βΛ(
√

2Xi) is the true propensity score. Frölich (2004) sets σ =
√

0.01, but we will

additionally consider larger values of σ. There are five combinations of α and β (selection equation “designs”) and

six functional forms for m(·) (outcome “curves”), for a total of 30 DGPs.

An issue with these DGPs is that, as originally posed in Frölich (2004), the five designs only accord with a standard

logit model for treatment for the special case of design 1, which sets α = 0 and β = 1.13 In empirical work, logit

models are the most common approach used for estimating the propensity score. While we consider misspecification

below, we want to begin our analysis by placing all estimators on equal footing in the sense of allowing for standard

implementations to be well-specified. Consequently, in equation (5) we change the distribution of Ui to be standard

logistic and replace α+ βZi with the Fourier approximation k (Xi) ≡ β0 +
∑L

`=1

{
βS` sin(`xi,n) + βC` cos(`xi,n)

}
where xi,n is a rescaled version of Xi that ranges from −π to π in each sample.14 With this specification, the true

propensity score is given by p(Xi) = Λ(k(Xi)).
15

Turning to the implementation of estimators, note that we have several options for estimating a well-specified

propensity score model. For example, both a low-dimensional logit model with the single covariate k(Xi) and a

medium-dimensional logit model with the 2L covariates that comprise k(Xi) are properly specified parametric

models for the propensity score. Relatedly, for the bias adjustment proposed in Abadie and Imbens (2011) to

be well-specified, we could either regression adjust using the single covariate m(Λ(k(Xi))), or since m(Λ(k(Xi)))

is a linear combination of several underlying functions of Xi, we could regression adjust using those functions.16

We conducted the simulations using low- and medium-dimensionality for estimating the propensity score and bias

adjusting and found generally similar results. We mention below when the results seem to depend on the dimension

of the covariates, but in the interest of space, we present the results that use the single covariate of k(Xi) for

estimating the propensity score and m(Λ(k(Xi))) for bias adjusting.17

Figures 1 and 2 provide a visual assessment of these DGPs. Figure 1 presents population overlap plots for the

13We note that one could estimate the propensity score by maximum likelihood under the assumption of a uniform error. However,
since logit and probit models dominate empirical research, we prefer not to pursue that approach.

14The approximation varies by design. In particular, we take L = 5 for design 3, and L = 3 for other designs, and we set
(βS

1 , β
S
2 , β

S
3 , β

S
4 , β

S
5 , β

C
1 , β

C
2 , β

C
3 , β

C
4 , β

C
5 , β0) to 3.804583, -1.0764500, 0.2052452, 0, 0, 0.0357783, -0.020493, 0.0052849, 0, 0, -0.0208564

(design 1); 1.6826, -0.159906, 0.07393, 0, 0, 0.0077514, -0.0056401, 0.0016085, 0, 0, -0.0036519 (design 2); 0.8935404, -0.1201665, 0.107236,
-0.0283796, 0.0066526, 0.0561901, -0.0460486, 0.0295689, -.0151546, 0.0053763, -0.0291041 (design 3); 2.107084, -0.4891177, 0.0894879,
0, 0, 0.6159659, 0.2563425, -0.0641854, 0, 0, -2.195924 (design 4); and 2.081543, -0.4648486, 0.081096, 0, 0, -0.5374329, -0.2979904,
0.0745325, 0, 0, 2.152262 (design 5).

15The coefficients in the k (Xi) are chosen to match the distribution of the original propensity score α+ βΛ(
√

2Xi) in Frölich’s (2004)
original implementation. This approximation is highly accurate. To substantiate this point, we drew 10,000 samples of various sample
sizes (n = 100, n = 1,000, n = 10,000, and n = 20,000). For each sample size we computed the rate at which the Kolmogorov-Smirnov
test rejects at the 95% level the null hypothesis of equal distributions for α+ βΛ(

√
2Xi) and our approximation to it. The rejection

rate exceeded the nominal size of the test only for the largest sample size. Consequently, in the sample sizes under discussion here,
our approximation is observationally equivalent to Frölich’s (2004) original DGP.

16For ease of exposition, let pi = p(Xi). Then these functions are pi (curve 1), pi and exp(−200(pi − 0.7)2) (curve 2), (pi − 0.9)2,
(pi−0.7)3, and (pi−0.6)10 (curve 3), (pi−0.9)2 and

√
1− pi (curve 4), (pi−0.9)2,

√
1− pi, and pi cos(30pi) (curve 5), and sin(8pi−5)

and exp(−16(4pi − 2.5)2) (curve 6).
17Full results available from authors upon request.

6



five different designs, and Figure 2 presents the curves used for m(·). Figure 1 shows that designs 1 and 5 violate

strict overlap, but not overlap, and that designs 2, 3, and 4 satisfy the more stringent strict overlap condition.18

Figure 2 shows the range of shapes taken on by the curves used, from approximately low-order polynomial (e.g.,

curves 1 and 4) to highly nonlinear (e.g., curves 2 and 6).

Below, we discuss the somewhat surprising result that the variance of εi affects the relative performance of

matching and reweighting estimators. We show this in a simple way, by presenting results based on the exact DGP

used in Frölich (2004), which sets σ =
√

0.01, and then conducting the same analysis with σ =
√

0.1. The tendency

of matching to outperform reweighting for very small values of the outcome equation variance is more extreme

if the true propensity score is used, as in Frölich (2004), rather than the estimated propensity score.

Our primary aim in this section of the paper is to demonstrate that reweighting is an estimator worth considering

in the context of the designs studied in Frölich (2004). This is the opposite of the conclusion in that paper, as noted

in the introduction. Because of this focus, we do not seek to justify these DGPs. We tend to agree with the position

emphasized in Huber, Lechner and Wunsch (2013) that it is preferable to study DGPs that are empirically relevant,

and we do so in the subsequent section. For now, however, our focus is simply assessing whether in the context

of these DGPs it is correct that reweighting performs worse than pair matching and worst among all estimators.

For each of the 30 DGPs outlined, we construct 10,000 samples of size n = 100 taken randomly with replacement

from the population model described above.19 Schematically, each sample is constructed in six steps: draw iid

standard normals Xi; draw iid standard logistic errors Ui; construct T ∗i = k (Xi)−Ui; assign Ti = 1(T ∗i > 0); draw

iid uniform errors εi with mean zero and variance one and finally construct Yi(0) = Yi(1) = m(Λ(k(Xi))) + σεi.

With a sample size this small, many of the estimators we consider may not perform well, particularly in terms

of bias. For example, all of the reweighting estimators are consistent but are presumably finite sample biased,

even when the propensity score is correctly specified. Similarly, nearest-neighbor matching on covariates or on

the propensity score is presumably finite sample biased.

Using these samples, we construct simulation estimates of the absolute value of the bias (“absolute bias”) and

variance.20 The results are summarized in Table 1, which presents estimates of the average absolute bias and average

variance for each design across curves for σ =
√

0.01 (top two panels) as well as σ =
√

0.1 (bottom two panels).

This economized presentation of averages is preferred to a presentation of results for all 30 DGPs, as the results are

18It can be shown that for these DGPs the asymptotic variance for all estimators (adopting either a parametric or semiparametric
perspective) is finite, with the exception of local linear matching, where to date the asymptotic variance has not been computed.
Consequently the analysis of Khan and Tamer (2010) does not imply a lack of

√
n-consistency for the estimators we study in these

DGPs, although it may continue to shed light on some of the differences in results across designs.
19Programming of estimators and construction of hypothetical data sets was performed in Stata, version 11.0.
20We assume finite first and second moments of these estimators. Examination of QQ-plots for these estimators shows that only

unnormalized reweighting—which has rather fat tails—has a distribution that departs from normal.
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largely similar across curves.21 For readability, we scale all estimates of the absolute bias by 1000 and all estimates

of the variance by n = 100.

We turn first to the results on the absolute bias for the σ =
√

0.01 case. Several features stand out. First, bias-

corrected matching performs extremely well in terms of bias. Standard errors for the bias estimates are suppressed

to economize the presentation, but for entries in the table corresponding to the σ =
√

0.01 case, the standard

error of the average absolute bias is roughly 0.2 to 0.3 when scaled by 1000. Consequently, none of the average

absolute bias estimates are statistically distinct from zero. Indeed, in unreported results, none of the 30 absolute

bias estimates are statistically distinct from zero, as expected since the regression function is here well-specified.

Second, of the remaining estimators, normalized reweighting has the smallest bias, particularly when overlap

is good as in designs 2, 3, and 4. For designs 1 and 5 where overlap is more problematic, normalized reweighting has

larger bias, but still outperforms pair matching on covariates and on the propensity score. Normalized reweighting

performs best in regards to bias among all reweighting estimators. Both unnormalized and GPE reweighting seem

to deteriorate faster than normalized reweighting as overlap worsens.22

Third, and turning to the variance results for the σ =
√

0.01 case, bias-corrected matching on the propensity score

performs best, followed by local linear matching and bias-corrected matching on covariates. Normalized reweighting

does not perform as well regarding variance in this context, although it outperforms unnormalized reweighting

and is at least competitive with GPE reweighting. Consistent with the conclusions in Frölich (2004), unnormalized

reweighting performs worst in terms of variance; this result is all the more extreme when reweighting is done using

the true propensity score rather than a parametric estimate of the propensity score (results not shown).

Turning to the σ =
√

0.1 case, we continue to see good performance from bias-corrected matching and normalized

reweighting in regards to the absolute bias. However, perhaps surprisingly in light of the conclusions in Frölich

(2004), normalized reweighting now emerges as among the best estimators in terms of variance, particularly when

overlap is good. For example, in designs 2, 3, and 4, normalized reweighting (and GPE reweighting) have the

smallest average variance. In designs 1 and 5, the variance of normalized reweighting is somewhat higher than

that of nearest neighbor matching with k = 4 matches.23

21For example, taking the results for the σ =
√

0.01 case and regressing the 30 absolute biases on 4 dummies for design and 5
dummies for curves, the between R2 for designs ranges from 45 to 95 percent for the case of bias and from 70 to 99 percent for the
case of variance. Curves play no role for the bias of bias-corrected matching in this context, but nonlinearity does lead to greater
variance for that estimator. A different pattern holds for nearest-neighbor matching, with curves playing a somewhat important role
for bias for designs 1 and 5, where strict overlap is violated, but curves play essentially no role for the variance. For local linear matching,
curves play something of a role for bias for all designs, but affect variance to a much lesser extent. For reweighting, curves play a
role only for designs 1 and 5, but for those designs, curves affect both the bias and the variance. The dominant role of designs relative
to curves is somewhat stronger for the σ =

√
0.1 case. Full results for all 30 DGPs available from authors upon request.

22We note that GPE reweighting is sometimes not computable when normalized reweighting is. In the DGPs being described
here, GPE reweighting was computable for 9,664 of the 10,000 simulation runs. GPE reweighting is computable less frequently as
the dimensionality of Zi increases and computation becomes problematic when we use three powers of Xi as elements of Zi.

23On the other hand, nearest neighbor matching with k = 4 matches is notably biased for designs 1 and 5.
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Why does normalized reweighting seem to perform relatively better for the σ =
√

0.1 case than it does for

the σ =
√

0.01 case? A simple explanation can be found in asymptotic approximations. In the context of these

DGPs, the asymptotic variance of matching estimators is proportional to σ2 (Abadie and Imbens 2006, Abadie

and Imbens 2011), implying that a small value of σ leads to a small value of the variance of matching estimators.

Parametric reweighting estimators, on the other hand, have a constant term that does not involve σ and only goes

away as the propensity score model is estimated and indeed overfit (Wooldridge 2007).

Overall, a researcher with a strong distaste for bias would prefer bias-corrected matching, at least if the regression

function were properly specified, as it is here. All of the other estimators have non-negligible biases. Among the

estimators built around a properly specified parametric model for the propensity score, normalized reweighting

exhibits the smallest bias and one of the smaller variances, particularly when overlap is good. In the next two

sections, we investigate a more empirically relevant DGP with greater dimensionality of the covariates, and we

examine the consequences of misspecification of the propensity score model and the regression function.

IV. Results from the National Supported Work (NSW) Demonstration

In this section, we focus on DGPs based on the data from the National Supported Work (NSW) Demonstration.

These data are described in some detail in Dehejia and Wahba (1999) and have been further studied by Smith

and Todd (2005), among others. These data have also been the basis for some previous simulation studies (Abadie

and Imbens 2011).

We focus on the African American subsample of those in the experimental group and those in a comparison

group taken from the Panel Study of Income Dynamics (PSID). African Americans comprise roughly 85 percent of

the NSW experimental data. Our study sample consists of 780 individuals (156 experimental, 624 comparison). The

covariates we condition on are age, years of education, an indicator for being a high school dropout, an indicator

for being married, an indicator for 1974 unemployment, an indicator for 1975 unemployment, 1974 earnings in

thousands of dollars and its square, 1975 earnings in thousands of dollars and its square, and interactions between

the 1974 and 1975 unemployment indicators and between 1974 and 1975 earnings. Define Xi to be the unique list

of variables (i.e., the covariates excluding interactions and square terms) and let Zi denote the full set of covariates

including the interactions and square terms describe above. Following the literature, the outcome of interest Yi

is 1978 earnings, again measured in thousands of dollars.

As before, we draw 10,000 hypothetical samples. This time, however, to mimic the original NSW data, we

draw n = 780 observations for each such sample, rather than 100. Schematically, each sample is constructed in

eight steps: draw covariates Xi from a population model specified below; draw iid logistic errors Ui; construct T ∗i
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according to equation (5), using the full set of covariates Zi and using in place of α and β the coefficients from a

logit model estimated on the original NSW data; assign Ti = 1(T ∗i > 0); draw iid normal errors ε0i with mean zero

and variance σ20 defined below; construct Yi(0) = δ′0Zi + ε0i, using in place of δ0 the coefficients from a regression

model estimated using the control observations in the original NSW data, where the root mean squared error of

the regression is assigned to σ20; construct Yi(1) analogously, but using the treated units from the original NSW

data; and finally construct Yi = TiYi(1) + (1− Ti)Yi(0).

In order to generate the covariates Xi in each simulation sample we construct a population model by proceeding

in three steps: draw indicators for married, unemployed in 1974, and unemployed in 1975 (a “group”) from the

empirical distribution of the observed measures in the original study sample; draw age, education, earnings in 1974,

and earnings in 1975 from a group-specific multivariate normal distribution; and finally take the integer part of

age and education and impose group-specific minima and maxima on 1974 and 1975 earnings consistent with those

in the original study sample. For each group, the parameters of the multivariate normal distribution are taken

to be the empirical means of and covariances among age, education, and 1974 and 1975 earnings estimated from

the original study sample. The population treatment effect on the treated is $2,334.

Figure 3A presents a sample overlap plot from this DGP.24 There is very little overlap in the NSW data and

therefore in our DGP. Most of the mass for the treatment group is above p(Xi) = 0.8, whereas the control group

has only five observations in this range. In order to produce data with better overlap we divide the coefficients

in (5) by a constant c. The benchmark case is c = 1 (“bad overlap”) and we also consider c = 5 (“good overlap”).

The sample overlap plot for the latter DGP is shown in Figure 3B.

In this section, we are focusing on estimator performance in the context of a more empirically relevant DGP

than in those from Section III. We consider estimators that are properly specified here and defer consideration

of misspecification to Section V, below. Consequently, we estimate the propensity score using a logit model and

covariates Zi and we bias adjust using a linear regression on the full set of covariates Zi, estimated using only the

matched control units.25 Simulation estimates of the absolute bias and variance are presented in Table 2. Since

earnings are measured in thousands of dollars, the scaled bias estimates are in units of dollars.26 Estimators are

given in rows. We first focus on the case of bad overlap presented in the first two columns of the table.

Two patterns stand out regarding bias. First, despite the difficulties with overlap in this DGP, nearly all estimators

show absolute bias of less than $60 (2.5 percent of the real treatment effect). The estimators that perform badly in

24A graphical display of the population overlap plot is uninformative here because of the nature of the design. For example, ignoring
ties, the distribution of the population propensity score based on the empirical distribution of the covariates is uniform over the sample
values for Xi in the NSW study sample, as transformed by p(·).

25Bias adjustment could also be done using only the covariates Xi. We prefer in this section to keep all estimators on equal footing
in regards to specification.

26For each estimator, the standard error on the bias (variance) estimate is about 25 (75).
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terms of bias are nearest neighbor matching on covariates with many matches and local linear matching. The defects

of nearest neighbor matching on covariates with a large number of matches seems to be cured either by matching

on the correctly specified propensity score, or by bias adjustment. Second, normalized reweighting performs well

in terms of bias, but GPE reweighting performs particularly well, closely matching the performance of bias corrected

matching on the propensity score.

In terms of variance we have a number of interesting results. We focus on estimators with bias smaller than $60.

First, nearest-neighbor matching on the propensity score with k = 4 matches exhibits the lowest variance. Close

competitors are nearest-neighbor matching on covariates with k = 1 matches and normalized reweighting. Second,

GPE reweighting has a very large variance, among the worst of all estimators considered. This is consistent with the

results in Section III, where GPE reweighting was notably variable in settings of poor overlap. Third, bias-corrected

matching improves upon the bias properties of nearest neighbor matching, but this of course comes at the expense

of added variance. Nearest neighbor matching declines in variance with additional matches, but this contributes

greatly to its bias, due to lower match quality. Bias adjustment involves a greater variance than nearest neighbor

matching, but additional matches lead to lower variance for bias-corrected matching without increasing bias.

Turning next to the case of good overlap (columns 3 and 4) nearly all estimators show biases lower than

60, the exception being local linear matching. In this context, it is not as difficult to find good matches, and

consequently nearest neighbor matching on covariates does not suffer as much from increasing the number of

matches. Bias-corrected matching on covariates continues to improve upon the bias of nearest neighbor matching on

covariates. Matching on the propensity score involves small for both nearest neighbor matching and bias-corrected

matching. Reweighting also performs well in terms of bias in the context of good overlap.

In terms of variance, an interesting pattern is that in the context of matching on the propensity score, bias-corrected

matching exhibits smaller variance than nearest neighbor matching. In the context of matching on covariates,

bias-corrected matching has somewhat higher variance than nearest neighbor matching. Reweighting estimators

perform best in terms of variance in this DGP, with a variance that is 12 percent smaller than the other leading

estimators. Finally, it is interesting to compare the relative performance of GPE reweighting in the case of good

and bad overlap. GPE reweighting is among the most variable estimators when overlap is bad but its relative

performance improves significantly in the case of good overlap.

Overall, the results for the NSW DGP agree with the conclusions reached using Frölich’s (2004) DGP. In terms of

bias, bias-corrected matching and reweighting tend to perform well when overlap is good, with the latter displaying

a smaller variance than the former. When overlap is bad, both bias-corrected matching and reweighting show a

relatively small bias with the former having smaller bias and larger variance than the latter. In the NSW DGPs
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generally, local linear matching and nearest-neighbor matching on covariates tend to perform worse in terms of

bias and variance. To some extent this is expected since reweighting and bias-corrected matching are implemented

here using properly specified parametric models, whereas nearest-neighbor on covariates is fully non-parametric

and local linear matching requires the selection of a tuning parameter via cross-validation.

V. Misspecification

The results presented so far have only considered cases in which models of the propensity score and bias adjustment

were correctly specified. In this section, we investigate the effects of misspecification on the bias and variance of

matching and reweighting estimators.27 To focus on these issues, we introduce a third set of DGPs.28

We draw n = 400 observations on 4 covariates Xi, where Xi is distributed iid and jointly uniform with mean zero

and a block diagonal variance matrix Σ.29 The block diagonal structure means that X1i and X2i are correlated (as are

X3i andX4i), but thatX1i is uncorrelated withX3i andX4i (as isX2i). We then generate a latent treatment variable

following equation (5) taking Zi to be a function (specified below) of the covariates Xi and Ui to be distributed iid

standard logistic and independent of Xi. We draw observations on counterfactual outcomes using equation (4) with

m(Zi) a linear function of Zi, and with the new equation Yi(1) = Ti +Yi(0), implying a constant treatment effect of

one. We take εi in equation (4) to be iid standard normal and independent of Xi and Ui and set σ in equation (4) to 1.

We draw samples from four DGPs by varying the selection equation and the regression function. The first DGP sets

the true selection index and regression function to be a linear combination of the 4 individual elements of theXi vector.

The second DGP sets the true selection index and regression function to be a linear combination of the 6 interaction

terms of the Xi vector (e.g., X1iX2i, X1iX3i, and so on). The third DGP sets the true selection index and regression

function to be a linear combination of the 10 individual and interaction terms. The fourth DGP sets the true selection

index to be a linear combination of the 4 individual terms and the regression function to be a linear combination of the 6

interaction terms.30 For all four DGPs, all the coefficients in the selection index and the regression function are one. 31

The results of these investigations are presented in Table 3. The first two columns describe the estimators and

27Kang and Schafer (2007) study the effects of misspecification on reweighting, stratification, and regression estimators of average
treatment effects. They find that unnormalized reweighting is severely biased and imprecise when models are misspecified. Drake
(1993) finds that treatment effect estimators that misspecify the regression functions have much larger biases than those for estimators
that misspecify the propensity score.

28We elect not to adapt the DGPs described in previous sections to study misspecification. The DGP used in Frölich (2004) is
a function of only one linear covariate. Studying misspecification in the context of the NSW DGP from the previous section has the
potential to conflate the issues of misspecification and overlap. We prefer to utilize a setting where we can focus on the important
issue of misspecification in isolation of other considerations.

29The upper left and lower right blocks of Σ are given by 1
3

( 1 −1
−1 2

)
.

30The obvious fifth DGP, which is analogous to the fourth, but with reversed roles for the selection index and the regression function,
shows similar results to the fourth and is omitted in the interest of space.

31For the first DGP, the constant in the selection index and the regression function is zero. For the other DGPs, we set the constant
in the selection index to 0.65, as this maintains an equal ratio of treated to control units across DGPs.
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the next two report on aspects of estimator implementation. In the case of matching we mainly report matching on

k = 4 neighbors, except in the case of nearest-neighbor matching without bias correction which we continue to use

as a benchmark.32 For each estimator we report results obtained by estimating the propensity score in four different

ways: using the true index as a single covariate (“True”, column 3), using the 4 individual elements of Xi (“Linear”),

using the 6 interaction terms (“Interactions”) and using all 10 individual and interaction terms (“Linear+Interact.”).

We proceed analogously when specifying the bias adjustment model for the bias-corrected matching estimator

(column 4). All matching estimators based on covariates are obtained by matching on the individual elements of

Xi.
33 The other 8 columns of Table 3 report absolute bias and variance estimates for each of the 4 DGPs considered.

With this many possibilities for DGPs and for estimator implementation, it is tedious to keep track of which

estimator is well-specified. To aid the discussion, we display the absolute bias and variance estimates in gray if the

estimator in question is well-specified in the given DGP and in black if the estimator is overspecified. We underline

the numbers when the model is misspecified.

Turning to the results, we see several interesting patterns. First, as expected, whenever the models for the propensity

score or bias adjustment model are well-specified, the bias is small, and conversely, when there is misspecification,

the bias can be quite large. Overspecification, on the other hand, does not seem to significantly affect the bias.

Second, in the well-specified case, the most biased estimators are nearest-neighbor matching on the propensity

score with four neighbors and local linear matching Bias-corrected matching and reweighting show the lowest biases.

In terms of variance, bias-corrected matching on the covariates and normalized and GPE reweighting tend to

perform best, with a possible role for local linear matching, which is however rather biased as noted.

Third, consistent with the findings from the NSW design, the dimensionality of the covariates is not pivotal

for the relative bias of these estimators, but does affect the relative variances somewhat.

Fourth, nearest-neighbor matching on covariates, shown in the first two rows of Table 3, tend to be the most

biased and most variable. This is explained in part because while reweighting, propensity-score matching estimators,

and estimators with a parametric bias adjustment are based on parametric estimation techniques, covariate matching

estimators are nonparametric.

Fifth, in the over-specified case, there seems to be little cost in terms of bias of including additional covariates.

Depending on the DGP, however, including extraneous covariates can either increase or decrease the variance of

the estimators considered here. Typically, including extraneous covariates increases the variance, but the opposite

is true for the third DGP considered for several estimators.

32We also computed matching estimators using k = 1,2,3 neighbors. To save space, we decided to report k = 4 (which minimizes
the MSE among most of these estimators). Results for k = 1,2,3 are available from the authors upon request.

33In all cases, we condition on the four covariates. Conditioning only on 1, 2 or 3 out of the 4 covariates increases the bias significantly
for all estimators.
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Sixth, misspecified estimators have very bad bias, as expected. Bias-corrected matching is more robust to

misspecification than the other estimators we consider, in that correct specification of either the list of covariates

to be matched on or the regression function suffices for relatively good performance. Take for instance column

(5). All three reweighting estimators, local linear matching, and nearest neighbor matching exhibit bias of about

590, which is double that of nearest-neighbor matching on covariates with k = 4 matches. Bias-corrected matching

of covariates performs equal to nearest-neighbor matching on covariates in the case of a misspecified regression

function, but plainly dominates nearest-neighbor matching on covariates for proper specification or overspecification

of the regression function. A similar pattern holds for columns (7) and (9). GPE reweighting exhibits the same

robustness, in the sense that it shows very small bias if the covariates included in the propensity score model are

either those that comprise the selection index or those that comprise the regression function. Interestingly, however,

when GPE is misspecified it exhibits a bias roughly twice as large as that of bias-corrected matching on covariates.

Finally, the last two columns of the table display an interesting property of many of these estimators. If the

propensity score model is misspecified but includes the covariates of the regression function, then estimators built

around the propensity score tend to perform well in terms of bias. This pattern is expected for GPE reweighting,

as noted, but may be surprising for the other estimators.

VI. Conclusion

We have presented simulation evidence on the finite sample properties of a variety of matching and reweighting

estimators across a several DGPs. We considered three DGPs: those studied in Frölich (2004) that have a single

covariate, a more empirical DGP based on the NSW data that involves many covariates, and a third DGP that

allows us to address the effects of misspecification on these estimators.

In broad strokes, nearest-neighbor matching tends to have small bias, especially with a small number of neighbors but

can be rather variable, particularly for data sets where the outcome is hard to predict. One approach to variance reduc-

tion is to include additional matches. This can lead to problems with worse covariate balance, especially in the presence

of many covariates. A possible solution to this problem is bias correction. Bias-corrected matching appears to provide

the researcher with insurance, in the sense that even in the case of a misspecified regression function, the bias is no worse

than with nearest-neighbor matching, but the bias is dramatically reduced when the regression function is properly

specified. A researcher with a strong distaste for bias is apt to be interested in bias-corrected matching for these reasons.

Normalized reweighting also exhibits small bias when the propensity score model is correctly specified. Moreover

while the bias is usually larger than that of bias-corrected matching, the variance is usually smaller. As a way

of guarding against the consequences of misspecification, researchers using estimators built around the propensity
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score should include in the propensity score model covariates believed to influence the treatment selection process

as well as any covariates believed to influence the outcome variable. Doing so provides a type of insurance against

bad bias, but this may come at the expense of added variance.

In addition to implementation details, the relative performance of estimators also depends on specific features

of the DGP in question. Normalized and GPE reweighting perform well in terms of both bias and variance when

strict overlap is satisfied, but deteriorate as overlap worsens. Bias-corrected matching on covariates often has higher

variance than reweighting when strict overlap is satisfied, but is less affected by the degree of overlap. In terms of

recommendations for empirical practice, our results suggest the wisdom of conducting a small-scale simulation study

tailored to the features of the data at hand. At a minimum, we recommend that researchers estimating average

treatment effects present results from a variety of approaches, particularly when there is evidence that overlap is poor.
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Covariate Matching Propensity Score Matching
NN NN BCM BCM NN NN BCM BCM LL

Design (k=1) (k=4) (k=1) (k=4) (k=1) (k=4) (k=1) (k=4) (CV)

Outcome Error Term Variance = 0.01
Average |Bias x 1000| 1 9.43 22.61 0.27 0.40 8.43 21.02 0.29 0.41 7.87 4.61 5.39 14.27

2 3.62 7.75 0.14 0.03 2.82 6.55 0.17 0.02 2.23 0.25 0.58 1.90
3 1.06 3.81 0.42 0.02 0.68 2.35 0.40 0.05 1.30 0.08 0.09 0.22
4 0.28 0.95 0.15 0.04 0.19 0.60 0.13 0.05 2.16 1.33 0.67 0.55
5 8.72 17.07 0.40 0.23 8.25 16.22 0.35 0.24 9.69 18.05 7.64 10.44

Average |Bias x 1000| 4.62 10.44 0.28 0.14 4.07 9.35 0.27 0.15 4.65 4.87 2.87 5.47
Average Rank of |Bias| 8.03 10.77 4.63 2.00 7.00 9.30 4.33 2.87 8.80 7.20 6.00 7.07

Average (Var x n ) 1 0.17 0.14 0.17 0.11 0.17 0.14 0.16 0.11 0.14 1.70 0.25 0.29
2 0.10 0.08 0.09 0.06 0.10 0.08 0.09 0.06 0.07 0.23 0.12 0.11
3 0.08 0.06 0.08 0.05 0.08 0.06 0.08 0.05 0.05 0.10 0.08 0.07
4 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.08 0.08 0.08 0.08 0.07
5 0.16 0.12 0.17 0.12 0.16 0.12 0.17 0.12 0.13 1.76 0.16 0.21

Average (Var x n ) 0.13 0.10 0.13 0.09 0.13 0.10 0.13 0.09 0.09 0.77 0.14 0.15
Average Rank of (Var x n ) 8.83 4.70 9.20 4.20 8.70 4.17 8.80 3.20 3.67 9.97 6.90 5.67

Outcome Error Term Variance = 0.1
Average |Bias x 1000| 1 9.63 22.88 0.48 0.92 8.65 21.31 0.50 0.95 15.53 4.13 5.47 14.15

2 3.66 7.80 0.75 0.17 2.86 6.61 0.84 0.14 6.58 0.35 0.69 1.73
3 1.16 3.76 0.79 0.07 0.89 2.36 0.72 0.07 4.32 0.21 0.25 0.37
4 0.31 0.94 0.26 0.07 0.27 0.60 0.26 0.07 6.07 1.17 0.56 0.46
5 9.04 16.93 1.21 0.52 8.53 16.04 1.13 0.57 15.66 18.32 7.94 10.48

Average |Bias x 1000| 4.76 10.46 0.70 0.35 4.24 9.39 0.69 0.36 9.63 4.83 2.98 5.44
Average Rank of |Bias| 7.30 10.10 5.33 2.47 7.10 9.00 5.03 2.47 10.03 6.83 5.43 6.90

Average (Var x n ) 1 1.39 0.88 1.64 1.05 1.40 0.89 1.64 1.05 1.01 3.02 1.10 1.30
2 0.90 0.63 0.93 0.65 0.90 0.63 0.92 0.65 0.65 0.75 0.63 0.63
3 0.77 0.54 0.78 0.55 0.77 0.53 0.77 0.54 0.51 0.52 0.50 0.49
4 1.33 0.86 1.33 0.86 1.33 0.85 1.33 0.85 0.75 0.72 0.72 0.72
5 1.50 0.97 1.74 1.16 1.51 0.97 1.74 1.15 1.04 2.93 1.12 1.69

Average (Var x n ) 1.18 0.78 1.28 0.85 1.18 0.78 1.28 0.85 0.79 1.59 0.82 0.97
Average Rank of (Var x n ) 9.30 4.17 10.27 5.90 9.70 3.53 10.27 4.83 4.20 7.67 3.67 4.50

Note: Each entry shows the average bias/variance for each design-estimator. The data generating process follows Frölich (2004) with a sample size of n =100. See Section III for datails. NN=nearest-neighbor
matching, BCM=bias-corrected matching, LL=local linear matching. For matching estimators, tuning parameter choices specified in italics. CV=cross-validation. The propensity score model and the bias
adjustment models are correctly specified. Simulation estimates based on 10,000 replications. Estimand is the TOT. Last two lines in each panel show the average of absolute value of bias and the average rank
of |bias|.

Reweighting

Table 1: Simulation Results
DGP 1 (Frölich): Linear models with one covariate correctly specified

Unnorm. Norm. GPE



|Bias| x 1000 Variance x n |Bias| x 1000 Variance x n
[1] [2] [3] [4]

Covariate NN k=1 28.6 4040.2 60.5 829.3
Matching NN k=2 73.7 3183.8 52.2 716.0

NN k=3 120.6 2771.2 43.0 677.3
NN k=4 168.6 2507.9 33.9 663.0
BCM k=1 40.2 5549.9 7.7 839.0
BCM k=2 27.1 4596.4 12.1 717.2
BCM k=3 20.4 4179.9 14.0 676.5
BCM k=4 19.6 3949.4 12.9 661.3

Propensity NN k=1 35.8 5840.5 24.2 966.5
Score NN k=2 22.0 4580.6 11.3 781.8
Matching NN k=3 1.1 4055.6 7.5 716.1

NN k=4 12.0 3720.4 2.5 682.5
BCM k=1 8.9 6029.8 9.1 862.3
BCM k=2 2.8 5048.2 14.3 720.3
BCM k=3 0.4 4655.6 12.1 670.6
BCM k=4 12.1 4430.9 13.7 648.9
Local Linear CV 213.6 4519.2 123.1 663.5

Reweighting Unnormalized - 57.6 4907.1 8.3 585.0
Normalized - 31.5 4061.6 9.8 588.7
GPE - 2.4 5819.8 10.6 580.0

Note: The data generating process is based on the National Supported Work (NSW) and the PSID datasets. Sample size is
n =780. See Section IV for details. CV=cross-validation. k specifies the number of neighbors. The propensity score model
and the bias adjsutment models are correctly specified parametric model on age, years of education, dropout, married,
unemployed in 1974, unemployed in 1975, earnings in 1974 linear and square, earnings in 1975 linear and square,
unemployed-in-1974 x unemployed-in-1975, earnings-in-1974 x earnings-in-1975. Simulations based on 10,000
replications. Estimand is the TOT.

Baseline Good Overlap

Table 2: Simulation Results
DGP 2 (NSW): Linear Models with many covariates correctly specified



|Bias|    
x 1000

Variance  
x n

|Bias|    
x 1000

Variance  
x n

|Bias|    
x 1000

Variance  
x n

|Bias|    
x 1000

Variance  
x n

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
Covariate NN (k=1) - - 134.6 8.2 78.1 7.4 15.5 7.1 12.7 7.9
Matching NN (k=4) - - 207.5 6.2 113.5 5.7 27.5 5.2 0.8 5.9

BCM (k=4) - True 0.3 6.4 0.7 5.9 0.4 5.1 0.3 5.5
- Linear 0.3 6.4 114.5 5.7 28.7 5.5 14.1 7.1
- Interactions 205.2 6.5 1.0 5.9 57.0 5.4 0.1 5.6
- Linear+Interact. 0.1 6.7 1.1 6.0 0.4 5.6 0.1 6.7

Propensity NN (k=1) True - 5.0 9.2 3.3 8.5 0.2 9.6 3.3 13.4
Score Linear - 3.8 9.7 398.6 11.2 106.1 8.6 3.5 13.7
Matching Interactions - 591.8 11.8 5.4 8.8 171.5 8.9 1.8 8.3

Linear+Interact. - 6.5 10.2 4.4 9.2 2.5 9.3 5.3 12.0
NN (k=4) True - 12.6 6.5 10.9 5.9 1.0 6.6 11.2 9.1

Linear - 12.5 6.7 399.5 7.8 104.9 5.9 9.4 9.4
Interactions - 590.8 8.2 11.6 6.0 169.0 6.0 4.8 5.3
Linear+Interact. - 13.3 7.0 11.7 6.3 2.6 6.0 2.4 7.9

BCM (k=4) True True 0.7 6.6 1.1 5.9 0.4 5.5 0.7 6.5
True Linear 0.1 6.7 17.9 6.1 5.0 6.0 2.8 9.3
True Interactions 30.7 7.1 1.1 6.1 12.0 6.0 0.3 6.7
True Linear+Interact. 0.6 7.0 1.2 6.3 0.6 5.9 0.6 7.0
Linear True 0.2 6.7 1.7 6.0 0.8 5.1 0.2 6.7
Linear Linear 0.2 6.7 398.4 7.7 109.6 5.9 6.4 9.3
Linear Interactions 29.3 7.2 2.0 6.2 12.7 5.9 0.4 6.8
Linear Linear+Interact. 0.4 7.0 2.0 6.2 1.2 5.8 0.4 7.0
Interactions True 1.4 6.7 0.8 6.0 0.1 5.1 0.7 4.9
Interactions Linear 1.4 6.8 18.1 6.2 21.9 5.9 86.6 8.9
Interactions Interactions 589.5 8.1 0.9 6.0 171.1 5.9 0.6 4.9
Interactions Linear+Interact. 1.2 7.2 1.2 6.2 0.1 5.9 1.2 7.2
Linear+Interact. True 0.0 6.9 1.3 6.2 1.4 5.7 0.1 6.8
Linear+Interact. Linear 0.2 6.9 16.1 6.2 4.2 5.8 0.5 7.9
Linear+Interact. Interactions 22.6 7.1 1.3 6.2 11.3 5.9 0.2 6.8
Linear+Interact. Linear+Interact. 0.3 7.0 1.6 6.2 1.5 5.8 0.3 7.0

LL (CV) True - 14.7 5.9 10.8 5.3 13.2 6.2 26.9 9.0
Linear - 14.6 6.1 426.3 6.7 95.5 5.5 22.4 9.1
Interactions - 597.5 7.1 9.8 5.4 173.2 5.4 19.3 4.8
Linear+Interact. - 14.4 6.3 10.8 5.7 7.4 5.6 16.2 7.6

Reweighting Unnorm. True - 0.4 6.9 1.0 5.7 0.3 5.8 0.7 8.7
Linear - 0.1 7.1 448.7 5.9 109.9 4.9 0.1 8.8
Interactions - 591.0 6.9 1.7 5.8 174.9 5.2 0.3 4.2
Linear+Interact. - 1.7 7.1 2.0 6.0 1.1 5.1 2.8 6.8

Norm. True - 1.5 6.6 0.5 5.5 0.3 5.8 1.3 8.7
Linear - 1.2 6.8 448.5 5.9 110.6 4.9 0.5 8.8
Interactions - 591.0 6.9 1.0 5.7 174.8 5.2 0.3 4.2
Linear+Interact. - 2.5 6.8 1.2 5.9 1.2 5.1 2.4 6.8

GPE True - 0.7 5.7 1.2 5.1 0.8 5.8 2.2 8.5
Linear - 0.4 5.8 446.9 5.9 121.1 5.0 2.2 8.4
Interactions - 590.9 6.9 1.2 5.2 173.3 5.1 0.0 4.2
Linear+Interact. - 0.1 6.1 1.4 5.4 0.6 5.1 0.1 6.1

Table 3: Simulation Results

DGP 3: Linear and Non-linear models with multiple covariates

DGP: Linear 
Selection eq and  

Interactions outcome 
eq

Estimator

Note: The data generating process follows a DGP as specified in Section V with n =400. NN=nearest neighbor matching, BCM=bias-corrected matching, LL=local linear 
matching. For matching estimators, tuning parameter choices specified in italics. CV=cross-validation. There are four versions of the propensity score and the outcome 
equation model: "True Index" means that the index was used (imposing the true parameters);  "Linear" means that the models only include linear terms of the covariates; 
"Interactions" refers to models that only include interactions terms.  "Linear+Interact." refers to models that include linear and interaction terms. Each entry in the table is 
marked to highlight whether the underlying propensity score and bias adjustment models are (in any given DGP) well-specified, misspecified or overspecified: “Gray font” 
(all models on which the estimator is based are correctly specified), "underline" (at least one model on which the estimator is based is misspecified), “regular black font” (no 
underspecified model is used but at least one model is over-specified).Simulation estimates based on 10,000 replications. Estimand is the TOT. Columns show resulys for 
different  DGPs in terms of its selection and outcome equation. See text for details.

DGP: Linear + 
Interactions selection 

and outcome eqs.

DGP: Linear 
selection and 
outcome eqs.

DGP: Interactions 
selection and 
outcome eqs.Propensity Score 

Model
Bias Adjustment 

Model



Note to Figure 1: Each selection equation design is made following Frölich (2004) designs. Equation 5 in Section III is specified as 
follows: Design 1 (α=0,β=1), design 2 (α=0.15,β=0.7), design 3 (α=0.3,β=0.4), design 4 (α=0,β=0.4), design 5 (α=0.6,β=0.4).
Note to Figure 2: Each panel displays the conditional expectation of Y(0) given the propensity score p for the curve in question. See 
text for details and Frölich (2004, Table A1).
Note to Figure 3: Panel A displays an overlap plot for the original NSW (bad overlap). Panel B displays an overlap plot for the NSW 
DGP in which the selection equation coefficients were divided by 5 (good overlap).  In each case, the solid line is a kernel density 
estimate of the conditional density of the propensity score among treated units for a representative data set. Dashed line is for the 
conditional density among control units. Solid triangles at top of figure give propensity score values for treated units, and open circles 
at bottom of figure give propensity score values for control units. See text for details.
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B. Designs 3, 4 and 5

Figure 1: Frolich Propensity Score Conditional Densities
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B. Curves 4-6

Figure 2: Frolich Outcome Curves

T=0

T=1

0
5

10
15

20
D

en
si

ty

0 .2 .4 .6 .8 1
Propensity Score

A. NSW (Bad Overlap)

T=0

T=1

0
2

4
6

D
en

si
ty

0 .2 .4 .6 .8 1
Propensity Score

B. NSW (Good Overlap)

Figure 3: NSW Propensity Score Conditional Densities


