University of California - Berkeley
 Department of Economics
 Game Theory in the Social Sciences
 (ECON C110 | POLSCI C135)

Fall 2023

Lecture V
 Extensive games with perfect information

Oct 19, 2023

Extensive games with perfect information

- The model of a strategic suppresses the sequential structure of decision making.
- All players simultaneously choose their plan of action once and for all.
- The model of an extensive game, by contrast, describes the sequential structure of decision-making explicitly.
- In an extensive game of perfect information all players are fully informed about all previous actions.

Subgame perfect equilibrium

- The notion of Nash equilibrium ignores the sequential structure of the game.
- Consequently, the steady state to which a Nash Equilibrium corresponds may not be robust.
- A subgame perfect equilibrium is an action profile that induces a Nash equilibrium in every subgame (so every subgame perfect equilibrium is also a Nash equilibrium).

An example: entry game

Subgame perfect and backward induction

Two entry games in the laboratory

A review of the main ideas

We study two (out of four) groups of game theoretic models:
[1] Strategic games - all players simultaneously choose their plan of action once and for all.
[2] Extensive games (with perfect information) - players choose sequentially (and fully informed about all previous actions).

A solution (equilibrium) is a systematic description of the outcomes that may emerge in a family of games. We study two solution concepts:
[1] Nash equilibrium - a steady state of the play of a strategic game (no player has a profitable deviation given the actions of the other players).
[1] Subgame equilibrium - a steady state of the play of an extensive game (a Nash equilibrium in every subgame of the extensive game).
\Longrightarrow Every subgame perfect equilibrium is also a Nash equilibrium.

Back to oligopoly...

Stackelberg's duopoly model (1934)

How do the conclusions of the Cournot's duopoly game change when the firms move sequentially? Is a firm better off moving before or after the other firm?

Suppose that $c_{1}=c_{2}=c$ and that firm 1 moves at the start of the game. We may use backward induction to find the subgame perfect equilibrium.

- First, for any output q_{1} of firm 1 , we find the output q_{2} of firm 2 that maximizes its profit. Next, we find the output q_{1} of firm 1 that maximizes its profit, given the strategy of firm 2.

Firm 2

Since firm 2 moves after firm 1, a strategy of firm 2 is a function that associate an output q_{2} for firm 2 for each possible output q_{1} of firm 1 .

We found that under the assumptions of the Cournot's duopoly game Firm 2 has a unique best response to each output q_{1} of firm 1 , given by

$$
q_{2}=\frac{1}{2}\left(A-q_{1}-c\right)
$$

(Recall that $c_{1}=c_{2}=c$).

Firm 1

Firm 1's strategy is the output q_{1} the maximizes

$$
\pi_{1}=\left(A-q_{1}-q_{2}-c\right) q_{1} \quad \text { subject to } \quad q_{2}=\frac{1}{2}\left(A-q_{1}-c\right)
$$

Thus, firm 1 maximizes

$$
\pi_{1}=\left(A-q_{1}-\left(\frac{1}{2}\left(A-q_{1}-c\right)\right)-c\right) q_{1}=\frac{1}{2} q_{1}\left(A-q_{1}-c\right)
$$

This function is quadratic in q_{1} that is zero when $q_{1}=0$ and when $q_{1}=A-c$. Thus its maximizer is

$$
q_{1}^{*}=\frac{1}{2}(A-c)
$$

Firm 1's (first-mover) profit in Stackelberg's duopoly game

We conclude that Stackelberg's duopoly game has a unique subgame perfect equilibrium, in which firm 1's strategy is the output

$$
q_{1}^{*}=\frac{1}{2}(A-c)
$$

and firm 2's output is

$$
\begin{aligned}
q_{2}^{*} & =\frac{1}{2}\left(A-q_{1}^{*}-c\right) \\
& =\frac{1}{2}\left(A-\frac{1}{2}(A-c)-c\right) \\
& =\frac{1}{4}(A-c)
\end{aligned}
$$

By contrast, in the unique Nash equilibrium of the Cournot's duopoly game under the same assumptions $\left(c_{1}=c_{2}=c\right)$, each firm produces $\frac{1}{3}(A-c)$.

The subgame perfect equilibrium of Stackelberg's duopoly game

