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In ‘classic’ consumer behavior we have taken % as the primitive concept
and derived the restrictions that the -maximization model imposes on
observed demand.

— These are the Slutsky restrictions – the substitution terms matrix is
symmetric and negative semidefinite.

— These restrictions are (in principle) testable, but require assumptions
on the parametric form/shape of the demand function.

— The standard approach is postulating some (semi)parametric family of
functions and error structure.



The most basic question to ask about choice data (px)

prices p and associated chosen bundles x for  = 1  

is whether it is consistent with utility maximization.

Classical revealed preference theory provides a direct test: (px) are
consistent with maximizing a (well-behaved) -function  they satisfy
the Generalized Axiom of Revealed Preference (GARP).



We say that -function rationalizes the observed behavior (px) if for
all for  = 1  

(x) ≥ (x) for all x such that px ≥ px

that is, (·) achieves its maximum value on the budget set at the chosen
bundles.

Question Suppose that the data (px) were generated by such a max-
imization process. What observable restrictions must the observed
choices satisfy?



Answer None! Without any assumptions about (·) there are no restric-
tions: (·) can be a constant function (so the consumer was indifferent
to all observed bundles...).

— We rule out this trivial case: what are the observable restrictions im-
posed by the maximization of a locally non-satiated -function?

— Now, when x was chosen when x could have been strictly chosen
px  px, the utility of (x) must be strictly larger than the utility
of (x).



We will say that x is

— directly revealed preferred to x, xx, if px ≥ px.

— strictly directly revealed preferred to x, xx, if px  px.

— revealed preferred to x, xx, if there exists a sequence {x}=1 with

x1 = x and x = x such that xx+1

for every  = 1  − 1 ( is the transitive closure of ).



It is clear that if the data (px) were generated by a non-satiated -
function then

xx =⇒ (x) ≥ (x)

Consider any two observations x and x: we now have a condition to
determine whether (x) ≥ (x) and an (observable) condition to de-
termine whether (x)  (x).

Obviously, these two conditions should not both be satisfied. This condi-
tion (GARP) can be stated in the notation introduced above.



Generalized Axiom of Revealed Preference (GARP)

xx implies not xx

In words, if x is indirectly revealed preferred to x, then x is not
strictly directly revealed preferred to x.

GARP requires that if xx then px ≤ px (x must cost at least as
much as x at the prices prevailing when x is chosen).

As the name implies, GARP is a generalization of various other revealed
preference tests...



Weak Axiom of Revealed Preference (WARP)

xx and x 6= ximplies not xx

Strong Axiom of Revealed Preference (SARP)

xx and x 6= ximplies not xx

! WARP and SARP require that there be a unique demand bundle at each
budget, while GARP allows for multiple demanded bundles (flat spots in
the indifference curves).

!! Afriat’s (1967) Theorem tells us that if a (finite) data set generated by an
individual’s choices satisfies GARP, then the data can be rationalized by a
well-behaved utility function.



Afriat’s Theorem: The following conditions are equivalent:

() The data satisfy GARP.

() There exists a non-satiated -function that rationalizes the data.

() There exists a concave, monotonic, continuous, non-satiated -function
that rationalizes the data.

() trivially implies () and we have already seen that () implies ().
All that is left is the proof that () implies (). Not quite so... Let’s
throw more on the mix...



() There exist positive numbers ( ) for  = 1   that satisfy the
so-called Afriat inequalities:

 ≤  + p(x − x) for all  

We will show that () implies (). The proof that () implies () is
omitted. See Varian (1982) for the argument, at your own risk...

Proof: consider the following -function

(x) = min
=1

{ + p(x− x)}

(which is the lower envelope of a finite number of hyperplanes). This
function is continuous, locally non-satiated and monotonic (as long as
p  0), and concave (trust me on this).

We will show that this function rationalizes the data – achieves its
constrained maximum at x when prices are p.



— We first show that (x) = . If this is not the case, we have

(x) =  + p(x− x)  

which violates one of the Afriat inequalities and thus (x) = .

— Now suppose that px ≥ px. It follows that

(x) = min

{ + p(x− x)}

≤  + p(x− x)
≤ 

= (x)

Hence, (x) ≥ (x) for any x such that px ≥ px.¥



A note on concave functions:

— A function  : → R defined over a convex set  ⊂ /R is concave
if for all  0 ∈  and any  ∈ [0 1]

(+ (1− )0) ≥ () + (1− )0

— Think of  = 0 − , this condition can be rewritten as

(+ ) ≤ () +
(+ )− ()




and for continuously differentiable function

(+ ) ≤ () +∇() ·  as → 0



The -function defined in the proof of Afriat’s theorem

(x) = min

{ + p(x− x)}

has a natural interpretation. If (x) is also differentiable then it must
satisfy the  FOCs (the gradient vector):

∇(x) = p (*)

And since it also concave it must satisfy the standard concavity conditions

(x) ≤ (x) +∇(x)(x − x) (**)

Substituting from (∗) into (∗∗), we have

(x) ≤ (x) + p(x − x)



The Afriat numbers can thus be interpreted as utility levels () and mar-
ginal utilities () that are consistent with the observed choices.

— Using similar methods there are (finite) tests for: homotheticity, weak
and additive separability, expected utility, and more.

— They involve checking to see whether a solution exists to a particular
set of linear Afriat inequalities.

— Well known graph theory algorithms can be used to verify whether or
not these conditions are satisfied.



Afriat’s theorem has (at least) two remarkable implications:

— If there is a locally non-satiated  that rationalizes the data then there
must exist a continuous, monotonic, and concave  that rationalizes
the data.

— If the underlying  had the “wrong” curvature at some points, we
would never observe choices being made at such points (do not satisfy
the right 2nd-order conditions).

(1) Market data do not allow us to reject the hypotheses of convexity and
monotonicity of preferences.



— Since GARP is a necessary and sufficient condition for -maximization,
it must imply conditions analogous to comparative statics results of
classic demand theory.

— These include the Slutsky decomposition of a price change into the
income and the substitution effects (for finite changes in a price rather
than just infinitesimal changes).

(2) Since revealed preferences provide a complete set of the restrictions im-
posed by -maximization, they must contain all information available about
preferences.



The critical cost efficiency index (CCEI)

An obvious difficulty: GARP provides an exact test of -maximization —
either the data satisfy GARP or they do not.

— But choices involve at least some errors: compute incorrectly, execute
intended choices incorrectly, err in other less obvious ways...

— Afriat (1972) suggested the following approach: for any number 0 ≤
 ≤ 1, define the direct revealed preference relation () as

x()x if px ≥ px

and define () and () accordingly.



— Let ∗ be the largest value of  such that the data (px) satisfies
GARP. Afriat’s CCEI is the value of ∗ associated with the data.

— ∗ can be interpreted as saying that the consumer is ‘wasting’ as much
as 1− ∗ of his income by making inefficient choices.

— The closer ∗ to one, the smaller the ‘perturbation’ required to remove
all violations and thus the closer the data are to satisfying GARP.



Recovering preferences and forecasting behavior: a brief outline

The tightest possible bounds on indifference curves through an allocation
x0 not observed in the data (px) for  = 1   .

— Consider the set of prices at which x0 could be chosen and be consistent
— does not add violations of GARP — with the previously observed data.

— This set of prices is the solution to the system of linear inequalities
constructed from the data and revealed preference relations. Call this
set (x0).

— Use (x0) to generate set of observations,  (x0) and  (x0),
revealed preferred/worse than x0.



—  (x0) is simply the convex monotonic hull of all allocations revealed
preferred to x0 and  (x0) is constructed as follows:

x0x for all prices p0 ∈ (x0)

⇓
x0x for any x such that xx

—  (x0) and the complement of  (x0) form the tightest inner and
outer bounds on the set of allocations preferred to x0.

—  (x0) and the complement of  (x0) form the tightest inner and
outer bounds on the set of allocations worse than x0.

Forecasting: x0 chosen from budget set p0? Use the same algorithm!!!



Mean CCEI scores 

 



Wealth differentials

=⇒ The heterogeneity in wealth is not well-explained either by standard observ-
ables (income, education, family structure) or by standard unobservables
(intertemporal substitution, risk tolerance).

=⇒ If consistency with utility maximization in the experiment were a good
proxy for (financial) decision-making quality then the degree to which con-
sistency differ across subjects should help explain wealth differentials.
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Conclusion

Judgment about the quality of decision-making is generally made difficult
by twin problems of identification and measurement:

— The identification problem Distinguishing differences in decision-
making quality from unobserved differences in preferences, information,
beliefs or constraints.

Identification is important because welfare conclusions and thus (con-
strained) optimal policy will depend on the sources of any systematic dif-
ferences in choices.

— The measurement problem Defining (and implementing) a portable,
practical, autonomous, quantifiable, and economically interpretable mea-
sure of decision-making quality.



 

 

 

 

 

 

 

 

 

Ever since Laibson… 



Mean CCEI scores: income in a few days and income 60 days after that 



Mean CCEI scores: income in 60 days and income another 60 days after that   



Stationarity, time invariance, and time consistency

• Time discount rates decline as tradeoffs are pushed into the temporal dis-
tance.

— Subjects often choose the larger and later of two rewards when both are
distant in time, but prefer the smaller and earlier one as both rewards
draw nearer to the present.

• Interpreted as non-constant time discounting, these preference reversals
have important implications.

— Under standard assumptions, non-constant time discounting implies
time-inconsistency — self-control problems and a demand for commit-
ment thus emerge.



Stationarity

% is stationary if for every  0 ≥ 0 and ∆1∆2 ≥ 0

( +∆1) ∼ (
0 +∆2)⇐⇒ ( 0 +∆1) ∼ (

0 0 +∆2)

Ranking does not depend on the distance from . Tested in the standard
static experiment.



 
Stationarity 

 

 



 
Exponential vs. quasi-hyperbolic 

 

 




