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Roadmap

We want to “complete” the development of the theory of the consumer
(Rubinstein and Kreps do it in parallel with the theory of the firm):

When is a (parametric) family of demand functions represent the (Mar-
shallian) demand of a utility-maximizing consumer?

This key question is answered (more or less) by the Integrability Theorem
but “the path that takes us to this climax is long and winding...”



The key steps to reach this “climax” are Roy’s identity and the Slutsky
equation, which are two important “identities.”

=⇒ Trying to isolate the substitution and income effects of a change in a
price to

— the level of indirect utility (Roy’s identity)

— the quantities consumed (the Slutsky equation).
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The utility-maximization problem (UMP)

The budget set is given by

 = { :  ·  ≤ }

where  is the DM’s income/wealth and  is the vector of commodity
prices. The UMP can then be written as:

max


()

subject to  ·  ≤ 

The value of  that solves this problem is the demanded bundle ∗ =
( ), which is not necessarily unique (requires strict convexity of %).



By making a few ‘regularity’ assumptions on %, we can say more about
the solution to the UMP ∗.

Budget balancedness (Walras’ Law) allows us to restate the UMP as fol-
lows:

( ) = max


()

subject to  ·  = 
(1)

where ( ) is the indirect utility function, which gives us the maximum
utility achievable at prices  and income .



The standard properties of the indirect utility function ( ):

1. non-increasing in  and non-decreasing in .

2. homogeneous of degree 0 in ( ).

3. quasi-convex in  , that is the set

{ : ( ) ≤ }

is convex for all .

4. continuous at all   0 and   0.



(3) ( ) quasi-convex in :

— Suppose  and 0 6=  are such that ( ) ≤  and (0 ) ≤ ,
let 00 = 0 + (1− )0 for  ∈ [0 1].

— Define , 0, and 00 accordingly. It is sufficient to show that 00 ⊂
 ∪0 (so any  ∈ 00 must be also in either  or 0).

— Assume not:

 ∈  =⇒   

 ∈ 0 =⇒ (1− )0  (1− )

So + (1− )0  , which contradicts that  ∈ 00.¥



The expenditure-minimization problem (EMP)
(Kreps Ch. 9 for a profit-maximizing firm)

If % satisfy the local non satiation assumption then ( ) is strictly
increasing in  so we can invert it and solve for  as a function of the
level of utility.

The expenditure function ( ) — the inverse of ( ) — indicates the
minimal income  needed to achieve utility level  at prices :

( ) = min


 · 
subject to () ≥ 

(2)



The standard properties of the expenditure function ( ):

1. non-decreasing in .

2. homogeneous of degree 1 in .

3. concave in .

4. continuous in  for all   0.

The expenditure function is (completely) analogous to the cost function in
the theory of the firm.



Let ( ) be the expenditure-minimizing bundle so

( ) =
( )


for  = 1 

(assuming differentiability). The function ( ) is called the Hicksian (or
compensated) demand function.

When we want to emphasize the difference between the Hicksian demand
function ( ) and the ‘usual’ demand function ( ), we refer to the
latter as the Marshallian demand function.



The “dual” problems: the relationships between UMP and EMP

The (simple) observation that the solution ∗ to the UMP (1) is the same
as the solution to the EMP (2) leads to four important identities:

(1A) The maximum utility achievable from income ( ) is 

( ( )) ≡ 

(1B) The minimum expenditure necessary to achieve utility ( ) is 

( ( ) ≡ 



(2A) The Marshallian demand at income  is the same as the Hicksian
demand at utility ( )

( ) ≡ ( ( ))

(2B) The Hicksian demand at utility  is the same as the Marshallian demand
at income ( )

( ) ≡ ( ( ))

! The last identity is (perhaps) the most important (for empirical work) since
it ties together the observable Marshallian demand with the unobservable
Hicksian demand.



 

 

 

 

  



The indirect utility function and Roy’s identity
(a non-standard discussion)

Consider a consumer who is choosing among budget sets. We will for-
mulate (and study) the “indirect” preferences of the consumer on budget
sets.

More broadly, we can think of a DM choosing between choice sets where
 is the set of alternatives and  the set of choice problems (non-empty
subsets of ).

— The “indirect” preference relation: %∗ is the indirect preference rela-
tion induced by % if

%() % %() =⇒  %∗  for any  ∈ .



() %∗ is a preference relation, and if  represents % and % is well
defined, then

() = (%())

represents %∗ so  is the indirect utility function.

( /) Depending on the set of choice problems , the choice function %

— can be reconstructed from the indirect preferences %∗, e.g. if  ∈ 

and

 Â∗ − {} =⇒ %() = 



Gul and Pesendorfer’s (2001) temptation and self-control:

— A “standard” DM will always prefer a bigger choice set to a smaller
choice set (in the subset sense):

 ⊂  =⇒  %∗ 
Otherwise, Â∗ exhibits a preference for commitment (at ). Â∗ has
a preference for commitment if it has a preference for commitment at
some choice set .

— Gul and Pesendorfer’s (2001): so-called set betweenness

 %∗  =⇒  %∗  ∪ %∗ 
permits a preference for commitment.



Now, let’s get back to a consumer who is choosing among budget sets
(characterized by the  + 1 parameters ( )).

If % is well-behaved (satisfies monotonicity, continuity and convexity) and
the demand ( ) is always well-defined. then the indirect preferences
%∗is defined by

( ) %∗ (0 0) if ( ) % (0 0)



The properties of indirect preferences %∗: Same as above for the indi-
rect utility function ( ) as they follows directly from the properties
of ( ).

(3) The ‘concavity’ of %∗(( ) to be quasi-convex in  ): For any  ∈
[0 1]

( ) %∗ (0 0) =⇒ ( ) %∗ (00 00)
Let  = (00 00) so

00 ≤ 00 =⇒  ≤  or 0 ≤ 0 =⇒
=⇒ ( ) %  or (0 0) % 

Because ( ) % (0 0), we conclude that ( ) % .¥



Roy’s identity

A method for recovering ( ) from %∗

— When  = 1, each %∗-indifference curve is a ray. If % are well-
behaved (monotonic), then the slope of the indifference curve through
(1 ) is



1
, which is 1(1 ).

— For any -commodity space, the set (hyperplane)

 = {( ) :  · (∗ ∗) = }

is tangent to the %∗-indifference curve through (∗ ∗), and if the
tangent is unique, then knowing that tangent enables us to recover
(∗ ∗).



If% satisfies monotonicity then (∗ ∗) ∈  and (∗ ∗) ∈ ( )

for any ( ) ∈ . Therefore,

( ) % (∗ ∗) =⇒ ( ) %∗ (∗ ∗)

— Roy’s identity: If %∗are represented by a differentiable indirect utility
function , then

(
∗ ∗) = −∇(∗ ∗)

∇(∗ ∗)

= −(
∗ ∗)

(∗ ∗)
for all  = 1 .



Proof (envelope theorem argument):

Applied to the UMP the envelope theorem tells us:

(
∗ ∗) = −(∗ ∗)

and

(∗ ∗) = −

where  is the Lagrange multiplier, which yield the result.¥



 

Whoa. Dude, Mr. Turtle is my father. Name's Crush. 
 

 



Rubinstein’s “dual” turtle
(a preface to the “dual” consumer)

Consider the following two statements about Crush (the sea turtle in Find-
ing Nemo):

(1) The maximal distance Crush can swim in 1 hour is 20 miles.
(2) The minimal time is takes Crush to swim 20 miles is 1 hour.

— (1)⇒ (2) if Crush swims a positive distance in any period of time.

— (1)⇐ (2) if Crush cannot “jump” a positive distance in zero time.

The maximal distance Crush can swim in time  () must be strictly
increasing and continuous.



Last word (for today): 4 (relevant) quotes by Crush:

— You, mini-man! Taking on the jellies. You got serious thrill issues,
dude. Awesome!

— I saw the whole thing, dude. First you were all, like, whoa! And then
we were all, like, whoa! Then you were, like, whoa...

— When the little dudes are just eggs we leave them on a beach to hatch,
and coo-coo-cachoo, they find their way back to the big ol’ blue...

— Oh, man, no hurling on the shell, dude. Okay? I just waxed it...




