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Are utility functions differentiable?

“The axioms of the theory must be formulated in terms of ob-
servable choices made by a consumer among commodity vectors...”
(Debreu, 1972)

“Nothing in our axioms will guarantee this nor can new axioms be in-
troduced to do so without making patently unrealistic assumptions...”
(Deaton and Muellbauer, 1980)

! Smooth rationalization: necessary + sufficient conditions for rationalizing
price-quantity data by a well-behaved and differentiable utility function.



Differentiable preferences, whatever it means...

Consider a vector of (subjective) values () ∈ R+ for the commodities
and a feasible the direction +  ∈  from  for small enough   0.

 is considered to be an improvement by the DM if and only if

 · ()  0

Given () :  → R+ , let

() = { :  · ()  0}

be the set of directions that are improvements relative to .



 ∈ R is an improvement direction at  if there is ∗  0 such that 
is an improvement

+  Â 

for any  ≤ ∗. Let %() be the set of all improvement directions at :

Any improvement is an improvement direction if

— % are strictly convex.

— % are convex, strongly monotonicity, and continuous (verify this!).



A ‘differentiable’ % (a nonconventional definition): % is differentiable if
there exists a function () :  → R+ such that

%() = () for all  ∈ .

% represented by

— 1 + 2 for    0 are differentiable: () = ( ).

— min{1 2} are differentiable where 1 6= 2:

() =

(
(1 0) if 1  2
(0 1) otherwise.



Any (monotonic + convex) % that can be represented by a (strongly
monotonic + quasi-concave) and differentiable  is differentiable.

Proof:

Let ∇() be the vector of partial derivatives 


() (the gradient) so

the rate of change of  when moving from  in any direction  is

 ·∇()
Let () = ∇(). We want to show that %() = (), that is

%() ⊆ () and %() ⊇ ().



— %() ⊇ (): Assume  ∈ (). Since  is differentiable, for
any small enough 

 · ()  0 =⇒ (+ )  ()

and thus  ∈ %().

— %() ⊆ (): Assume  ∈ %() such that ·() ≤ 0 (towards
contradiction).

() Continuity of %: For any 0 6=  and 0() ≤ () for all 

+  Â  =⇒ + 0 Â 



—() Convexity and strong monotonicity of % (follows from the quasi-
concavity and strong monotonicity of ):

0 ∈ %()

() But 0 · ()  0 (since that  · () ≤ 0) and thus (by the
differentiability of )

(+ 0)  () for any small enough .

! In empirical work, -functions are differentiable, monotonic and quasi-
concave. % represented by such  are differentiable.



Budget sets

We continue to have  = R+ . The budget set is given by

 = { :  ·  ≤ }

where  is the DM’s wealth and  is the vector of commodity prices.
WLOG,  is normalized to 1.

Trivially, () is compact:

— closed: defined by ≤.

— bounded: for any  ∈ (), 0 ≤  ≤
1


for all .



— convex: if  0 ∈ () then  ·  ≤ 1 and  · 0 ≤ 1 so for any
 ∈ [0 1]

1 ≥ + (1− )0

= [+ (1− )0]

Since  
0
 ≥ 0 for all 

+ (1− )0 ∈ ()



The problem of a DM called the consumer...

The DM’s problem is finding the %-best bundle  ∈ ().

% is continuous:

If % is continuous, then all such problems have a solution.

— Proof 1: If% is continuous, then it admits a continuous -representation
so finding the %-best bundle is equivalent to

 ∈ arg max
∈()

()

Since the () is compact and  is continuous, the problem has a
solution (Weierstrass Theorem).



— Proof 2: For any  ∈ (), define its inferior set

≺ = { ∈  :  ≺ }
which is open (because% is continuous), and assume there is no%-best
bundle  ∈ ().

Thus, any  ∈ () is also  ∈ ≺ (for some ≺) so the collection of
all ≺ ‘covers’ ().

But collection of open sets that ‘covers’ a compact set has a finite
sub-collection (Heine-Borel Theorem).

The %-best bundle is this sub-collection is a %-best in ().



% is convex:

— If % is convex, then the set %-best bundles  ∈ () (or any other
convex set) is convex.

Assume  and 0 are %-best bundles. Since () is convex

 0 ∈ () =⇒ + (1− )0 ∈ ()

and since % is convex

+ (1− )0 %  % 

for all  ∈ () and thus + (1− )0 is also a %-best bundle.



— If % is strictly convex, then the set %-best bundles  ∈ () is (at
most) a singleton.

If  and 0 6=  are %-best bundles then  ∼ 0. Again, since () is
convex

 0 ∈ () =⇒ + (1− )0 ∈ ()

and since % is strictly convex

+ (1− )0 Â 

a contradiction.



% is ‘differentiable’:

Assume that % is differentiable and denote the vector of “subjective value
numbers” at ∗ (as defined above) by

(∗) = (1(
∗)  (

∗))

If ∗ ∈ () is a %-best bundle then
(

∗)
(∗)

=


for any ∗ 

∗
  0.

These are the “classic” necessary conditions by taking (
∗) =




(∗).



If ∗ is a %-optimal bundle and  is a consumed commodity ∗  0, then
it must be that

(
∗)


≥

(
∗)


for any  6= . (∗)

In words, the “value per dollar” at a bundle of a commodity that is pos-
itively consumed is as large as the “value per dollar” of any other com-
modity.

Assume that ∗ ∈ () is a %-best bundle but that the inequality above
is reversed so

(
∗)


− (

∗)  0

to get the “standard” figure, contradicting the assumption that ∗is a
%-optimal bundle in ().



% is strongly monotonic, convex, continuous, and differentiable:

If % is strongly monotonic, convex, continuous, and differentiable and if
·∗ = 1 (budget balancedness) and (∗) is satisfied then ∗ is a %-optimal
bundle.

Proof: If ∗ ∈ () is not a %-optimal bundle then there is  ∈ ()

such that  Â ∗ and so ( − ∗) is an improvement direction (as
defined above).



Let  =
(

∗)


for all  such that ∗  0 and note that

0 ≥ ( − ∗)

=
P
( − ∗)

≥ P (
∗)


( − ∗)

where the 1st ≥ is because  · ∗ = 1 and the 2nd ≥ is because
 ≥ (

∗) when ∗ = 0 and ( − ∗) ≥ 0. Thus (
∗) ·

( − ∗) ≤ 0, a contradiction with ( − ∗) being an improvement
direction.



The demand function

A demand function is a choice function () that assigns to every vector
of prices  a unique bundle  ∈ ().

() () is homogeneous of degree zero: since ( ) = ( )

( ) = ( )

() If % is a continuous preference relation, then the induced demand
function is continuous in prices (and in wealth).

! Since continuous % admits a continuous -representation, a standard
“maximum theorem” cab be applied but there is also a (simple) proof
that does not use -maximization.



Walras’ Law

Walras’ Law: if % is monotonic, then any solution  to the consumer
problem () satisfies budget balancedness, that is  · () = 1.

Otherwise, there is an   0 such that (1+  +) ∈ () and
by monotonicity of %

(1 +    + ) Â 

contradicting that  is optimal in ().



Rationalizable demand functions

1. % fully rationalize the demand function  if for any  the bundle () is
the unique %-maximal bundle within ().

2. % is “being rationalizable” if for any  the bundle () is a %-maximal
bundle (though not necessarily unique) within ().

An “empty” definition =⇒ any () is consistent with %-maximal for
“total indifference.”

3. A monotonic % rationalize the demand function  if for any  the bundle
() is a %-maximal bundle within ().



To illustrate, the demand function

() =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1

1
 0) if 1 ≥ 2

(0
1

2
) if 1  2

is not rationalizable.

Next: We look for general conditions that will guarantee that a demand
function  can be fully rationalized (i.e. () is the unique %-maximal
bundle within () for some %).



Condition : necessary + sufficient for a choice function to be derived
from some % under certain assumptions about the choice domain .

—  do not apply to budget sets: () is infinite and  ∪ 0 is not a
budget set.

— Instead, we use the “revealed preference” induced from a demand func-
tion ().



The weak and strong axioms of revealed preference

A demand function () satisfies the WA if () 6= (0)

 · (0) ≤ 1 =⇒ 0 · ()  1

— A necessary and sufficient condition for () (which satisfies Walras’
law and homogeneity of degree zero) to be rationalizable is the SA.

— A classic example with  = 3 is presented in Hicks (1956). With
 = 2, any violation of the SA is also a violation of the WA...




