University of California – Berkeley Department of Economics ECON 201A Economic Theory Choice Theory Fall 2023

Properties of preferences (Kreps Ch. 2 and Rubinstein Ch. 4)

Sep 7, 2023

A roadmap

\succ		u
monotone	\implies	nondecreasing
strongly monotone	\implies	strictly increasing
continuous	\implies	continuous (Debreu's Theorem)
convex	\implies	quasi-concave (but not concave)
strictly convex	\implies	strictly concave (and strictly quasi-concave)
homothetic (and continuous)	\implies	continuous and homogeneous
(so-called) quasi-linear	\implies	quasi-linear
(so-called) differentiable	\Longrightarrow	differentiable
separable	\implies	separable (form)
strongly separable	\implies	additively separable (form)

e.g., if \succeq are monotone then <u>all</u> *u*-representations are nondecreasing, but \succeq are monotone is implied if only <u>some</u> *u*-representations are nondecreasing.

Nest we discuss a "special case" of a \mathcal{DM} – a consumer who makes choices between combinations of commodities (bundles).

Rubinstein: "… I have a certain image in mind: my late mother going to the marketplace with money in hand and coming back with a shopping bag full of fruit and vegetables…"

A less abstract set of choices $X = \mathbb{R}_+^K$ – a bundle $x \in X$ is a combination of K commodities where $x_k \ge 0$ is the quantity of commodity k.

Classical (well-behaved) preferences

We impose some restrictions on \succeq in addition to completeness, transitivity and reflexivity.

An additional three "classical" restrictions/conditions based on the mathematical structure of X are:

monotonicity + continuity + convexity

We refer to the map of indifference curves $\{y | y \sim x\}$ for some x demonstrating such \succeq as well-behaved.

Monotonicity

(more is better...)

Increasing the amount of some x_k is preferred and increasing the amount of all x_k is strictly preferred:

$$\begin{array}{l} - \succsim \text{ satisfies } \textit{monotonicity if for all } x, y \in X \text{ and for all } k\\ \\ \text{ if } x_k \ge y_k \implies x \succsim y \text{ and if } x_k > y_k \implies x \succ y.\\ \\ - \succsim \text{ satisfies } \textit{strong monotonicity if for all } x, y \in X \text{ and for all } k\\ \\ \\ \text{ if } x_k \ge y_k \text{ and } x \neq y \implies x \succ y. \end{array}$$

Leontief preferences $\min\{x_1, ..., x_k\}$ satisfy monotonicity but not strong monotonicity.

 $- \succeq$ satisfies *local nonsatiation* if for all $y \in X$ and every $\varepsilon > 0$, there is $x \in X$ such that

$$||x-y|| \leq \varepsilon$$
 and $x \succ y$.

A thick indifference set violates local nonsatiation. Show the following:

strong monotonicity \implies monotonicity \implies local nonsatiation.

Continuity

We will use the topological structure of \mathbb{R}^K_+ (with a standard distance function) in order to apply the definition of continuity:

- \succeq on X is continuos if it preserved under limits: for any sequence of pairs $\{(x^n, y^n)\}_{n=1}^{\infty}$ with $x^n \succeq y^n$ for all $n, x = \lim_{n \to \infty} x_n$ and $y = \lim_{n \to \infty} y_n$, we have $x \succeq y$.

<u>Debreu's Theorem</u>: Any continuous \succeq is represented by some continuous u. If we also assume monotonicity, then have a simple/elegant proof.

Proof:

- We show that for every bundle x, there is a bundle on the diagonal (t, ..., t) for $t \ge 0$ such that the \mathcal{DM} is indifferent between that bundle and the x:

$$(\max_k \{x_k\}, ..., \max_k \{x_k\}) \succeq x \succeq (0, ..., 0)$$

so (by continuity) there is a bundle on the main diagonal that is indifferent to x and (by monotonicity) this bundle is unique. Denote this bundle by (t(x), ..., t(x)) and let u(x) = t(x) and note that

$$egin{array}{cccc} x &\succsim y \ & \& \ & (t(x),...,t(x) &\succsim \ & (t(y),...,t(y)) \ & \& \ & t(x) &\geq \ & t(y). \end{array}$$

where the 2nd \oplus is by monotonicity.

To show that u is continuous, let (x^n) be a sequence such that $x = \lim_{n\to\infty} x_n$ and assume (towards contradiction) that $t(x) \neq \lim_{n\to\infty} t(x_n)$ but there is nothing 'elegant' in this part...

Convexity

 \succeq on X is *convex* if for every $x \in X$ the upper counter set

 $\{y\in X: y\succsim x\}$

is convex – if $y \succeq x$ and $z \succeq x$ then $\alpha y + (1 - \alpha)z \succeq x$ for any $\alpha \in [0, 1]$.

(1) \succeq is convex if

$$x \succeq y \Longrightarrow \alpha x + (1 - \alpha)y \succeq y \text{ for any } \alpha \in (0, 1).$$

(2) \succeq is convex if for any $x, y, z \in X$ such that $z = \alpha x + (1 - \alpha)y$ for some $\alpha \in (0, 1)$

$$z \succeq x$$
 or $z \succeq y$.

In words,

- (1) If $x \succeq y$, then "going only part of the way" from y to x is also an improvement over y.
- (2) If z is "between" x and y, then it is impossible that both $x \succ z$ and $y \succ z$.

 \succeq on X is *strictly convex* if for every $x, y, z \in X$ and $y \neq z$ we have that $y \succeq x$ and $z \succeq x \Longrightarrow \alpha y + (1 - \alpha)z \succ x$ for any $\alpha \in (0, 1)$. Concavity and quasi-concavity:

u is concave if for all x, y and $\lambda \in [0, 1]$ we have

$$u(\lambda x + (1 - \lambda)y) \ge \lambda u(x) + (1 - \lambda)u(y)$$

and it is quasi-concave if for all $y \in X$

$$\{x \in X : u(x) \ge u(y)\}$$

is convex. Any function that is concave is also quasi-concave.

but \succeq is convex does not imply that u is concave, for example if $X = \mathbb{R}$

 $x \succeq y \text{ if } x \ge y \text{ or } y < \mathbf{0}.$

Should we go beyond the basic properties?!

"I can tell you of an important new result I got recently. I have what I suppose to be a completely general treatment of the revealed preference problem..." – A letter from Sydney Afriat to Oskar Morgenstern, 1964.

- Afriat's Theorem The following conditions are equivalent: (i) The data satisfy GARP. (ii) There exists u that rationalizes the data. (iii) There exists a continuous, increasing, concave u that rationalizes the data.
- \implies We <u>should</u> assume that \succeq satisfy (some versions of) monotonicity, continuity, and convexity and will refer to a \mathcal{DM} with such well-behaved \succeq as a "classical consumer."

Rubinstein's view:

- "... the reason for abandoning the "generality" of the classical consumer is because empirically we observe only certain kinds of consumers who are described by special classes of preferences..."
- "... stronger assumptions are needed in economic models in order to make them interesting models, just as an engaging story of fiction cannot be based on a hero about which the reader knows very little..."

I beg to disagree...

ANGUS DEATON and JOHN MUELLBAUER

Homotheticity

 \succeq are homothetic if $x \succeq y \Longrightarrow$ that $\alpha x \succeq \alpha y$ for all $\alpha \ge 0$.

A continuous \succeq on X is *homothetic* if and only if it admits a u-representation that is hmongenous of degree one

$$u(\alpha x) = \alpha u(x)$$
 for all $x > 0$.

 \iff For any degree λ

$$egin{aligned} x \succsim y & \iff u(x) \ge u(y) \ & \iff lpha^\lambda u(x) \ge lpha^\lambda u(y) \ & \iff u(lpha x) \ge u(lpha y) \ & \iff lpha x \succsim lpha y \end{aligned}$$

 \implies Any homothetic, continuous, and <u>monotonic</u> \succeq on X can be represented by a continuous utility u that is homogeneous of degree one.

We have already proved that for any $x \in X$

$$x \sim (t(x), ..., t(x))$$

and that the function u(x) = t(x) is a continuous *u*-representation of \succeq . Because \succeq are homothetic

$$\alpha x \sim (\alpha t(x), ..., \alpha t(x))$$

and therefore

$$u(\alpha x) = \alpha t(x) = \alpha u(x).$$

Quasi-linearity

 \succeq on X is quasi-linear in x_1 (the "numeraire" good) if

$$x \succeq y \Longrightarrow (x + \varepsilon e_1) \succeq (y + \varepsilon e_1)$$

where $e_1 = (1, 0, ..., 0)$ and $\varepsilon > 0$. The indifference curves of \succeq that are quasi-linear in x_1 are parallel to each other (relative to the x_1 -axis).

A continuous \succeq on $(-\infty, \infty) \times \mathbb{R}^{K-1}_+$ is quasi-linear in x_1 if and only if it admits a *u*-representation of the form

$$u(x) = x_1 + v(x_{-1}).$$

<u>Proof</u>: Assume that \succeq is also strongly monotonic and the following lemma (which you should prove):

- If \succeq is strongly monotonic, continuous, quasi-linear in x_1 then for any (x_{-1}) there is a number $v(x_{-1})$ such that

$$(v(x_{-1}), 0, ..., 0) \sim (0, x_{-1}).$$

– By quasi-linearity in x_1

$$(x_1 + v(x_{-1}), 0, ..., 0) \sim (x_1, x_{-1}).$$

and by strong monotonicity (in x_1), $u(x) = x_1 + v(x_{-1})$ represents \gtrsim .

If \succeq is strongly monotonic, continuous, quasi-linear in $x_1, ..., x_K$ then it admits a linear *u*-representation

$$u(x) = \alpha_1 x_1 + \cdots + \alpha_K x_K.$$

Proof (for K = 2): We need to show that v(a + b) = v(a) + v(b) for all a and b:

– By the definition of v

 $v(0,a) \sim (v(a),0)$ and $v(0,b) \sim (v(b),0)$

and By quasi-linearity in in x_1 and x_2

 $(v(b), a) \sim (v(a) + v(b), 0)$ and $(v(b), a) \sim (0, a + b)$.

- Thus,

$$(v(a) + v(b), 0) \sim (0, a + b) \Longrightarrow v(a + b) = v(a) + v(b).$$

- Let v(1) = c. Then, for any natural numbers m and n we have

$$v(\frac{m}{n}) = c\frac{m}{n}.$$

Since v(0) = 0 and v is an increasing function, v(x) = cx.

Separability

 \succeq satisfies *separability* if for any x_i

$$(x_i, x_{-i}) \succeq (x'_i, x_{-i}) \Leftrightarrow (x_i, x'_{-i}) \succeq (x'_i, x'_{-i}).$$

Such \succeq admits an additive *u*-representation

$$u(x) = v_1(x_1) + \cdots + v_K(x_K).$$

A common assumption used in demand analysis that allows for a clear demarcation (see R4 problem 6).

What about differentiability?

It is often (always?) assumed in empirical work that u is differentiable....