University of California - Berkeley
 Department of Economics
 ECON 201A Economic Theory
 Choice Theory

Fall 2023

Properties of preferences
 (Kreps Ch. 2 and Rubinstein Ch. 4)

Sep 7, 2023

A roadmap

\succsim
monotone
strongly monotone
continuous
convex
strictly convex
homothetic (and continuous)
(so-called) quasi-linear
(so-called) differentiable
separable
strongly separable
e.g., if \succsim are monotone then all u-representations are nondecreasing, but \succsim are monotone is implied if only some u-representations are nondecreasing.

Nest we discuss a "special case" of a $\mathcal{D} \mathcal{M}$ - a consumer who makes choices between combinations of commodities (bundles).

Rubinstein: "... I have a certain image in mind: my late mother going to the marketplace with money in hand and coming back with a shopping bag full of fruit and vegetables..."

A less abstract set of choices $X=\mathbb{R}_{+}^{K}$ - a bundle $x \in X$ is a combination of K commodities where $x_{k} \geq 0$ is the quantity of commodity k.

Classical (well-behaved) preferences

We impose some restrictions on \succsim in addition to completeness, transitivity and reflexivity.

An additional three "classical" restrictions/conditions based on the mathematical structure of X are:
monotonicity + continuity + convexity

We refer to the map of indifference curves $\{y \mid y \sim x\}$ for some x demonstrating such \succsim as well-behaved.

Monotonicity

 (more is better...)Increasing the amount of some x_{k} is preferred and increasing the amount of all x_{k} is strictly preferred:

- \succsim satisfies monotonicity if for all $x, y \in X$ and for all k

$$
\text { if } x_{k} \geq y_{k} \Longrightarrow x \succsim y \text { and if } x_{k}>y_{k} \Longrightarrow x \succ y
$$

- \succsim satisfies strong monotonicity if for all $x, y \in X$ and for all k

$$
\text { if } x_{k} \geq y_{k} \text { and } x \neq y \Longrightarrow x \succ y
$$

Leontief preferences $\min \left\{x_{1}, \ldots, x_{k}\right\}$ satisfy monotonicity but not strong monotonicity.

- \succsim satisfies local nonsatiation if for all $y \in X$ and every $\varepsilon>0$, there is $x \in X$ such that

$$
\|x-y\| \leq \varepsilon \text { and } x \succ y
$$

A thick indifference set violates local nonsatiation. Show the following:
strong monotonicity \Longrightarrow monotonicity \Longrightarrow local nonsatiation.

Continuity

We will use the topological structure of \mathbb{R}_{+}^{K} (with a standard distance function) in order to apply the definition of continuity:

- \succsim on X is continuos if it preserved under limits: for any sequence of pairs $\left\{\left(x^{n}, y^{n}\right)\right\}_{n=1}^{\infty}$ with $x^{n} \succsim y^{n}$ for all $n, x=\lim _{n \rightarrow \infty} x_{n}$ and $y=\lim _{n \rightarrow \infty} y_{n}$, we have $x \succsim y$.

Debreu's Theorem: Any continuous \succsim is represented by some continuous u. If we also assume monotonicity, then have a simple/elegant proof.

Proof:

- We show that for every bundle x, there is a bundle on the diagonal $(t, . ., t)$ for $t \geq 0$ such that the $\mathcal{D} \mathcal{M}$ is indifferent between that bundle and the x :

$$
\left(\max _{k}\left\{x_{k}\right\}, \ldots, \max _{k}\left\{x_{k}\right\}\right) \succsim x \succsim(0,,,, 0)
$$

so (by continuity) there is a bundle on the main diagonal that is indifferent to x and (by monotonicity) this bundle is unique.

Denote this bundle by $(t(x), \ldots, t(x))$ and let $u(x)=t(x)$ and note that

$$
\begin{aligned}
x & \succsim \\
& \succsim \\
(t(x), \ldots, t(x) & \underset{\Downarrow}{\gtrless}(t(y), \ldots, t(y)) \\
& \stackrel{\Uparrow}{\Downarrow} \\
t(x) & \geq t(y) .
\end{aligned}
$$

where the 2 nd $\mathbb{\imath}$ is by monotonicity.

To show that u is continuous, let $\left(x^{n}\right)$ be a sequence such that $x=$ $\lim _{n \rightarrow \infty} x_{n}$ and assume (towards contradiction) that $t(x) \neq \lim _{n \rightarrow \infty} t\left(x_{n}\right)$ but there is nothing 'elegant' in this part...

Convexity

\succsim on X is convex if for every $x \in X$ the upper counter set

$$
\{y \in X: y \succsim x\}
$$

is convex - if $y \succsim x$ and $z \succsim x$ then $\alpha y+(1-\alpha) z \succsim x$ for any $\alpha \in[0,1]$.
(1) \succsim is convex if

$$
x \succsim y \Longrightarrow \alpha x+(1-\alpha) y \succsim y \text { for any } \alpha \in(0,1)
$$

(2) \succsim is convex if for any $x, y, z \in X$ such that $z=\alpha x+(1-\alpha) y$ for some $\alpha \in(0,1)$

$$
z \succsim x \text { or } z \succsim y
$$

In words,
(1) If $x \succsim y$, then "going only part of the way" from y to x is also an improvement over y.
(2) If z is "between" x and y, then it is impossible that both $x \succ z$ and $y \succ z$.
\succsim on X is strictly convex if for every $x, y, z \in X$ and $y \neq z$ we have that $y \succsim x$ and $z \succsim x \Longrightarrow \alpha y+(1-\alpha) z \succ x$ for any $\alpha \in(0,1)$.

Concavity and quasi-concavity:
u is concave if for all x, y and $\lambda \in[0,1]$ we have

$$
u(\lambda x+(1-\lambda) y) \geq \lambda u(x)+(1-\lambda) u(y)
$$

and it is quasi-concave if for all $y \in X$

$$
\{x \in X: u(x) \geq u(y)\}
$$

is convex. Any function that is concave is also quasi-concave.

If $x \succsim y \Leftrightarrow u(x) \geq u(y)$ then

but \succsim is convex does not imply that u is concave, for example if $X=\mathbb{R}$

$$
x \succsim y \text { if } x \geq y \text { or } y<0
$$

Should we go beyond the basic properties?!

"I can tell you of an important new result I got recently. I have what I suppose to be a completely general treatment of the revealed preference problem..." - A letter from Sydney Afriat to Oskar Morgenstern, 1964.

Afriat's Theorem The following conditions are equivalent: (i) The data satisfy GARP. (ii) There exists u that rationalizes the data. (iii) There exists a continuous, increasing, concave u that rationalizes the data.
\Longrightarrow We should assume that \succsim satisfy (some versions of) monotonicity, continuity, and convexity and will refer to a $\mathcal{D} \mathcal{M}$ with such well-behaved \succsim as a "classical consumer."

Rubinstein's view:

- "... the reason for abandoning the "generality" of the classical consumer is because empirically we observe only certain kinds of consumers who are described by special classes of preferences..."
- "... stronger assumptions are needed in economic models in order to make them interesting models, just as an engaging story of fiction cannot be based on a hero about which the reader knows very little..."

I beg to disagree...

Economics and consumer behavior

ANGUS DEATON and JOHN MUELLBAUER

Homotheticity

\succsim are homothetic if $x \succsim y \Longrightarrow$ that $\alpha x \succsim \alpha y$ for all $\alpha \geq 0$.

A continuous \succsim on X is homothetic if and only if it admits a u-representation that is hmongenous of degree one

$$
u(\alpha x)=\alpha u(x) \text { for all } x>0
$$

\Longleftarrow For any degree λ

$$
\begin{aligned}
x \succsim y & \Longleftrightarrow u(x) \geq u(y) \\
& \Longleftrightarrow \alpha^{\lambda} u(x) \geq \alpha^{\lambda} u(y) \\
& \Longleftrightarrow u(\alpha x) \geq u(\alpha y) \\
& \Longleftrightarrow \alpha x \succsim \alpha y
\end{aligned}
$$

\Longrightarrow Any homothetic, continuous, and monotonic \succsim on X can be represented by a continuous utility u that is homogeneous of degree one.

We have already proved that for any $x \in X$

$$
x \sim(t(x), \ldots, t(x))
$$

and that the function $u(x)=t(x)$ is a continuous u-representation of \succsim. Because \succsim are homothetic

$$
\alpha x \sim(\alpha t(x), \ldots, \alpha t(x))
$$

and therefore

$$
u(\alpha x)=\alpha t(x)=\alpha u(x)
$$

Quasi-linearity

\succsim on X is quasi-linear in x_{1} (the "numeraire" good) if

$$
x \succsim y \Longrightarrow\left(x+\varepsilon e_{1}\right) \succsim\left(y+\varepsilon e_{1}\right)
$$

where $e_{1}=(1,0, \ldots, 0)$ and $\varepsilon>0$. The indifference curves of \succsim that are quasi-linear in x_{1} are parallel to each other (relative to the x_{1}-axis).

A continuous \succsim on $(-\infty, \infty) \times \mathbb{R}_{+}^{K-1}$ is quasi-linear in x_{1} if and only if it admits a u-representation of the form

$$
u(x)=x_{1}+v\left(x_{-1}\right)
$$

Proof: Assume that \succsim is also strongly monotonic and the following lemma (which you should prove):

- If \succsim is strongly monotonic, continuous, quasi-linear in x_{1} then for any $\left(x_{-1}\right)$ there is a number $v\left(x_{-1}\right)$ such that

$$
\left(v\left(x_{-1}\right), 0, \ldots, 0\right) \sim\left(0, x_{-1}\right)
$$

- By quasi-linearity in x_{1}

$$
\left(x_{1}+v\left(x_{-1}\right), 0, \ldots, 0\right) \sim\left(x_{1}, x_{-1}\right)
$$

and by strong monotonicity (in x_{1}), $u(x)=x_{1}+v\left(x_{-1}\right)$ represents \succsim.

If \succsim is strongly monotonic, continuous, quasi-linear in x_{1}, \ldots, x_{K} then it admits a linear u-representation

$$
u(x)=\alpha_{1} x_{1}+\cdots+\alpha_{K} x_{K}
$$

Proof (for $K=2$): We need to show that $v(a+b)=v(a)+v(b)$ for all a and b :

- By the definition of v

$$
v(0, a) \sim(v(a), 0) \text { and } v(0, b) \sim(v(b), 0)
$$

and By quasi-linearity in in x_{1} and x_{2}

$$
(v(b), a) \sim(v(a)+v(b), 0) \text { and }(v(b), a) \sim(0, a+b)
$$

- Thus,

$$
(v(a)+v(b), 0) \sim(0, a+b) \Longrightarrow v(a+b)=v(a)+v(b)
$$

- Let $v(1)=c$. Then, for any natural numbers m and n we have

$$
v\left(\frac{m}{n}\right)=c \frac{m}{n} .
$$

Since $v(0)=0$ and v is an increasing function, $v(x)=c x$.

Separability

\succsim satisfies separability if for any x_{i}

$$
\left(x_{i}, x_{-i}\right) \succsim\left(x_{i}^{\prime}, x_{-i}\right) \Leftrightarrow\left(x_{i}, x_{-i}^{\prime}\right) \succsim\left(x_{i}^{\prime}, x_{-i}^{\prime}\right)
$$

Such \succsim admits an additive u-representation

$$
u(x)=v_{1}\left(x_{1}\right)+\cdots+v_{K}\left(x_{K}\right)
$$

A common assumption used in demand analysis that allows for a clear demarcation (see R4 problem 6).

What about differentiability?

It is often (always?) assumed in empirical work that u is differentiable....

