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Bargaining

Topics: the axiomatic approach (OR 15) and the strategic approach (OR
7).



The axiomatic approach (OR 15)

Nash’s (1950) work is the starting point for formal bargaining theory.

The bargaining problem consists of

— a set of utility pairs that can be derived from possible agreements, and

— a pair of utilities which is designated to be a disagreement point.



The bargaining solution is a function that assigns a unique outcome to
every bargaining problem.

Nash’s bargaining solution is the first solution that

— satisfies four plausible conditions, and

— has a simple functional form, which make it convenient to apply.



A bargaining situation

A bargaining situation is a tuple h (%)i where

—  is a set of players or bargainers ( = {1 2}),

—  is a set of agreements/outcomes,

—  is a disagreement outcome, and

— % is a preference ordering over the set of lotteries over  ∪ {}.



The objects  , ,  and % for  = {1 2} define a bargaining situation.

%1 and %2 satisfy the assumption of  so for each  there is a utility
function  :  ∪ {}→ R.

h i is the primitive of Nash’s bargaining problem where

—  = (1() 2()) for  ∈  the set of all utility pairs, and

—  = (1() 2()).



A bargaining problem is a pair h i where  ⊂ R2 is compact and
convex,  ∈  and there exists  ∈  such that    for  = 1 2. The
set of all bargaining problems h i is denoted by .

A bargaining solution is a function  :  → R2 such that  assigns to
each bargaining problem h i ∈  a unique element in .



The definitions of the bargaining problem and solution have few restrictions
(the convexity assumption on  is more technical):

— bargaining situations that induce the same pair h i are treated iden-
tically,

— the utilities obtainable in the outcome of bargaining are limited since
 is bounded,

— players can agree to disagree since  ∈  and there is an agreement
preferred by both players to the disagreement outcome.



Nash’s axioms

One states as axioms several properties that it would seem natural for the
solution to have and then one discovers that the axioms actually determine
the solution uniquely - Nash 1953 -

Does not capture the details of a specific bargaining problem (e.g. alter-
nating or simultaneous offers).

Rather, the approach consists of the following four axioms: invariance
to equivalent utility representations, symmetry, independence of irrelevant
alternatives, and (weak) Pareto efficiency.



Invariance to equivalent utility representations ( )


0 0

®
is obtained from h i by the transformations

 7→  + 

for  = 1 2 if

0 =  + 

and

0 = {(11 + 1 22 + 2) ∈ R2 : (1 2) ∈ }

Note that if   0 for  = 1 2 then

0 0

®
is itself a bargaining problem.



If

0 0

®
is obtained from h i by the transformations

 7→  + 

for  = 1 2 where   0 for each , then

(
0 0) = ( ) + 

for  = 1 2. Hence,

0 0

®
and h i represent the same situation.



 requires that the utility outcome of the bargaining problem co-vary
with representation of preferences.

The physical outcome predicted by the bargaining solution is the same for
0 0

®
and h i.

A corollary of  is that we can restrict attention to h i such that

 ⊂ R2+,

 ∩ R2++ 6= ∅, and

 = (0 0) ∈  (reservation utilities).



Symmetry ()

A bargaining problem h i is symmetric if 1 = 2 and (1 2) ∈  if
and only if (2 1) ∈ . If the bargaining problem h i is symmetric
then

1( ) = 2( )

Nash does not describe differences between the players. All asymmetries
(in the bargaining abilities) must be captured by h i.

Hence, if players are the same the bargaining solution must assign the same
utility to each player.



Independence of irrelevant alternatives ()

If h i and h i are bargaining problems with  ⊂  and ( ) ∈ 

then

( ) = ( )

If  is available and players agree on  ∈  ⊂  then they agree on the
same  if only  is available.

 excludes situations in which the fact that a certain agreement is
available influences the outcome.



Weak Pareto efficiency ()

If h i is a bargaining problem where  ∈  and  ∈ , and    for
 = 1 2 then ( ) 6= .

In words, players never agree on an outcome  when there is an outcome
 in which both are better off.

Hence, players never disagree since by assumption there is an outcome 
such that    for each .



 and 

restrict the solution on single bargaining problems.

 and 

requires the solution to exhibit some consistency across bargaining
problems.

Nash 1953: there is precisely one bargaining solution, denoted by ( ),
satisfying  , ,  and .



Nash’s solution

The unique bargaining solution  :  → R2 satisfying  , ,
 and  is given by

( ) = argmax
(12)≤(12)∈

(1 − 1)(2 − 2)

and since we normalize (1 2) = (0 0)

( 0) = argmax
(12)∈

12

The solution is the utility pair that maximizes the product of the players’
utilities.



Proof

Pick a compact and convex set  ⊂ R2+ where  ∩ R2++ 6= ∅.

Step 1:  is well defined.

— Existence: the set  is compact and the function  = 12 is contin-
uous.

— Uniqueness:  is strictly quasi-conacave on  and the set  is convex.



Step 2:  is the only solution that satisfies  , ,  and
.

Suppose there is another solution  that satisfies  , , 

and .

Let

0 = {( 1

1 ()


2

2 ()
) : (1 2) ∈ }

and note that 01
0
2 ≤ 1 for any 0 ∈ 0, and thus (0 0) = (1 1).



Since 0 is bounded we can construct a set  that is symmetric about the
45◦ line and contains 0

 = {( ) : +  ≤ 2}

By  and  we have ( 0) = (1 1), and by  we have
(0 0) = ( 0) = (1 1).

By  we have that (0 0) = (0 0) if and only if ( 0) =
( 0) which completes the proof.



Is any axiom superfluous?



The bargaining solution given by the maximizer of

(1 2) =
√
1 +

√
2

over h 0i where  := {(0 0) (1 0) (0 2)}.

This solution satisfies,  and  (maximizer of an increasing
function). The maximizer of  for this problem is (13 43) while  =

(12 1).





The family of solutions {}∈(01) over h 0i where

( ) = argmax
(12)≤(12)∈

(1 − 1)
(2 − 2)

1−

is called the asymmetric Nash solution.

Any  satisfies  ,  and  by the same arguments used for
 .

For h 0i where  := {(0 0) (1 0) (0 1)} we have ( 0) =
( 1− ) which is different from  for any  6= 12.





Consider the solution  given by ( ) =  which is different from
 .  satisfies  ,  and .

 in the Nash solution can be replaced with strict individual rationality ()
( )  



An application - risk aversion

Dividing a dollar: the role of risk aversion: Suppose that

 = {(1 2) ∈ R2+ : 1 + 2 ≤ 1}

(all possible divisions),  = (0 0) and for all   ∈   %  if and only
if  ≥ .

Player ’s preferences over  ∪ can be represented by  : [0 1] → R
where each  is concave and (WLOG) (0) = 0.



Then,

 = {(1 2) ∈ R2+ : (1 2) = (1(1) 2(2))}

for some (1 2) ∈  is compact and convex and

 = (1(0) 2(0)) = (0 0) ∈ 

First, note that when 1() = 2() for all  ∈ (0 1] then h i is
symmetric so by  and the Nash solution is ((12) (12)).



Now, suppose that 1 = 1 and 2 =  ◦ 2 where  : R+ → R+ is
increasing and concave and (0) = 0 (player 2 is more risk averse).

Let

0 0

®
be bargaining problem when the preferences of the players are

represented by 1 and 2.

Let  be the solution of

max
0≤≤1

1()2(1− )

and  the corresponding solution when  =  for  = 1 2.



Then,

( ) = (1() 2(1−)) and (0 0) = (1() 2(1−))

If  for  = 1 2 and  are differentiable then  and  are, in respect,
the solutions of

01()
1()

=
02(1− )

2(1− )
 (1)

and
01()
1()

=
0(2(1− ))02(1− )

(2(1− ))
 (2)



Since  is increasing and concave and (0) = 0 we have

0() ≤ ()



for all , so the RHS of (1) is at least as the RHS of (2) and thus  ≤ .
Thus, if player 2 becomes more risk-averse, then 1 increases and 2
decreases.

If player 2’s marginal utility declines more rapidly than that of player 1,
then player 1’s share exceeds 12.



Monotonicity

Individual monotonicity ()

Let ̄ be the maximum utility player  gets in { ∈  :  ≥ }.

() For any h i and h i with  ⊂  and ̄ = ̄ for  = 1 2, we
have

( ) ≤ ( )

for  = 1 2.



() For any h i and h i with  ⊂  and ̄ = ̄ for , we have

( ) ≤ ( )

for  6= 

Strong monotonicity (): For any h i and h i with  ⊂  , we
have

( ) ≤ ( )



Kalai-Smorodinsky

The unique bargaining solution

 :  → R2

satisfying  , ,  and  is given by

( ) = {1
̄1
=

2
̄2
:  ∈ } ∩()



Proof

Normalize (1 2) = (0 0) and define

0 = {(1
̄1

2
̄2
) : (1 2) ∈ }

and note that ̄0 = 1 for each  = 1 2.

By  we have that


1 ()

̄1
= 

1 (0) = 
2 (0) =


2 ()

̄2




Next, we show that  is the only solution that satisfies  , ,
 and  .

Let

 := {(0 0) (1 0) (0 1) (0)}

and note that

( ) = (0)

and that for any ( ) that satisfies  and  we have

( ) = ( )



By  we have that

(
0) ≥ ( ) = 

 (0)

for  = 1 2.

By  of  we know that (0) ≤ (0) and thus

(0) = (0)

And, by  we have that

() = ()

which completes the proof.



Kalai

The unique bargaining solution

 :  → R2

satisfying  ,  and  is given by

( ) = max{(1 2) ∈  : 1 = 2}



Proof

Normalize (1 2) = (0 0) and define the symmetric set

 = { ∈  : (1 2) ∈ 

⇔ (2 1) ∈   ≤ ()}

For example, the set  can be given by

 = { ∈  : 1 = 2}



For any solution  that satisfies  and 

( ) = ()

Since  ⊂ , by  , ( ) ≤ () and thus () ≤ ().

By  of () ≥ () so we have that

() = ()

which concludes the proof.



The strategic approach (OR 7)

The players bargain over a pie of size 1.

An agreement is a pair (1 2) where  is player ’s share of the pie. The
set of possible agreements is

 = {(1 2) ∈ R2+ : 1 + 2 = 1}

Player  prefers  ∈  to  ∈  if and only if   .



The bargaining protocol

The players can take actions only at times in the (infinite) set  =

{0 1 2 }. In each  ∈  player , proposes an agreement  ∈ 

and  6=  either accepts ( ) or rejects ().

If  is accepted ( ) then the bargaining ends and  is implemented. If 
is rejected () then the play passes to period  + 1 in which  proposes
an agreement.

At all times players have perfect information. Every path in which all offers
are rejected is denoted as disagreement (). The only asymmetry is that
player 1 is the first to make an offer.



Preferences

Time preferences (toward agreements at different points in time) are the
driving force of the model.

A bargaining game of alternating offers is

— an extensive game of perfect information with the structure given
above, and

— player ’s preference ordering -over ( ×  )∪ {} is complete and
transitive.

Preferences over  ×  are represented by () for any 0    1

where  is increasing and concave.



Assumptions on preferences

A1 Disagreement is the worst outcome

For any ( ) ∈  ×  ,

( ) % 

for each .

A2 Pie is desirable

— For any  ∈  ,  ∈  and  ∈ 

( ) Â ( ) if and only if   



A3 Time is valuable

For any  ∈  ,  ∈  and  ∈ 

( ) % ( ) if   

and with strict preferences if   0.

A4 Preference ordering is continuous

Let {( )}∞=1 and {( )}∞=1 be members of  ×  for which

lim
→∞ =  and lim

→∞  = 

Then, ( ) % ( ) whenever ( ) % ( ) for all .



A2-A4 imply that for any outcome ( ) either there is a unique  ∈ 

such that

( 0) ∼ ( )

or

( 0) Â ( )

for every  ∈ 

Note %satisfies A2-A4  it can be represented by a continuous function

 : [0 1]×  → R

that is increasing (deceasing) in the first (second) argument.



A5 Stationarity

For any  ∈  ,  ∈  and  ∈ 

( ) Â ( + 1) if and only if ( 0) Â ( 1)

If %satisfies A2-A5 then for every  ∈ (0 1) there exists a continuous
increasing function  : [0 1]→ R (not necessarily concave) such that

( ) = ()



Present value

Define  : [0 1]×  → [0 1] for  = 1 2 as follows

( ) =

(
 if ( 0) ∼ ( )
0 if ( 0) Â ( ) for all  ∈ 

We call ( ) player ’s present value of ( ) and note that

( ) Â ( ) whenever ( )  ( )



If %satisfies A2-A4, then for any  ∈  (· ) is continuous, non de-
creasing and increasing whenever ( )  0.

Further, ( ) ≤  for every ( ) ∈  ×  and with strict whenever
  0 and  ≥ 1.

With A5, we also have that

(( 1) 1) = ( 2)

for any  ∈ .



Delay

A6 Increasing loss to delay

 − ( 1) is an increasing function of .

If  is differentiable then under A6 in any representation () of %


0
()  0(( 1))

whenever ( 1)  0.

This assumption is weaker than concavity of  which implies

0()  0(( 1))



The single crossing property of present values

If %for each  satisfies A2-A6, then there exist a unique pair (∗ ∗) ∈
 × such that

∗1 = 1(
∗
1 1) and 

∗
2 = 2(

∗
2 1)

— For every  ∈ , let () be the agreement for which

1() = 1(1 1)

and define  :  → R by

() = 2 − 2(2() 1)



— The pair of agreements  and  = () satisfies also 2 = 2(2() 1)

 () = 0.

— Note that (0 1) ≥ 0 and (1 0) ≤ 0,  is a continuous function,
and

() = [1(1 1)− 1] +

+[1− 1(1 1)− 2(1− 1(1 1) 1)]

— Since 1(1 1) is non decreasing in 1, and both terms are decreasing
in 1,  has a unique zero by A6.



Examples

[1] For every ( ) ∈  × 

( ) = 

where  ∈ (0 1), and () = 0.

[2] For every ( ) ∈  × 

( ) =  − 

where   0, and () = −∞ (constant cost of delay).

Although A6 is violated, when 1 6= 2 there is a unique pair ( ) ∈
 × such that 1 = 1(1 1) and 2 = 2(2 1).



Strategies

Let  be the set of all sequences {0  −1} of members of .

A strategy of player 1 (2) is a sequence of functions

 = {}∞=0
such that  :  →  if  is even (odd), and  : +1 → {} if 
is odd (even).

The way of representing a player’s strategy in closely related to the notion
of automation.



Nash equilibrium

For any ̄ ∈ , the outcome (̄ 0) is a  when players’ preference
satisfy A1-A6.

To see this, consider the stationary strategy profile

Player 1 proposes ̄
accepts 1 ≥ ̄1

Player 2 proposes ̄
accepts 2 ≥ ̄2

This is an example for a pair of one-state automate.

The set of outcomes generated in the Nash equilibrium includes also delays
(agreements in period 1 or later).



Subgame perfect equilibrium

Any bargaining game of alternating offers in which players’ preferences
satisfy A1-A6 has a unique  which is the solution of the following
equations

∗1 = 1(
∗
1 1) and 

∗
2 = 2(

∗
2 1)

Note that if ∗1  0 and ∗2  0 then

(∗1 0) ∼1 (∗1 1) and (∗2 0) ∼2 (∗2 1)



The equilibrium strategy profile is given by

Player 1 proposes ∗

accepts 1 ≥ ∗1
Player 2 proposes ∗

accepts 1 ≤ ∗1

The unique outcome is that player 1 proposes ∗ in period 0 and player 2
accepts.



Step 1 (∗ ∗) is a 

Player 1:

— proposing ∗ at ∗ leads to an outcome (∗ ∗). Any other strategy
generates either

( ) where 1 ≤ ∗1 and  ≥ ∗

or

(∗ ) where  ≥ ∗ + 1

or .

— Since ∗1  ∗1 it follows from A1-A3 that (
∗ ∗) is a best response.



Player 2:

— accepting ∗ at ∗ leads to an outcome (∗ ∗). Any other strategy
generates either

( ) where 2 ≤ ∗2 and  ≥ ∗ + 1

or

(∗ ) where  ≥ ∗

or .



— By A1-A3 and A5

(∗ ∗) %2 (∗ ∗ + 1)
and thus accepting ∗ at ∗, which leads to the outcome (∗ ∗), is a
best response.

Note that similar arguments apply to a subgame starting with an offer of
player 2.



Step 2 (∗ ∗) is the unique 

Let  be a subgame starting with an offer of player  and define

 = sup{( ) : ( ) ∈ ()}
and

 = inf{( ) : ( ) ∈ ()}

It is suffices to show that

1 = 1 = ∗1 and 2 = 2 = ∗2

It follows that the present value for player 1 (2) of every  of 1 (2)
is ∗1 (

∗
2).



First, we argue that in every  of 1 and 2 the first offer is accepted
because

1(
∗
1 1) ≤ ∗1  ∗1 and 2(

∗
2 1) ≤ ∗2  ∗2

(after a rejection, the present value for player 1 is less than ∗1 and for
player 2 is less than ∗2).

It remains to show that

2 ≥ 1− 1(1 1) (3)

and

1 ≤ 1− 2(2 1) (4)



[3] and the fact that2 ≤ ∗2 imply that the pair (1 1−2) lies below
the line

1 = 1(1 1)

and [4] and the fact that 1 ≤ ∗1 imply that this pair lies to the left of
the line

2 = 2(2 1)

Thus,

1 = ∗1 and 2 = ∗2

and with the role of the players reversed, the same argument shows that
2 = ∗2 and 1 = ∗1



Properties of Rubinstein’s model

[1] Delay (without uncertainty)

Subgame perfection alone cannot not rule out delay. In Rubinstein’s model
delay is closely related to the existence of multiple equilibria.

The uniqueness proof relies only on A1-A3 and A6. When both players
have the same constant cost of delay (A6 is violated), there are multiple
equilibria.

If the cost of delay is small enough, in some of these equilibria, agreement
is not reached immediately. Any other conditions that guarantees a unique
solution can be used instead of A6.



An example

Assume that  = {  } where 1  1  1, the ordering % satisfies
A1-A3 and A5 for  = 1 2, and if ( ) Â ( ) then ( +1) Â ( ).

Then, for each ̄ ∈ , the pair of strategies in which each player insists
on ̄

Player 1 proposes ̄
accepts 1 ≥ ̄1

Player 2 proposes ̄
accepts 2 ≥ ̄2

is a subgame perfect equilibrium.



An example of a subgame perfect equilibrium in which agreement is reached
in period 1 is given by

  

Player 1 proposes   
accepts  and  , , and 

Player 2 proposes  
accepts   and  

where  is the initial state,  and  are absorbing states, and if player 2
rejects  ( or ) then the state changes to  ().

The outcome is that player 1 offers  in period 0, player 2 rejects and
proposes  in period 1 which player 1 accepts.



[2] Patience

The ordering %01 is less patient than %1 if

01(1 1) ≤ 1(1 1)

for all  ∈  (with constant cost of delay 01 ≤ 1).

The models predicts that when a player becomes less patient his negotiate
share of the pie decreases.



[3] Asymmetry

The structure of the model is asymmetric only in one respect: player 1 is
the first to make an offer.

Recall that with constant discount rates the equilibrium condition implies
that

∗1 = 1
∗
1 and 

∗
2 = 2

∗
2

so that

∗ =

Ã
1− 2
1− 12


2(1− 1)

1− 12

!
and ∗ =

Ã
1(1− 2)

1− 12

1− 1
1− 12

!




Thus, if 1 = 2 =  (1 = 2) then

∗ =
µ

1

1 + 




1 + 

¶
and ∗ =

µ


1 + 

1

1 + 

¶
so player 1 obtains more than half of the pie.

By shrinking the length of a period by considering a sequence of games
indexed by ∆ in which  = ∆

  we have

lim
∆→0

∗(∆) = lim
∆→0

∗(∆) =

Ã
log 2

log 1 + log 2


log 1
log 1 + log 2

!
(l’Hôpital’s rule).




