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Terminology and notations (OR 1.7)

Sets For   ∈ R,

 ≥  ⇐⇒  ≥ 

for all .

   ⇐⇒  ≥  and   

for all  and some .

   ⇐⇒   

for all .



Preferences % is a binary relation on some set of alternatives  ⊆ R.
From % we derive two other relations on :

— strict performance relation

 Â  ⇐⇒  %  and not  % 

— indifference relation

 ∼  ⇐⇒  %  and  % 



Utility representation % is said to be

— complete if ∀  ∈ ,  %  or  %  .

— transitive if ∀   ∈ ,  %  and  %  then  % .

% can be presented by a utility function only if it is complete and transitive
(rational).

A function  : → R is a utility function representing % if ∀  ∈ 

 %  ⇐⇒ () ≥ ()



% is said to be

— continuous (preferences cannot jump...) if for any sequence of pairs
{( )}∞=1 with  % , and  →  and  → ,  % .

— (strictly) quasi-concave if for any  ∈  the upper counter set { ∈
 :  % } is (strictly) convex.

These guarantee the existence of continuous well-behaved utility function
representation.



Profiles Let  be a the set of players.

— ()∈ or simply () is a profile - a collection of values of some
variable, one for each player.

— ()∈{} or simply − is the list of elements of the profile  =
()∈ for all players except .

— (− ) is a list − and an element , which is the profile ()∈ .



Games and solutions (OR 1.1-1.3)

A game - a model of interactive (multi-person) decision-making. We
distinguish between:

— Noncooperative and cooperative games - the units of analysis are indi-
viduals or (sub) groups.

— Strategic (normal) form games and extensive form games - players
move simultaneously or precede one another.

— Gams with perfect and imperfect information - players are perfectly or
imperfectly informed about characteristics, events and actions.



A solution - a systematic description of outcomes in a family of games.

— Nash equilibrium.

— Subgame perfect equilibrium - extensive games with perfect informa-
tion.

— Perfect Bayesian equilibrium - games with observable actions.

— Sequential equilibrium (and refinements) - extensive games with im-
perfect information.

Classic references: Von Neumann and Morgenstern (1944), Luca and Raiffa
(1957) and Schelling (1960).



Rational behavior and bounded rationality (OR 1.4, 1.6)

A rational agent

— a set of actions ,

— a set of consequences ,

— a consequence function  : → , and

— a preference relation % on the set .

Given any set ⊆  of actions, a rational agent chooses an action ∗ ∈ 

such that (∗) % () for all  ∈ . When % are specified by a utility
function  :  → R ∗ ∈ argmax∈ (()).



With uncertainty (environment, events in the game, actions of other players
and their reasoning), a rational agent is assumed to have in mind

— a state space Ω,

— a (subjective) probability measure over Ω, and

— a consequence function  : ×Ω → ,

A rational agent is an () expected utility (( )) maximizer.



Formalities (OR 2.1)

A strategic game A finite set  of players, and for each player  ∈ 

— a non-empty set  of actions

— a preference relation% on the set = ×∈ of possible outcomes.

We will denote a strategic game by

h () (%)i

or by

h () ()i

when % can be represented by a utility function  : → R.



A two-player finite strategic game can be described conveniently in a bi-
matrix.

For example, a 2× 2 game

 
 1 2 1 2
 1 2 12



Best response (OR 2.2)

For any list of strategies − ∈ −

(−) = { ∈  : (− ) % (− 
0
) ∀0 ∈ }

is the set of players ’s best actions given −.

Strategy  is ’s best response to − if it is the optimal choice when 
conjectures that others will play −.



Nash equilibrium (OR 2.2)

Nash equilibrium () is a steady state of the play of a strategic game.

A  of a strategic game h () (%)i is a profile ∗ ∈  of actions
such that

(∗− 
∗
 ) % (

∗
− )

∀ ∈  and ∀ ∈ , or equivalently,

∗ ∈ (
∗
−)

∀ ∈  .

In words, no player has a profitable deviation given the actions of the other
players.



Classical 2× 2 examples (OR 2.3)

 
 2 1 0 0
 0 0 1 2

 
 2 2 0 0
 0 0 1 1

 
 3 3 0 4
 4 0 1 1

 
 3 3 1 4
 4 1 0 0



Existence of Nash equilibrium (OR 2.4)

Let the set-valued function  : →  defined by

() = ×∈(−)

and rewrite the equilibrium condition

∗ ∈ (
∗
−) ∀ ∈ 

in vector form as follows

∗ ∈ (∗)

Kakutani’s fixed point theorem gives conditions on  under which ∃∗
such that ∗ ∈ (∗).



Kakutani’s fixed point theorem

Let  ⊆ R be non-empty compact (closed and bounded) and convex set
and  :  →  be a set-valued function for which

— the set () is non-empty and convex ∀ ∈ 

— the graph of  is closed

 ∈ () for any {} and {} such that
 ∈ ()∀ and  −→  and  −→ .

Than, ∃∗ ∈  such that ∗ ∈ (∗).



Necessity of conditions in Kakutani’s theorem

—  is compact

 = R1 and () = + 1

—  is convex

 = { ∈ R2 : kk = 1} and  is 90◦ clock-wise rotation.



— () is convex for any  ∈ 

 = [0 1] and

() =

⎧⎪⎪⎨⎪⎪⎩
{1} if   1

2

{0 1} if  = 1
2

{0} if   1
2

—  has a closed graph

 = [0 1] and

() =

(
1 if   1
0 if  = 1



A strategic game h () (%)i has a  if for all  ∈ 

—  is non-empty, compact and convex.

— % is continuous and quasi-concave on .

 has a fixed point by Kakutani:

— (−) 6= ∅ ( is compact and % is continuous).

— (−) is convex (%is quasi-concave on ).

—  has a closed graph (%is continuous).



Randomization (OR 3.1)

Recall that a strategic game is a triple h () (%)i where

—  is a finite set of players, and for each player  ∈ 

— a non-empty set  of actions

— a preference relation %on the set  = ×∈ of possible outcomes.

or a triple h () ()i when % can be represented by a utility function
 : → R.



Suppose that,

— each player  can randomize among all her strategies so choices are not
deterministic, and

— player ’s preferences over lotteries on  can be represented by 

expected utility function.

Then, we need to add theses specifications to the primitives of the model
of strategic game h () (%)i.



A mixed strategy of player  is  ∈ ∆() where ∆() is the set of all
probability distributions over .

— A profile ()∈ of mixed strategies induces a probability distribution
over the set .

— Assuming independence, the probability of an action profile (outcome)
 is then Q

∈ ()



A  utility function

 : ×∈∆()→ R

represents player ’s preferences over the set of lotteries over .

For any mixed strategy profile  = ()∈ ∈ ×∈∆()

() =
P
∈

(
Q
∈

())()

which is linear in .

The mixed extension of a the strategic game h () ()i is the strategic
game h (∆()) ()i.



Existence of mixed strategy Nash equilibrium

Every finite (action sets) strategic game has a mixed strategy .

— The set of player ’s mixed strategies ∆()

{()

=1 :

P
=1  = 1 and  ≥ 0 ∀}

where  is the number of  ∈  (pure strategies) is non empty,
convex and compact.

—  expected utility is linear probabilities so  is quasi-concave and
continuous.

Therefore, the mixed extension has a  by Kakutani.



Two results on mixed strategy Nash equilibrium

Let = h () ()i be a strategic game and0 = h (∆()) ()i
be its mixed extension.

[1] If  ∈ () then  ∈ (0).

[2]  ∈ (0) if and only if

(− ) ≥ (− 
0
)

for all 0 and all ()  0.



[1] If  ∈ () then

(− ) ≥ (− 
0
) ∀ ∈  and ∀0 ∈ 

Then, by the linearity of  in 

(− ) ≥ (− ) ∀ ∈  and ∀ ∈ ∆()

and thus  ∈ (0).



[2] Let  ∈ (0)

Suppose that ∃ ∈  such that ()  0 and

(− 
0
) ≥ (− ) for some 

0
 6= 

Then, player  can increase her payoff by transferring probability from 
to 0 so  is not a .

This implies that (− ) = (− 0) for all  
0
 in the support

of .



Interpretation of mixed strategy Nash equilibrium (OR 3.2)

Since she is indifferent among all strategies in the support, why should a
player choose her  mixed strategy?

[1] Mixed strategies as objects of choice

[2] Mixed strategy  as a steady state

[3] Mixed strategies as pure strategies in an extended game

[4] Mixed strategies as pure strategies in a perturbed game (Harsanyi
1973).



Strictly competitive game (OR 2.5)

A strategic game h{1 2} () (%)i is strictly competitive if for any 
∈  and  ∈  we have  %1  if and only if  %2 .

 
 − −
 − −

If (∗ ∗) is a  of a strictly competitive game then

1(
∗ ∗) = max

∈1
min
∈2

1( ) = min
∈2

max
∈1

1( )



Maxminimization

A maxmin mixed strategy of player  is a mixed strategy that solves the
problem

max
∈∆

min
−∈∆−

( −)

A player’s payoff in ∗ ∈ () is at least her maxmin payoff:

(
∗) ≥ ( 

∗
−)

≥ min
−∈∆−

( −)

≥ max
∈∆

min
−∈∆−

( −)

and the last step follows since the above holds for all  ∈ 4().



Two min-max results

[1] max
∈∆

min
−∈∆−

( −) ≤ min
−∈∆−

max
∈∆

( −)

For every 0

min
−

(
0
 −) ≤ (

0
 

0
−)

and thus

min
−

(
0
 −) ≤ max

( 
0
−)

However, since the above holds for every 0 and 
0
− it must hold for

the “best” and “worst” such choices

max


min
−

( −) ≤ min−
max


( −)



[2] In a zero-sum game

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2) = 1(
∗)

⇐ Since ∗ ∈ ()

1(
∗) = max

1∈∆1
1(1 

∗
2) ≥ min

2∈∆2
max

1∈∆1
1(1 2)

and since 1 = −2 at the same time

1(
∗) = min

2∈∆2
1(

∗
1 2) ≤ max

1∈∆1
min

2∈∆2
1(1 2)

Hence,

max
1∈∆1

min
2∈∆2

1(1 2) ≥ min
2∈∆2

max
1∈∆1

1(1 2)

which together with [1] gives the desired conclusion.



⇒ Let max1 be player 1’s maxmin strategy and min2 be player 2’s
minmax strategy. Then,

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

1(
max
1  2)

≤ 1(
max
1  2) ∀2 ∈ ∆2

and

min
2∈∆2

max
1∈∆1

1(1 2) = max
1∈∆1

1(1 
min
2 )

≥ 1(1 
min
2 ) ∀1 ∈ ∆1



But

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2)

= 1(
max
1  min2 )

implies that

1(1 
min
2 ) ≤ 1(

max
1  min2 ) ≤ 1(

max
1  2)

∀2 ∈ ∆2 and ∀1 ∈ ∆1.

Hence, (max1  min2 ) is an equilibrium.



Interchangeability

If  and 0 are in a zero-sum game, then so are (1 02) and (
0
1 2).

— Since  and 0 are equilibria

1(1 2) ≥ 1(
0
1 2) and 2(

0
1 

0
2) ≥ 2(

0
1 2)

and because 1 = −2
1(

0
1 

0
2) ≤ 1(

0
1 2)

Therefore,

1(1 2) ≥ 1(
0
1 2) ≥ 1(

0
1 

0
2) (1)

and similar analysis gives that

1(1 2) ≤ 1(1 
0
2) ≤ 1(

0
1 

0
2) (2)



— (1) and (2) yield

1(1 2) = 1(
0
1 2) = 1(1 

0
2) = 1(

0
1 

0
2)

— Since  is an equilibrium

2(1 
00
2) ≤ 2(1 2) = 2(1 

0
2)

for any 002 ∈ ∆2, and since 0 is an equilibrium

1(
00
1 

0
2) ≤ 1(

0
1 

0
2) = 1(1 

0
2)

for any 001 ∈ ∆1. Therefore, (1 02) is an equilibrium and similarly
also (1 02).



Evolutionary stability (OR 3.4)

A single population of players. Players interact with each other pair-wise
and randomly matched.

Players are assigned modes of behavior (mutation). Utility measures each
player’s ability to survive.

 of players consists of mutants taking action  while others take action
∗.



Evolutionary stable strategy ()

Consider a payoff symmetric game = h{1 2} () ()iwhere 1() =
2(

0) when 0 is obtained from  by exchanging 1 and 2.

∗ ∈  is   for any  ∈ ,  6= ∗ and   0 sufficiently small

(1− )(∗ ∗) + (∗ )  (1− )( ∗) + ( )

which is satisfied  for any  6= ∗ either

(∗ ∗)  ( ∗)

or

(∗ ∗) = ( ∗) and (∗ )  ( )



Three results on 

[1] If ∗ is an  then (∗ ∗) is a .

Suppose not. Then, there exists a strategy  ∈  such that

( ∗)  (∗ ∗)

But, for  small enough

(1− )(∗ ∗) + (∗ )  (1− )( ∗) + ( )

and thus ∗ is not an .



[2] If (∗ ∗) is a strict  ((∗ ∗)  ( ∗) for all  ∈ ) then ∗ is
an .

Suppose ∗ is not an . Then either

(∗ ∗) ≤ ( ∗)

or

(∗ ∗) = ( ∗) and (∗ ) ≤ ( )

so (∗ ∗) can be a  but not a strict .



[3] A 2 × 2 game  = h{1 2} () ()i where () 6= (
0) for any

 0 has a mixed strategy which is  (OR 51.1)

 0

   
0    

If    or    then ( ) or (0 0) are strict , and thus  or
0 are .

If    and    then there is a unique symmetric mixed strategy
 (∗ ∗) where

∗() = ( − )( −  +  − )

and (∗ )  () for any  6= ∗.



Rationalizability (OR 4.1)

In equilibrium, each player knows the other players’ equilibrium strategies.

Rationalizability and dominance solvability are solution concepts that do
not entail this assumption.

Players’ beliefs about each other’s action are not assumed to be correct,
but are constrained by (some) considerations of rationality.



An action  is rationalizable for player  in  = h () ()i if for
each  ∈  there exists a set of actions  ⊆  such that

—  ∈  and

— every action  ∈  is a best response to a belief of player  that
assigns positive probability only to − ∈ −.



If ()∈ and (0)∈ satisfy the definition then so does (∪0)∈
so the set of profiles of rationalizable actions is ×∈.

Every action  such that ∗ ()  0 and ∗ ∈ () is rationalizable.

On the other hand, a strictly dominated action is never rationalizable (OR
Lemma 60.1).



An example (OR 57.1)

1 2 3 4
1 0 7 2 5 7 0 0 1
2 5 2 3 3 5 2 0 1
3 7 0 2 5 0 7 0 1
4 0 0 0−2 0 0 10−1

The rationalizable actions are 1 2 3 for player 1 and 1 2 3 for player
2.



Dominance (OR 4.2)

An action  ∈  of player  is strictly dominated if there exists a mixed
strategy  such that

( −)  ( −)

for all − ∈ −.

An action  ∈  of player  is weakly dominated if there exists a mixed
strategy  such that

( −) ≤ ( −)

for all − ∈ − and the inequality is strict for some − ∈ −.



Two results on dominated strategies

[1] An action of a player in a finite strategic game  is never a best response
 it is strictly dominated.

[2] Consider 0 obtained by iterated removal of all (weakly and strictly) dom-
inated strategies from  then

— if  ∈ (0) then  ∈ (), and

— the converse holds for the iterated removal of only strictly dominated
strategies.



Trembling hand perfection (OR 12.5)

A trembling hand perfect equilibrium ( ) of a finite strategic game is
a mixed strategy profile  such that there exists ()∞=1 of completely
mixed strategy profiles such that

— ()∞=1 converges to , and

—  ∈ (

−) for each player  and all .

A strategy profile ∗ in a two-player game is a  equilibrium  it is a
mixed strategy  and the strategy of neither player is weakly dominated.



Example (OR 248.1)

  
 0 0 0 0 0 0
 0 0 1 1 2 0
 0 0 0 2 2 2

The Nash equilibria () and () are not trembling hand perfect
equilibria.




