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Games w/ pure information externalities



Social learning

Agents use their information to identify a payoff-maximizing action so the
choice of action reflects that information.

By observing an agent’s action, it is possible to learn something about his
information and make a better decision.

In social settings, where agents can observe one another’'s actions, it is
rational for them to learn from one another.

Social learning occurs when individuals learn by observing the behavior of
others.



What have we learned from Social Learning?

The striking uniformity of social behavior is an implication of social learn-
ing:

— Despite the asymmetry of information, agents rationally ‘ignore’ their
own information and ‘follow the herd’.

— Despite the available information, so-called herd behavior and informa-
tional cascades often result in an inefficient choice.

— Mass behavior is fragile, in the sense that small shocks may cause
behavior to shift suddenly and dramatically.



The canonical model of social learning

e A set of players N, a finite set of actions A, a set of states of nature (2,
and a common payoff function

U(a,w)

where a € A is the action chosen and w € €2 is the state of nature.

e Player i receives a private signal o;(w), a function of the state of nature
w, and uses this private information to identify a payoff-maximizing action.



The canonical assumptions

— Bayes-rational behavior

— Incomplete and asymmetric information
— Pure information externality

— Once-in-a-lifetime decisions

— Exogenous sequencing

— Perfect information



Direct methodological extensions

— Caplin & Leahy (AER 1994), Chamley & Gale (ECM 1994)
— Avery & Zemsky (AER 1999), Chari & Kehoe (JET 2004)
— Celen & Kariv (GEB 2004), Smith & Sgrensen (2008)

— Bala & Goyal (RES 1998), Gale & Kariv (GEB 2004), Acemoglu et al.
(2008)



The model of BHW (JPE 1992)

e There are two decision-relevant events, say A and B, equally likely to
occur ex ante and two corresponding signals a and b.

e Signals are informative in the sense that there is a probability higher than
1/2 that a signal matches the label of the realized event.

e The decision to be made is a prediction of which of the events takes place,
basing the forecast on a private signal and the history of past decisions.



e Whenever two consecutive decisions coincide, say both predict A, the sub-
sequent player should also choose A even if his signal is different b.

e Despite the asymmetry of private information, eventually every player im-
itates her predecessor.

e Since actions aggregate information poorly, despite the available informa-
tion, such herds / cascades often adopt a suboptimal action.



e Anderson and Holt (AER 1997) investigate the social learning model of
BHW experimentally.

e They report that “rational” herds / cascades formed in most rounds and
that about half of the cascades were incorrect.

e Extensions: Hung and Plott (AER 2001), Kiibler and Weizsdcker (RES
2004), Goeree, Palfrey, Rogers and McKelvey (RES 2007).



The model of Smith and Sgrensen (ECM 2000)

e Two phenomena that have elicited particular interest are informational
cascades and herd behavior.

— (Cascade: players 'ignore’ their private information when choosing an
action.

— Herd: players choose the same action, not necessarily ignoring their

private information.

e Smith and Sgrensen (2000) show that with a continuous signal space herd
behavior arises, yet there need be no informational cascade.



The model of Celen and Kariv (GEB 2004)

Signals

— Each player n € {1, ..., N} receives a signal 6, that is private infor-
mation.

— For simplicity, {0y} are independent and uniformly distributed on [—1, 1].

Actions

— Sequentially, each player n has to make a binary irreversible decision
xn € {0,1}.



Payoffs

— x = Lis profitable if and only if >, < ;7 0n > 0, and x = 0 is profitable
otherwise.

Information

— Perfect information
In = {0n, (1, ..., Tn_1)}

— Imperfect information

Ip = {07% iUn_l}



The decision problem

— The optimal decision rule is given by
zn, = 1 if and only if E [z,fvzlei | In} > 0.

Since Z,, does not provide any information about the content of suc-

cessors’ signals, we obtain

xn = 1 if and only if 6,, > —[& [Z?;ll 0; | In] .



The cutoff process

— For any n, the optimal strategy is the cutoff strategy

o f1if 0, > On,
"1 0 if 0n <6y

where

R 1
= ~B Y7, 0:1 ]

is the optimal history-contingent cutoff.

— 0y, is sufficient to characterize the individual behavior, and {,} char-
acterizes the social behavior of the economy.
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SO

SO

SO»



A three-agent example

SO

SO

SO»



A three-agent example under perfect information
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A three-agent example under imperfect information
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The case of perfect information

The cutoff dynamics follows the cutoff process

_1+‘,9\n—1

@n _ 1+02 If Ln—1 — 1

where 91 = 0.



Cutoff
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Cutoff

A sequence of cutoffs under perfect information
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Informational cascades

— —1<0p<1V¥nso any player takes his private signal into account in
a non-trivial way.

Herd behavior

- {@n} has the martingale property by the Martingale Convergence The-
orem a limit-cascade implies a herd.



The case of imperfect information

The cutoff dynamics follows the cutoff process

2
140, .
A — if =, 1=1
on = 140 "
5 if ,_1=0

where @1 = 0.



Cutoff

A sequence of cutoffs under imperfect and perfect information
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Cutoff

A sequence of cutoffs under imperfect and perfect information
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Informational cascades

— —1<0p<1V¥nso any player takes his private signal into account in
a non-trivial way.

Herd behavior

- {@n} Is not convergent and the divergence of cutoffs implies divergence
of actions.

— Behavior exhibits periods of uniform behavior, punctuated by increas-
ingly rare switches.



Takeaways

The dynamics of social learning depend crucially on the extensive form of
the game.

Longer and longer periods of uniform behavior, punctuated by (increasingly
rare) switches.

A succession of fads: starting suddenly, expiring easily, each replaced by
another fad.

Why do markets move from ‘boom’ to ‘crash’ without settling down?



The social network model

Agents are bound together by a social network, a complex of relationships
that brings them into contact with other agents.

Markets are characterized by agents connected by complex, multilateral
information networks.

The network is represented by a family of sets {V;} where N, denotes the
set of agents 5 # ¢ who can be observed by agent 1.

Agents choose actions simultaneously and revise their decisions as new
information is received.



Related literature
e The theoretical paper most closely related is Bala and Goyal (1998). The
models differ in two ways:
— Boundedly rational agents
— Observing payoffs as well as actions.

e A model of social experimentation (with a multi-armed bandit) rather than
social learning.



Asymptotic properties

e The welfare-improvement principle
— Agents have perfect recall, so expected utility is non-decreasing over
time. This implies that equilibrium payoffs form a submartingale.
e The imitation principle

— In a connected network, asymptotically, all agents must get the same
average (unconditional) payoffs.



Convergence Let { X;;, Fi :i=1,...,n,t = 1,2, ...} be an equilibrium.
For each i, define V.3 : 2 — R by

= E[U(Xi, )| Fael-

Then {V.7} is a submartingale with respect to {F;;} and there exists a
random variable V¥ _ such that V3 converges to V¥ almost surely.



Connectedness Let {X;;, F;;} be the equilibrium and let V.3 be the
equilibrium payoffs. If 5 € IN; and j is connected to i then V¥ =



Imitation Let 7 and 5 be two agents such that 3 € N; and 5 is connected
to 7. Let E® denote the measurable set on which 4 chooses a infinitely
often and j chooses b infinitely often. Then V¢ _(w) = V,)_(w) for almost

every w in B,



Apart from cases of disconnectedness and indifference, diversity of actions
is eventually replaced by uniformity.

This is the network-learning analogue of the herd behavior found in the
standard social learning model.

The convergence properties of the model are general but many important
questions about learning in networks remain open.

|dentify the impact of network architecture on the efficiency and dynamics
of social learning.



A three-person example

The network consists of three agents indexed by : = A, B, C'. The neigh-
borhoods { N 4, Ng, No} completely define the network.

Uncertainty is represented by two equally likely events w = —1,1 and two
corresponding signals o = —1, 1.

Signals are informative in the sense that there is a probability % that a
signal matches the event.

With probability g an agent is informed and receives a private signal at the
beginning of the game.



At the beginning of each date ¢, agents simultaneously guess a;; = —1,1
the true state.

Agent 2 receives a positive payoff if his action a;; = w and zero otherwise.

Each agent ¢ observes the actions aj; chosen by the agents j € N; and
updates his beliefs accordingly.

At date t, agent ¢'s information set [;; consists of his private signal, if he
observed one, and the history of neighbors’ actions.
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Learning dynamics

Learning is ‘simply’ a matter of Bayesian updating but agents must take
account of the network architecture in order to update correctly.

If all agents choose the same action at date 1, no further information is
revealed at subsequent dates (an absorbing state).

We can trace out possible evolutions of play when there is diversity of
actions at date 1.

The exact nature of the dynamics depends on the signals and the network
architecture.
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Star network
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Circle network
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Takeaways

Convergence to a uniform action tends to be quite rapid, typically occurring
within two to three periods.

Significant differences can be identified in the equilibrium behavior of
agents in different networks.

Even in the three-person case the process of social learning in networks
can be complicated.

Because of the lack of common knowledge, inferences agents must draw
in order to make rational decisions are quite subtle.



Experimental design

Each experimental session consisted of 15 independent rounds and each
round consisted of six decision-turns.

The network structure and the information treatment (¢ =
held constant throughout a given session.

,%, 1) were

Wl

The ball-and-urn social learning experiments paradigm of Anderson and
Holt (1997).

A serious test of the ability of a structural econometric model based on
the theory to interpret the data.



Selected data
(star network under high-information)
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Herd behavior

Herd behavior is characterized by two related phenomena:

— Stability: the proportion of subjects who continue to choose the same
action.

— Uniformity: a score function that takes the value 1 if all subjects act

alike and takes the value 0 otherwise.

Uniformity will persist and lead to herd behavior if stability takes the value
1 at all subsequent turns.



Combining theory and experiments

In combining theory and experiments, we have two objectives in mind:

— There is much that can be learned about the theory from the data, quite
apart from any notion of “testing” the theory — whether the theory is
useful in interpreting the data, and what extensions of the theory are
required to make it compatible with the data.

«— Any attempt to explain it in purely “behavioral” terms would require
a large number ad hoc assumptions, which would render the “explana-
tion” rather uninformative, and without a theoretical framework, it is
impossible to draw general conclusions that go beyond the particular
setting of the experiment.



Any attempt to use theory to explain experimental data must answer a
number of questions about how to proceed:

— Do we assume that all subjects are identical or do we allow for hetero-

geneity”?

— Do we assume a single equilibrium is played in each repetition of a game
or do we allow for the possibility that different equilibria are played in
different instances of the same game?

— Do we allow for mistakes or behavioral biases from the outset or assume

full rationality?



These are several interesting approaches, all worth exploring; however, as
a first step, we should assume that a single equilibrium is being played and
that all players are (fully) rational and symmetric.

The advantage of these assumptions is that they provide a very parsi-
monious account of the data, recommended by Occam’s Razor, and they

maximize our chance of falsifying the theory, in Popper's sense.




Quantal response equilibrium (QRE)

Mistakes are made and this should be taken into account in any theory of
rational behavior.

The payoff from a given action is assumed to be a weighted average of the
theoretical payoff and a logistic disturbance.

The “weight” placed on the theoretical payoff is determined by a regression
coefficient.

The recursive structure of the model enables to estimate the coefficients
of the QRE model for each decision-turn sequentially.



The logit equilibrium can be summarized by a choice probability function
following a binomial logit distribution:

1

Pr(a = 1|1;;) =
(it it) 1+ exp (—B;Tit)

where 3;; is a coefficient and x;; is the difference between the expected
payoffs from actions 1 and —1.

The regression coefficient 3 will be positive if the theory has any predictive
power.



Use the estimated coefficient from turn ¢ to calculate the theoretical payoffs
from the actions at turn ¢ + 1.

The behavioral interpretation is that subjects have rational expectations
and use the true mean error rate.

The parameter estimates are highly significant and positive, showing that
the theory does help predict the subjects’ behavior.

A series of specification tests shows that the restrictions of the QRE model
are confirmed by the data.
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The beta time-series under full-information
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Beta

The beta time-series under high-information
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Beta

The beta time-series under low-information
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Beta

The beta time-series in the circle network
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Concluding remarks

Use the theory to interpret data generated by experiments of social learning
in three-person networks.

The family of three-person networks includes several architectures, each of
which gives rise to its own distinctive learning patterns.

The theory, modified to include the possibility of errors, adequately ac-
counts for large-scale features of the data.

A strong support for the use of models as the basis for structural estimation
and the use of QRE to interpret experimental data.





