Economics 209A
Theory and Application of Non-Cooperative Games
(Fall 2013)

Supermodular games



Introduction

e Each player's marginal utility of “increasing” his strategy rises with in-
creases of the other players’ strategies.

e In such games, the best response correspondences are increasing, so that
players’ strategies are strategic complements.

e Supermodular games are simple and well-behaved (they have pure strategy
Nash equilibrium).



The main ideas

Consider a symmetric n-player game in which s; € [0, 1] and = (s;, 5_;),

where
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— 7(-) exhibits positive spillovers if 7(s;,5_;) is increasing in 5_;.

— 7(+) exhibits strategic complementarities (increasing first differences)

if w(s,5_;) — m(s;,5_;) is increasing in 5_; for all s, > s;.

— A symmetric Nash equilibrium (SNE) is an action s* € [0, 1] such
that w(s*,s*,) > mw(x,s* ) forall s € [0,1].




Claim: (Weak) strategic complements are necessary over some range for

multiple symmetric Nash equilibrium.

— By contradiction. Suppose that 7(-) satisfies (strictly) decreasing first
differences and that s*,s™ € SNE s.t. s* < s**

— Then, the equilibrium conditions implies
(s, s") — w(s*,s*) <0
and decreasing first differences implies
(s, ™) — w(s*,s™) < 0

which contradicts the assumption that s** isa SNFE.



The strategic-form game

Consider a set IV of players, and for each player i € N

— a non-empty set S; C R% of actions (not necessarily compact and
convex).

— a utility function u; : S — R where S = X;cnS; C R and ¢ =
> icN %i 1s the set of possible outcomes.



Lattices

Let R% denote the finite K-dimensional vector space and let > denote
the usual partial (vector) ordering on R¥, that is, for any z,y € R¥,

T >Y = T > Yk

forall k=1, ..., K, and we also write x > y <= x > y and x # y.

The meet (resp. join) of x and y is denoted by = A y (resp. = V y) and
defined by

r Ay = (min(x1,y1),...,min(z g, yx)) ,
and

rVy = (max(x1,y1), ..., max(z, Yx)) -



A sub-lattice of a lattice (partially ordered set) L is a nonempty subset of
L which is a lattice with the same meet and join operations as L.

S is a sub-lattice of R¢ if s € S and s’ € S implies that s A s’ € S and
svs eS.

The sub-lattice S has a greatest (resp. least) element 5 € S (resp. s € .5)
if 5> s (resp. s <s)forall seS.



Increasing differences

The notion of increasing differences formulizes the notion of strategic com-
plementarily:

u;(s;, s_;) exhibits increasing differences if

wi(sy, sL;) — wi(si s3) > wi(sh, s—i) — wisi, s—4)
whenever
st >s;and s, > s_;,

and exhibits strictly increasing differences when the inequalities are strict.

That is, an increase in the strategies of the other players raises the desir-
ability of playing a higher strategy for player s.



Supermodularity

u;(s;,8_;) is supermodular in s; if for each s_;

wi(84, 5—) + ui(s5, s—) < ug(s; A sjys—g) +ui(s; V 8§, s—;)

for all si,sg € S5;, and strictly supermodular when the inequalities are
strict.

Remark |: supermodularity is always satisfied if s; and s/ can be ordered

. . /
by >, so the strength of supermodularity applies to cases where s; and s;
cannot be so ordered.



Remark Il: supermodularity ensures that increasing first differences implies

strategic complementarity.

If u;(s;, s_;) exhibits increasing differences but is not supermodular in s;,
then the best response need not be monotonically non-decreasing in the

other players’ strategies.



To prove that u; exhibits increasing differences, let s, > s; and s’ , >
/—i € s_; and si,sg € s;. Let u = (3173/_7;) and

v = (s}, s_;). Then the definition of supermodularity implies that

S_;, wWhere s_;,s

wi(u V) 4+ uj(u Av) > ui(u) + u(v)
which can be written
wi(sf, s_q) 4+ ui(si, 54) > wisi, sL;) +u(sg, s4).
Rearranging,

wi(si, s3) — ui(si, s_;) > ulsg, 5—5) — wi(si, 5-4)-



A supermodular game

A supermodular game is such that, for each 7 € N,

S; is sub-lattice in R¥, u; has increasing differences in (s;,s_;), and
u; iIs supermodular in s

w;(s) + ui(s’) <wui(s As') +ui(sVvs) forall s,s" € S.

Remark Ill: Supermodularity in s; is implied by supermodularity in s (let

§ = (8i7 S—i)? s’ = (8{57 Sl_qj)? and s_; = S,—z)



Next, we give conditions for supermodularity in terms of derivatives of the
payoff function u;:

— (Topkis) If S; = R and w; is C? in s;, then u; is supermodular in s;
if and only if for each s_;
82ui

(sj,s_;) >0forallk,j7=1,.... 4

— If S = R and w; is C2, then w; is supermodular if and only if

0%,
8skasj

(s) >O0forall k,7 =1,...,¢n.



Proof: Let e, = (0,...,0,1,0,...,0) be an #n-vector with the unit in the
k-th place, and let u = (s + eeg) and v = (s + ne;) for k # j and
g,n > 0. Supermodularity of u; implies that

wi(u) + u(v) < ui(u Vo) + ui(uAv).
Substituting ,
u;(s + eeg) + u(s +ne;) < ui(s + ee +nej) + uy(s)
which implies that

62%&-
S
naskasj

(s) > 0.

as required.



Examples

Cournot game: suppose N = 1,2, ¢; = [0, ¢;], and u;(q;, q5) = @ Pi(q, q5)—
C;(q;) where the inverse demand functions F;(g;, q;) are C?, P;+q;0P;/0q;
is decreasing in q;, and C;(q;) is differentiable.

If s1 = g1 and s = —¢g» then 82ui/83i83j > 0 for all 5 # j. Thus, the

game is supermodular.

Note: an increase in the strategy of player 2 reduces his output and this
encourages player 1 to increase his output and his strategy.



Bertrand game: consider an oligopoly with demand functions

Di(pi,p—i) = a; — bip; + 22+ d;ijpj
where b; > 0 and dij > 0.

Let u;(p;, p—i) = (pi — ¢;)Di(pi, P—i)-

Then,
(92’&2'
8p7;88j B

for all 2,5 # 1.



Search: consider a matching technology p(e, e*) = ee* — the probability
of being matched with another player when the player being matched takes

effort e € [0, 1] and the average effort of the other players is e*. The cost
of effort is c(e) = e2/2.

The strategy set [0, 1] is a sub-lattice of R and the payoff function u(e, e*) =
ee* — e2/2 has increasing first differences:

u(e, e*) — u(é, e*) = (e — &)e* — e2/2 + &2/2

is increasing in e* when e > é. Because the strategy e is a scalar, the
payoff function wu is automatically supermodular in e.



Bank run: let s; = 0 (resp. s; = 1) represents a decision of player ¢
to withdraw (resp. delay withdrawal). The payoff function u;(s) can be

written

ui(s) = (1 — s;) + s;R(a(s)),

where
ree)={ 57 ) 54

and a(s) = > ;en (1 —s;)/n is the proportion of players who withdraw.



The set of strategy profiles is S = {0,1}", which is easily seen to be a
sub-lattice of R™.

Supermodularity of u; in s; follows automatically because s; is one-dimensional.
Also, s; > 5; implies s; =1 and §; = 0, so

ui(8i, 5—;) — wi(8i; s—i) = R(a(si; s—4)) — 1.

Clearly, R(«(s;,s_;)) is non-increasing in «a(s;,s_;) and «a(s;, s_;) is
decreasing in s_;, so u,; exhibits increasing first differences.



Applications of supermodularity

Supermodular games derive their interest from the following result (Tarski,
1951):

If S is non-empty, compact sub-lattice of R¢ and f: S — S is such that
f(x) < f(y) if x <y, then f has a fixed point s.t. * = f(z*) (i.e. f
cannot “jump down”).

Tarski's theorem is relevant since the set BR(s_;) is a non-empty, compact

sub-lattice and increases in s_;.



u; : S — R is upper semi-continuous (u.s.c.) in s; if
: q 0
lim sup ui(s;,5—q) < ui(s;,8-4),

for any s_; € S; and any sequence {sg} in .S; such that limq sg = sg.

Intuitively, u;(s;, s_;) can jump up as s; changes, but cannot jump down
(a maintained assumption).



Result I: BR;(s_;) is non-empty and compact for every s_; € S_;.

— Pick s_; € S_; and consider a sequence {sg} in S; such that
lim ui(sy,s_;) = sup{u;(si, s_i)|s; € S;}.

Since S; is compact, the sequence {sg} has a convergent subsequence
with limit sg and WLOG we can use the same notation to denote the
subsequence. Then u.s.c. implies that

supu;(si, s—i)|si € Si} = lim ui(sd, s_;) < ui(s?, 5-4) < oo

Thus, S,LO € BR;(s_;) as required.



— Suppose that {s?} is a sequence in BR;(s_;) for some fixed s_; €
S_;. Since S; is compact, {sg} has a convergent subsequence with a
limit s,? e .S;.

— WLOG, take {sg} to be the convergent subsequence. The u.s.c. of u;
in s; implies that

Iign ui(sg, s_;) < ui(s?, S—i);

so s € BR;(s_;).

— Thus, BR;(s—_;) isclosed and BR;(s_;) C S; shows that it is bounded,
so BR;(s_;) is compact as claimed.



Result Il: BR;(s_;) is a sub-lattice of S; for any s_; € S_;.

— The proof is by contradiction. Suppose that si,sfi € BR;(s_;) for
some s_; € S_; and that s; A s; ¢ BR;(s_;), that is

wi(s; A shys5_;) < ui(siys5—;) = ui(sh, 5_;).

— Supermodularity in s; implies that
/ / /
ui(s; V s;,5—3) +ui(s; A sz, s—4) > wi(si,s—i) + ui(s;, s—5)-
The two inequalities together imply that
/ /
ui(si A S, s—i) > uilsi, s—i) = ui(sy, s—i),

contradicting the assumption that s; and s,’i are best responses (the
proof that s; VV s, € BR;(s_;) is similar).



Result Ill: (%) for every s_; € S;, BR;(s_;) has a greatest element

BR;(s_;) (by Zorn's Lemma ), and (i1) BR; is monotonically non-decreasing,
that is, for any s_;,s__. € S_;,

s_; < s_; => BRi(s_;) < BR;i(s_,).

— Suppose that s_;,8" . € S_;, s_; < s ., s; € BRi(s—;) and s} €

BR,L(s_i). Supermodularlty In s; |mpI|es that

wi(s; Vv s;-, s/_z) + u;(s; A s s ) uz(sz, i)+ ui(sé, s’_i),
and thus

wi(s; V sh, 8 ) —wi(sh, s ) > ui(s;, s7;) —ui(s; A s, s’)).



— Since s; € BR;(s_;), increasing first differences implies that
ui(si V s, 8" ;) —ui(sy, 87 ;) > (s, 5—3) —ui(s; A siys_;) >0
— But, since s, € BR;(s’_,),
ui(s; V sh, 8 ) —wui(sh, s’ ) =0,
so s; V s: € BR;(s",).

— If s is the largest element in BR;(s’ ;) then s, > s;Vs’, which implies

that s, > s;.



Lattice properties of the fixed point set

Result IV: the function BR(-) = BR1(-) X ... x BRy/(+) mapping S into
S has a fixed point.

Result V (Topkis 1979): if the game is supermodular and, for each player
1, S; Is compact and w; is u.s.c. in s; for each s_;, then the set of
pure-strategy Nash equilibria is non-empty and contains greatest and least

elements, s and s, respectively.



Result VI (Vives 1990): if the game is strictly supermodular and, for each
player 1, S; is compact and w; is u.s.c. in s; for each s_;, then the set of
pure strategy Nash equilibria is a non-empty, complete sub-lattice.

(a sub-lattice is complete if the supV and inf A of every subset belongs

to the sub-lattice).




Concluding, supermodular are well-behaved:
— pure-strategy equilibria,
— upper (and lower) bound of each player's equilibrium strategies.

— the upper and lower bounds of the sets of Nash equilibria and rational-
izable strategies coincide (Milgrom and Roberts, 1990).



Repeated games

A repeated game is not supermodular even if the stage game on which it

is based is supermodular. For example, consider the 2 X 2 coordination
game:

by b
aj | 1,1]0,0
ar | 0,0 | 4,4

If we adopt the convention that a1 < as and b; < by then this is a game
with increasing first differences (and hence a supermodular game).



Suppose this game is played T'+1 periods, and the payoff from the repeated
game is simply the undiscounted sum of the payoffs in each of the stage
games.

Consider the following strategy-pair: (a1, bp) in the first stage game, and
in each subsequent game (b1, b2) if (a1, bs) is the outcome in the first
stage and (a1, b1) otherwise. This pair of strategies constitutes a sub-
game perfect equilibrium of the repeated game.



Now consider the payoffs for player 1 that result from different outcomes
in the first stage game:

Outcome | Payoff
(a1,b1) 14T
(ag,01) | 0+ T
(al, 52) 0+ 47T
(ag,b2) | 4+ T

The gain to player 1 from increasing his action from aj to as is —1 when
player 2 chooses by and 4 — 371" when player 2 chooses by. Thus, an

increase in player 2's action reduces the first difference of player 1 for T
sufficiently large.




