Economics 209B Behavioral / Experimental Game Theory (Spring 2008)

Lecture 4: Quantal Response Equilibrium (QRE)

Introduction

- Players do not choose best response with probability one (as in Nash equilibrium).
- Players choose responses with higher expected payoffs with higher probability – better response instead of best responses.
- Players have rational expectations and use the true mean error rate when interpreting others' actions.

- Modify Nash equilibrium to incorporate realistic limitations to rational choice modeling of games.
- Provide a statistical framework (structural econometric approach) to analyze game theoretic data (field and laboratory).
- If Nash had been a statistician, he might have discovered QRE rather then Nash equilibrium – Colin Camerer –

In practice, QRE often uses a logit or exponentiation payoff response function:

$$\mathsf{Pr}(a_i) = \frac{\exp[\lambda \sum_{a_{-i} \in A_{-i}} \mathsf{Pr}(a_{-i})u_i(a_i, a_{-i})]}{\sum_{a'_i \in A_i} \exp[\lambda \sum_{a_{-i} \in A_{-i}} \mathsf{Pr}(a_{-i})u_i(a'_i, a_{-i})]}.$$

The choice of action becomes purely random as $\lambda \to 0$, whereas the action with the higher expected payoff is chosen for sure as $\lambda \to \infty$.

- QRE does not abandon the notion of equilibrium, but instead replaces perfectly with imperfectly, or noisy, rational expectations.
- Players estimate expected payoffs in an unbiased way (expectations are correct, on average).
- As such, QRE provides a convenient statistical structure for estimation using either field or experimental data.

Normal-form games

Consider a <u>finite</u> *n*-player game in normal form:

- a set $N=\{1,...,n\}$ of players,
- a strategy set $A_i = \{a_{i1}, ..., a_{iJ_i}\}$ consisting of J_i pure strategies for each player $i \in N$,
- a utility function $u_i : A \to \mathbb{R}$, where $A = \prod_{i \in N} A_i$ for every player $i \in N$.

Let Δ_i be the set of probability measures on A_i :

$$\Delta_i = \{(p_{i1}..., p_{iJ_i}) : \sum_{ij} p_{ij} = 1, p_{ij} \ge 0\}$$

where $p_{ij} = p_i(a_{ij})$.

The notation (a_{ij}, p_{-i}) represents the strategy profile where *i* adopts a_{ij} and all other players adopt their components of $p = (p_i, p_{-i})$.

A profile $p = (p_1, ..., p_n)$ is a Nash equilibrium if for all $i \in N$ and all $p'_i \in \Delta_i$ $u_i(p) > u_i(p'_i, p_{-i}).$ Let $X_i = \mathbb{R}^{j_i}$ represent the space of possible payoffs for strategies that i can adopt and let $X = \prod_{i \in N} X_i$.

Then, define the function $\bar{u}: \Delta \to X$ by

$$\bar{u}(p) = (\bar{u}_i(p), \dots, \bar{u}_n(p)),$$

where

$$\bar{u}_{ij}(p) = u_i(a_{ij}, p_{-i}).$$

A quantal response equilibrium

A version of Nash equilibrium where each player's payoff for each action is subject to random error. Specifically:

[1] For each player i and each action $j \in \{1,...,J_i\}$, and for any $p \in {\bf \Delta}$, let

$$\hat{u}_{ij}(p) = \bar{u}_{ij}(p) + \epsilon_{ij}$$

where player *i* error vector $\epsilon_i = (\epsilon_{i1}, ..., \epsilon_{iJ_i})$ is distributed according to a joint PDF $f_i(\epsilon_i)$.

 $f = (f_1, ..., f_n)$ is <u>admissible</u> if, for each *i*, the marginal distribution of f_i exists for each ϵ_{ij} and $\mathbb{E}(\epsilon_i) = 0$.

[2] For any u
 = (u
₁,...,u
_n) with u
_i ∈ R^{j_i} for each i, define the ij-response set R_{ij} ⊆ R^{j_i} by
R_{ij}(u
_i) = {ϵ_i ∈ R^{j_i} : u
{ij}(p) + ϵ{ij} ≥ u
{ik}(p) + ϵ{ik}∀k = 1,..,J_i}, that is, given p, R_{ij}(u
_i(p)) specifies the region of errors that will lead i to choose action j.

[3] Let the probability that player i will choose action j given \bar{u} be equal

$$\sigma_{ij}(\bar{u}_i) = \int\limits_{\mathbf{R}_{ij}(\bar{u}_i)} f(\epsilon) d\epsilon$$

The function $\sigma_i : \mathbb{R}^{j_i} \to \Delta^{J_i}$ is called the <u>quantal response function</u> (or statistical reaction function) of player *i*.

Let $G = \langle N, A, u \rangle$ be a normal form game, and let f be admissible. A QRE of G is any $\pi \in \Delta$ such that

$$\pi_{ij} = \sigma_{ij}(\bar{u}_i(\pi))$$

for all $i \in N$ and $1 \leq j \leq J_i$.

The quantal response functions

Properties of quantal response functions σ_{ij} :

[1] $\sigma \in \Delta$ is non empty.

[2] σ_i is continuous in \mathbb{R}^{j_i} .

[1] and [2] imply that for any game G and for any admissible f, there exists a QRE.

- [3] σ_{ij} is monotonically increasing in \bar{u}_{ij} .
- [4] If, for each player i and every pair of actions $j, k = 1, ..., J_i$, ϵ_{ij} and ϵ_{ik} are i.i.d., then

$$\bar{u}_{ij} \ge \bar{u}_{ik} \Longrightarrow \sigma_{ij}(\bar{u}) \ge \sigma_{ik}(\bar{u})$$

for all i and all $j, k = 1, ..., J_i$.

[4] states that σ_i orders the probability of different actions by their expected payoffs.

A logit equilibrium

For any given $\lambda\geq$ 0, the logistic quantal response function is defined, for $x_i\in\mathbb{R}^{j_i}$, by

$$\sigma_{ij}(x_i) = rac{\exp(\lambda x_{ij})}{\sum_{k=1}^{J_i} \exp(\lambda x_{ik})},$$

and the QRE or logit equilibrium requires

$$\pi_{ij}(x_i) = \frac{\exp(\lambda \bar{u}_{ij}(\pi))}{\sum_{k=1}^{J_i} \exp(\lambda \bar{u}_{ik}(\pi))}$$

for each i and j.

<u>Result I</u>: Let σ be the logistic quantal response function; $\{\lambda_1, \lambda_2, ...\}$ be a sequence such that $\lim_{t\to\infty} \lambda_t = \infty$; $\{p_1, p_2, ...\}$ be a corresponding sequence with $p_t \in \pi^*(\lambda_t)$ for all t where

$$\pi^*(\lambda) = \left\{ \pi \in \Delta : \pi_{ij} = \frac{\exp(\lambda \bar{u}_{ij}(\pi))}{\sum\limits_{k=1}^{J_i} \exp(\lambda \bar{u}_{ik}(\pi))} \forall i, j \right\}$$

is the logit correspondence.

Then, $p^* = \lim_{t \to \infty} p_t$ is a Nash equilibrium.

<u>Proof</u>: Assume p^* is not a Nash equilibrium. Then, there is some player $i \in N$ and some pair a_{ij} and a_{ik} with $p^*(a_{ik}) > 0$ and

$$u_i(a_{ij}, p_{-i}^*) > u_i(a_{ik}, p_{-i}^*) \text{ or } \bar{u}_{ij}(p^*) > \bar{u}_{ik}(p^*).$$

Since \bar{u} is a continuous function, there exists some small ϵ and T, such that for all $t \geq T$,

$$\bar{u}_{ij}(p^t) > \bar{u}_{ik}(p^t) + \epsilon.$$

But as $t \to \infty$, $\sigma_k(\bar{u}_i(p^t)) / \sigma_j(\bar{u}_i(p^t)) \to 0$ and thus $p^t(a_{ik}) \to 0$, which contradicts $p^*(a_{ik}) > 0$.

<u>Result II</u>: For almost any game G:

[1] $\pi^*(\lambda)$ is odd for almost all π .

[2] π^* is UHC.

[3] The graph of π^* contains a <u>unique</u> branch which starts at the centroid, for $\lambda = 0$, and converges the a unique NE, as $\lambda \to \infty$.

[3] implies that QRE defines a unique selection from the set of Nash equilibrium (the "tracing procedure" of Harsanyi and Selten, 1988).

Example I

Consider the game

	L	M	R
U	1,1	0,0	1, 1
M	0,0	0,0	0 , B
D	1,1	A, 0	1,1

where A > 0 and B > 0.

The game has a unique THP (D, R), and the NE consists of all mixtures between U and D (resp. L and R) for player 1 (resp. 2).

The limit logit equilibrium selects $p = (\frac{1}{2}, 0, \frac{1}{2})$ and $q = (\frac{1}{2}, 0, \frac{1}{2})$ as the limit point.

Example II

Consider the game

	R	L	
T	x, 1	1,2	
B	1,2	2,1	

All limit points are Nash equilibria but not all Nash equilibria are limit points (refinement). Computable in small finite games (Gambit).

Relation to Bayesian equilibrium

In a Bayesian game (Harsanyi 1973), ϵ_i is viewed as a random disturbance to player *i*'s payoff vector.

Suppose that for each $a \in A$, player *i* has a disturbance ϵ_{ij} added to $u_i(a_{ij}, a_{-i})$ and that each ϵ_{ij} is i.i.d. according to *f*.

Harsanyi (1973) assumes a separate disturbance $\epsilon_i(a)$ for *i*'s payoff to each strategy profile $a \in A$, whereas here

$$\epsilon_i(a_i, a_{-i}) = \epsilon_i(a_i, a'_{-i})$$

for all i and all $a_{-i}, a'_{-i} \in A_{-i}$.

QRE inherits the properties of Bayesian equilibrium:

- [1] An equilibrium exists.
- [2] Best responses are "essentially unique" pure strategies.
- [3] Every equilibrium is "essentially strong" and is essentially in pure strategies.

Data

Lieberman (1960)

	B_1	B_2	B_{3}
A_1	15	0	-2
A_2	0	15	-1
A_3	1	2	0

Ochs (1995)

