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Abstract

We extend the standard model of social learning in two ways. First,
we introduce a social network and assume that agents can only observe
the actions of agents to whom they are connected by this network.
Secondly, we allow agents to choose a different action at each date. If
the network satisfies a connectedness assumption, the initial diversity
resulting from diverse private information is eventually replaced by
uniformity of actions, though not necessarily of beliefs, in finite time
with probability one. We look at particular networks to illustrate the
impact of network architecture on speed of convergence and the opti-
mality of absorbing states. Convergence is remarkably rapid, so that
asymptotic results are a good approximation even in the medium run.
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1 Introduction

The canonical model of social learning comprises a set of agents I, a finite
set of actions A, a set of states of nature Ω, and a common payoff function
U(a, ω), where a is the action chosen and ω is the state of nature. Each
agent i receives a private signal σi(ω), a function of the state of nature ω,
and uses this private information to identify a payoff-maximizing action.

This setup provides an example of a pure information externality. Each
agent’s payoff depends on his own action and on the state of nature. It does
not depend directly on the actions of other agents. However, each agent’s
action reveals something about his private signal, so an agent can generally
improve his decision by observing what others do before choosing his own
action. In social settings, where agents can observe one another’s actions, it
is rational for them to learn from one another.

This kind of social learning was first studied by Banerjee (1992) and
Bikhchandani, Hirshleifer and Welch (1992). Their work was extended by
Smith and Sørensen (2000). These models of social learning assume a simple
sequential structure, in which the order of play is fixed and exogenous. They
also assume that the actions of all agents are public information. Thus, at
date 1, agent 1 chooses an action a1, based on his private information; at
date 2, agent 2 observes the action chosen by agent 1 and chooses an action
a2 based on his private information and the information revealed by agent
1’s action; at date 3, agent 3 observes the actions chosen by agents 1 and
2 and chooses an action a3 ...; and so on. In what follows we refer to this
structure as the sequential social-learning model (SSLM).

One goal of the social learning literature is to explain the striking unifor-
mity of social behavior that occurs in fashion, fads, “mob psychology”, and
so forth. In the context of the SSLM, this uniformity takes the form of herd
behavior.1 Smith and Sørensen (2000) have shown that, in the SSLM, herd
behavior arises in finite time with probability one. Once the proportion of
agents choosing a particular action is large enough, the public information
in favor of this action outweighs the private information of any single agent.
So each subsequent agent “ignores” his own signal and “follows the herd”.

This is an important result and it helps us understand the basis for uni-
formity of social behavior.2 At the same time, the SSLM has several special

1A herd occurs if, after some finite date t, every agent chooses the same action. An
informational cascade occurs if, after some finite date t, every agent finds it optimal to
choose the same action regardless of the value of his private signal. An informational
cascade implies herd behavior, but a herd can arise without a cascade.

2The most interesting property of the models of Bikhchandani, Hirshleifer and Welch
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features that deserve further examination: (i) each agent makes a single,
irreversible decision; (ii) the timing of the agent’s decision (his position in
the decision-making queue) is fixed and exogenous; (iii) agents observe the
actions of all their predecessors; and (iv) the number of signals, like the
number of agents, is infinite, so once a cascade begins the amount of infor-
mation lost is large. These features simplify the analysis of the SSLM, but
they are quite restrictive.

In this paper, we study the uniformity of behavior in a framework that
allows for a richer pattern of social learning. We depart from the SSLM in
two ways. First, we drop the assumption that actions are public information
and assume that agents can observe the actions of some, but not necessarily
all, of their neighbors. Second, we allow agents to make decisions simulta-
neously, rather than sequentially, and to revise their decisions rather than
making a single, irreversible decision. We refer to this structure as the social
network model (SNM). For empirical examples that illustrate the important
role of networks in social learning, see Bikhchandani, Hirshleifer and Welch
(1998).

On the face of it, uniform behavior seems less likely in the SNM, where
agents have very different information sets, than in the SSLM. However,
uniformity turns out to be a robust feature of connected social networks.3

The following results are established for any connected network:

Uniformity of behavior : Initially, diversity of private information leads to
diversity of actions. Over time, as agents learn by observing the actions of
their neighbors, some convergence of beliefs is inevitable. A central question
is whether agents can rationally choose different actions forever. Discon-
nected agents can clearly ‘disagree’ forever. Also, there may be cases where
agents are indifferent between two actions and disagreement of actions is im-
material. However, apart from cases of disconnectedness and indifference,
all agents must eventually choose the same action. Thus, learning occurs
through diversity but is eventually replaced by uniformity.

(1992) and Banerjee (1992) is that informational cascades arise very rapidly, before much
information has been revealed. For example, in these models if the first two agents make
the same choice, all subsequent agents will ignore their information and imitate the first
two. The behavior of a potential infinity of agents is determined by the behavior of the
first two. This is both informationally inefficient and Pareto inefficient.

3A network is a directed graph in which the nodes correspond to representative agents.
Agent i can observe the actions of agent j if i is connected to agent j. A network is
connected if, for any two agents i and j, there is a sequence i1, ..., iK such that i1 = i,
iK = j and ik is connected to ik+1 for k = 1, ...,K − 1.
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Optimality : We are interested in whether the common action chosen asymp-
totically is optimal, in the sense that the same action would be chosen if
all the signals were public information. In special cases, we can show that
asymptotically the optimal action is chosen but, in general, there is no reason
why this should be the case.

Although the process of learning in networks can be very complicated,
the SNM has several features that make the asymptotic analysis tractable.
The first is the welfare-improvement principle. Agents have perfect recall, so
expected utility is non-decreasing over time. This implies that equilibrium
payoffs form a submartingale. We use the martingale convergence theorem
to establish that an agents’ (random) payoff converges almost surely to a
constant.

Another useful property of the model is the imitation principle. If agent
i can observe the actions of agent j, then one strategy available to him is
to imitate whatever j does. Since i and j have different information sets,
their conditional payoffs under this strategy may be different. However, on
average, i must do as well as j.

The imitation principle, together with the connectedness of the network,
is used to show that, asymptotically, i and j must get the same average
(unconditional) payoffs. It turns out that this is only possible if agents
choose the same actions. More precisely, agents choose different actions
only if they are indifferent.

Compared to models of boundedly rational learning in networks (e.g.,
Bala and Goyal (1998)) it is relatively straightforward to establish uniformity
of behavior for fully rational agents.

While the convergence properties of the model are quite general, other
properties have only been established for particular networks:

Convergence in finite time: In special cases, we can rule out the possibility
of indifference between actions with probability one. In that case, all agents
choose the same action in finite time with probability one.

Speed of convergence: In two- and three-person networks, we can show
that convergence to a uniform action is extremely rapid, typically occur-
ring within five or six periods with probability close to 1. What happens in
those first few periods is important for the determination of the asymptotic
state.

Network architecture: Systematic differences can be identified in the behav-
ior of different networks. For example, in three-person complete networks
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(where each agent observes all the others), learning stops almost immedi-
ately and the probability of an incorrect action in the long run is high. In
three-person incomplete networks, learning continues for a longer time and
the probability of choosing an incorrect action in the long run is lower.

The rest of the paper is organized as follows. In Section 2 we define the
model and the equilibrium concept more precisely. In Section 3 we use the
case of two-person networks to illustrate the working of the general model
and some special features of complete networks. In Section 4 we derive the
asymptotic properties of the general model. In Section 5 we study a selection
of three-person graphs. Here we see the impact of lack of common knowledge
on the dynamics of social learning and the efficiency of aggregation. We also
compare the dynamic and asymptotic properties of different networks. The
results are discussed in Section 6. Proofs are gathered in Section 7.

2 The model

The social learning literature ignores the complications of strategic behav-
ior in order to focus on pure Bayesian learning. Non-strategic behavior
is simpler to analyze and it also seems more appropriate for a model of
social behavior. However, special assumptions are needed to rationalized
non-strategic behavior. In the SSLM, for example, an agent is assumed
to make a once-in-a-lifetime decision. Because his payoff is independent of
other agents’ actions, it is rational for him to behave myopically and ig-
nore the affect of his action on the agents who follow him. In the SNM, an
agent’s payoff is independent of other agents’ actions but, unlike the SSLM,
agents make repeated decisions. In order to eliminate strategic behavior,
we assume that the economy comprises a large number of individually in-
significant agents and that agents only observe the distribution of actions
at each date. Since a single agent cannot affect the distribution of actions,
he cannot influence the future play of the game. This allows us to ignore
“strategic” considerations and focus on the pure Bayesian-learning aspect
of the model.

The agents
Formally, we assume there is a finite set of locations indexed by i = 1, ..., n.
At each location, there is a non-atomic continuum of identical agents. In
the sequel, the continuum of agents at location i is replaced by a single
representative agent i who maximizes his short-run payoff in each period.
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Uncertainty is represented by a probability measure space (Ω,F ,P),
where Ω is a compact metric space, F is a σ-field, and P a probability
measure. Time is represented by a countable set of dates indexed by t =
1, 2, ....

Let A ⊂ R be a finite set of actions and let U : A × Ω → R be the
common payoff function, where U(a, ·) is a bounded, measurable function
for every action a. Each (representative) agent i receives a private signal
σi(ω) at date 1, where σi : Ω→ R is a random variable.

The network
A social network is represented by a family of sets {Ni : i = 1, ..., n}, where

Ni ⊆ {1, ..., i− 1, i+ 1, ..., n}.

For each agent i, Ni denotes the set of agents j 6= i who can be observed
by agent i. We can think of Ni as representing i’s “neighborhood”. The
sets {Ni : 1 = 1, ..., n} define a directed graph with nodes N = {1, ..., n}
and edges E = ∪ni=1{(i, j) : j ∈ Ni}. The social network determines the
information flow in the economy. Agent i can observe the action of agent j
if and only if j ∈ Ni. Agents have perfect recall so their information set at
each date includes the actions they have observed at every previous date.

For any nodes i and j, a path from i to j is a finite sequence i1, ..., iK
such that i1 = i, iK = j and ik+1 ∈ Nik for k = 1, ...,K − 1. A node i is
connected to j if there is a path from i to j. The network {Ni} is connected
if every pair of nodes i and j is connected. Connectedness is essential for
uniformity of behavior, but not for other results.

Equilibrium
At the beginning of each date t, agents choose actions simultaneously. Then
each agent i observes the actions ajt chosen by the agents j ∈ Ni and
updates his beliefs accordingly. Agent i’s information set at date t consists
of his signal σi(ω) and the history of actions {ajs : j ∈ Ni, s ≤ t−1}. Agent
i chooses the action ait to maximize the expectation of his short-run payoff
U(ait, ω) conditional on the information available.

An agent’s behavior can be described more formally as follows. Agent i’s
choice of action at date t is described by a random variable Xit(ω) and his
information at date t is described by a σ-field Fit. Since the agent’s choice
can only depend on the information available to him,Xit must be measurable
with respect to Fit. Since Fit represents the agent’s information at date t, it
must be the σ-field generated by the random variables σi and {Xjs : j ∈ Ni,
s ≤ t − 1}. Note that there is no need to condition explicitly on agent i’s
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past actions because they are functions of the past actions of agents j ∈ Ni

and the signal σi(ω). Finally, since Xit is optimal, there cannot be any other
Fit-measurable choice function that yields a higher expected utility. These
are the essential elements of our definition of equilibrium, as stated below.

Definition 1 A weak perfect Bayesian equilibrium consists of a sequence of
random variables {Xit} and σ-fields {Fit} such that for each i = 1, ..., n and
t = 1, 2, ...,

(i) Xit : Ω→ A is Fit-measurable,
(ii) Fit = F

¡
σi, {Xjs : j ∈ Ni}t−1s=1

¢
, and

(iii) E[U(x(ω), ω)] ≤ E[U(Xit(ω), ω)], for any Fit-measurable
function x : Ω→ A.

Note that our definition of equilibrium does not require optimality “off
the equilibrium path”. This entails no essential loss of generality as long as
it is assumed that the actions of a single agent, who is of measure zero, are
not observed by other players. Then a deviation by a single agent has no
effect on the subsequent decisions of other agents.

3 Learning with two (representative) agents and
two actions

To fix ideas and illustrate the workings of the basic model, we first consider
the special case of two representative agents, A and B, and two actions, 0
and 1. There are three graphs, besides the empty graph NA = NB = ∅,

(i) NA = {B}, NB = {A};
(ii) NA = {B}, NB = ∅;
(iii) NA = ∅, NB = {A}.

Cases (ii) and (iii) are uninteresting because there is no possibility of mutual
learning. For example, in case (ii), agent B observes a private signal and
chooses the optimal action at date 1. Since he observes no further informa-
tion, he chooses the same action at every subsequent date. Agent A observes
a private signal and chooses the optimal action at date 1. At date 2, he ob-
serves agent B’s action at date 1, updates his beliefs and chooses the new
optimal action at date 2. After that, A receives no additional information,
so agent A chooses the same action at every subsequent date. Agent A has
learned something from agent B, but that is as far as it goes. In case (i),
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on the other hand, the two agents learn from each other and learning can
continue for an unbounded number of periods. We focus on the network
defined in (i) in what follows.

For simplicity, we consider a special information and payoff structure.
We assume that Ω = ΩA ×ΩB , where Ωi is an interval [a, b] and the generic
element is ω = (ωA, ωB). The signals are assumed to satisfy

σi(ω) = ωi,∀ω ∈ Ω, i = A,B,

where the random variables ωA and ωB are independently and continuously
distributed, that is, P = PA × PB and Pi has no atoms. There are two
actions a = 0, 1 and the payoff function is assumed to satisfy

u(a, ω) =

½
0 if a = 0

U(ω) if a = 1,

where the function U(ωA, ωB) is assumed to be a continuous and increasing
function.

These assumptions are sufficient for the optimal strategy to have the
form of a cutoff rule. To see this, note that for any history that occurs with
positive probability, agent i’s beliefs at date t take the form of an event
{ωi} × Bjt, where the true value of ωj is known to belong to Bjt. Then
the payoff to action 1 is ϕi(ωi, Bjt) = E[U(ωA, ωB)|{ωi} × Bjt}. Clearly,
ϕi(ωi, Bjt) is increasing in ωi, because the distribution of ωj is independent
of ωi, so there exists a cutoff ω∗i (Bjt) such that

ωi > ω∗i (Bjt) =⇒ ϕi(ωi, Bjt) > 0,

ωi < ω∗i (Bjt) =⇒ ϕi(ωi, Bjt) < 0.

We assume that when an agent is indifferent between two actions, he chooses
action 1. The analysis is essentially the same for any other the tie-breaking
rule.

The fact that agent i’s strategy takes the form of a cutoff rule implies
that the set Bit is an interval. This can be proved by induction as follows.
At date 1, agent j has a cutoff ω∗j1 and Xj1(ω) = 1 if and only if ωj ≥ ω∗j1.
Then at date 2 agent i will know that the true value of ωj belongs to Bj(ω),
where

Bj2(ω) =

½
[ω∗j1, b] if Xj1(ω) = 1,

[a, ω∗j1) if Xj1(ω) = 0.

Now suppose that at some date t, the information set Bjt(ω) ⊆ [a, b] is an
interval and agent j’s cutoff is ω∗jt(Bit(ω)). Then at date t+1, agent i knows
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that ωj belongs to Bjt+1(ω), where

Bjt+1(ω) =

½
Bjt(ω) ∩ [ω∗jt(Bit(ω)), b] if Xjt(ω) = 1,

Bjt(ω) ∩ [a, ω∗jt(Bit(ω))) if Xjt(ω) = 0.

Clearly, Bjt+1(ω) is also an interval. Hence, by induction, Bit(ω) is an
interval for all t and the common knowledge at date t is Bt(ω) = BAt(ω)×
BBt(ω). By construction, ω ∈ Bt+1(ω) ⊆ Bt(ω) for every t. Then Bt(ω)&
B(ω) = ∩∞t=1Bt(ω) and {B(ω) : ω ∈ Ω} defines a partition of Ω. Note that
ω ∈ B(ω) so B(ω) 6= ∅.

In the limit, when all learning has ceased, agent A knows that ωB belongs
to a set BB(ω) and agent B knows that ωA belongs to BA(ω). Furthermore,
because the actions chosen at each date are common knowledge, the sets
BA(ω) and BB(ω) are common knowledge.

An interesting question is whether, given their information in the limit,
the two agents must agree which action is best. In the two-person case, we
can show directly that both agents must eventually agree, in the sense that
they choose different actions only if they are indifferent. The proof is by
contradiction. Suppose, contrary to what we want to prove, that for some
B and every ω such that B(ω) = B,

E[U(ωA, ωB)|{ωA} ×BB] > 0

and
E[U(ωA, ωB)|BA × {ωB}] < 0.

Then the same actions must be optimal for every element in the information
set (otherwise, more information would be revealed) and this implies

E[U(ωA, ωB)|{ωA} ×BB] ≥ 0
and

E[U(ωA, ωB)|BA × {ωB}] ≤ 0,
where ωA = inf BA(ω) and ωB = supBB(ω). Then

U(ωA, ωB) ≥ 0
and

U(ωA, ωB) ≤ 0,
or U(ωA, ωB) = 0. If BB is not a singleton,

E[U(ωA, ωB)|{ωA} ×BB] < 0
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a contradiction. Similarly, if BA is not a singleton,

E[U(ωA, ωB)|BA × {ωB}] > 0,
a contradiction. Thus, B is a singleton and U(ω) = 0 if ω ∈ B.

The set {ω : U(ω) = 0} has probability zero, so the probability of dis-
agreeing forever is 0. In other words, both agents will choose the same
action in finite time and once they have chosen the same action, they have
reached an absorbing state and will continue to choose the same action in
every subsequent period.

3.1 An example

To illustrate the short-run dynamics of the model, we can further specialize
the example by assuming that, for each agent i, the signal σi(ω) = ωi is
uniformly distributed on the interval [−1, 1] and the payoff to action 1 is
U(ω) = ωA + ωB.

At date 1, each agent chooses 1 if his signal is positive and zero if it
is negative. If both choose the same action at date 1, they will continue
to choose the same action at each subsequent date. Seeing the other agent
choose the same action will only reinforce each agent’s belief that he has
made the correct choice. No further information is revealed at subsequent
dates and so we have reached an absorbing state, in which each agent knows
his own signal and that the other’s signal has the same sign, but nothing
more. So interesting dynamics occur only in the case where agents choose
different actions at date 1. The exact nature of the dynamics depends on the
relative strength of the two signals, measured here by their absolute values.
Without loss of generality, we assume that A has a negative signal, B a
positive signal, and B’s signal is relatively the stronger, i.e., |ωA| < |ωB|.

Case 1: ωA > −1/2 and ωB > 1/2. In the first round at date 1, agent A
will choose action 0 and agent B will choose action 1. At the second date,
having observed that agent B chose 1, agent A will switch to action 1, while
agent B will continue to choose 1. Thereafter, there is an absorbing state
in which both agents choose 1 for ever and no further learning occurs.

Case 2: 3/4 < ωA < −1/2 and ωB > 3/4. As before, A chooses 0 and
B chooses 1 at date 1. At date 2, A observes that B chose 1 and infers
that his signal has expected value 1/2. Since ωA < −1/2, it is optimal for
A to choose 0 again. Since B has an even stronger signal, he will continue
to choose 1. At date 3, A observes that B chose 1, thus revealing that
ωB > 1/2 so the expected value of B’s signal is 3/4 and since ωA > −3/4 it
is optimal for him to switch to 1, which then becomes an absorbing state.
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Case 3: −(t− 1)/t > ωA > −(t− 2)/t and ωB > (t− 1)/t. By analogous
reasoning, A chooses 0 and B chooses 1 until date t when A switches to 1.

The other interesting case to consider is when the signals are similar in
strength. For example, suppose that ωA = −ωB = x∗ where x∗ is the limit
of the sequent {xt}∞t=1 defined by putting x1 = 1

2 , x2 =
1
4 , and

xt =
1

2
(xt−1 + xt−2)

for t = 3, 4, .... Notice that if t is even then xt < x∗ < xt−1.
As usual A chooses 0 and B chooses 1, at date 1. At date 2, A observes

B’s choice in the previous period, realizes that the expected value of B’s
signal is 1/2 > −x∗ and switches to 1. By the symmetric argument, B
switches to 0. At date 3, A observes B’s switch to 0 and realizes that
1/4 < ωB < 1/2, that is, the expected value of ωB is greater than x∗ = −ωA.
So it is optimal for A to choose 0 again. By a symmetric argument, B
switches back to 1 at date 3.

At any even date t, A will choose 1 and B will choose 0 and at any
odd date t, A will choose 0 and B will choose 1. B’s choice at an even
date t reveals that xt−2 < ωB < xt−1 and his choice at an odd date reveals
xt−1 < ωB < xt−2. By construction, at any odd date t, −ωA = x∗ < xt =
1
2 (xt−1 + xt−2), so it is optimal for A to choose 1 at t+ 1. Likewise, at any
even date t, −ωA = x∗ > xt =

1
2 (xt−1 + xt−2), so it is optimal for A to

choose 0 at t+ 1.
In fact, we can find a signal ω to rationalize any sequence of actions with

the properties that for some T , xAt 6= xBt for t < T and xAt = xBt = a
for t ≥ T . However, the sequences corresponding to T = ∞ occur with
probability 0 and the sequences with T <∞ occur with positive probability.

This example can also be used to illustrate the speed of convergence to
uniformity of actions. In the first period, the probability that agents choose
the same action is 1/2. In the second period, it is 3/4. In the third period,
it is 7/8, and so on. This is a very special example, but simulations of other
examples confirm these results.

Finally, we note that in this simple example, where the signals of the
two players are symmetrically distributed, the asymptotic outcome must be
Pareto-efficient. This follows from the fact that the agent with the stronger
signal, as measured by its absolute value, will ultimately determine the
action chosen. However, a simple adjustment to this example shows the
possibility of an inefficient outcome. Suppose that A has a signal uniformly
distributed on [0, 1] and B has a signal uniformly distributed on

£−12 , 1¤.
Then both A and B will choose action 1 at the first date and there will
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be no learning. However, if ωA is close to 0 and ωB is close to −12 then
action 0 is clearly preferred conditional on the information available to the
two agents.

4 Asymptotic properties

Now we return to the general model described in Section 2 and study the
asymptotic properties.

Although the process of learning in a social network is complicated, it
has a number of features that make the characterization of the asymptotic
outcomes tractable. The first is the Welfare-Improvement Principle: since an
agent’s information is non-decreasing over time, his payoff must also be non-
decreasing. This allows us to apply the Martingale Convergence Theorem
to show that equilibrium payoffs converge with probability one as time goes
to infinity. Smith and Sørensen (2000) also use the Martingale Convergence
Principle to show that Bayesian learning eventually leads of to convergence
of actions and beliefs.

The second useful feature is the Imitation Principle: since an agent can
always imitate his neighbor, he must do at least as well as his neighbor on
average (with a one-period lag). Similar ideas have been used by Banerjee
and Fudenberg (1995) and Bala and Goyal (1998). We must be careful in
exploiting this property, since it does not imply that an agent will do as
well as his neighbor with probability one. Nonetheless, it turns out to be a
useful property.

The Imitation Principle is particularly useful in a connected network. If
i is connected to j then we can use the Imitation Principle recursively to
argue that i does as well as j. If j is connected to i the same argument
implies that i and j receive the same payoff on average. This fact is then
used to show that i and j must choose the same action unless they are both
indifferent. In other words, they essentially agree on the best action to take.
In cases where indifference occurs with probability zero, we have uniformity
in the limit.

Without this connectedness assumption, there is no reason to expect
equal payoffs or uniformity. A trivial example, would be the two-person
network NA = {B}, NB = ∅, where A observes B but B does not observe
A. Clearly, A must do at least as well as B but may do better and there is
no reason why A should always choose the same action as B. On the other
hand, the complete network NA = {B}, NB = {A} is connected and as we
saw in the previous section, uniformity of actions arises with probability one
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in finite time.

4.1 Convergence

The first step in our analysis is to establish convergence of beliefs and payoffs.
From the definition of equilibrium, we note that Fit ⊆ Fit+1 ⊆ F for every
i and t. In other words, an agent’s information is non-decreasing over time.
Then his equilibrium payoffmust be non-decreasing over time and, since it is
bounded, must converge. This property is established in the next theorem.

Theorem 1 Let {Xit,Fit : i = 1, ..., n, t = 1, 2, ...} be an equilibrium. For
each i, define V ∗it : Ω→ R by

V ∗it = E[U(Xit, ·)|Fit].

Then {V ∗it} is a submartingale with respect to {Fit} and there exists a random
variable V ∗i∞ such that V ∗it converges to V ∗i∞ almost surely.

4.2 The Imitation Principle

The next step is to establish the Imitation Principle, which states that
asymptotically an agent must do at least as well as his neighbors. This
follows directly from the fact that one strategy available to agent i is to
imitate the actions of agent j ∈ Ni.

Corollary 2 Let {Xit,Fit} be the equilibrium in Theorem 1 and let V ∗it be be
the equilibrium payoffs. Then for any j ∈ Ni and any t, V ∗it ≥ E[V ∗jt−1|Fit].
Furthermore, in the limit,

V ∗i∞ ≥ E[V ∗j∞|Fi∞],

where Fi∞ is the σ-field generated by ∪{Fi1,Fi2, ...}.

4.3 Connectedness

In order to make use of the foregoing results to establish uniformity of ac-
tions, we need to make use of connectedness. We begin by studying the
behavior of adjacent agents i and j ∈ Ni and then extend the results to the
entire network.

It is easy to see that if i is connected to j, then E [V ∗i∞] ≥ E
h
V ∗j∞

i
by induction. In particular, if j ∈ Ni and j is connected to i then V ∗i∞ ≥
E[V ∗j∞|Fit] and E[V ∗j∞] ≥ E[V ∗i∞], which implies that V

∗
i∞ = E[V ∗j∞|Fi∞].
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Corollary 3 Let {Xit,Fit} be the equilibrium in Theorem 1 and let V ∗it be
the equilibrium payoffs. If j ∈ Ni and j is connected to i then V ∗i∞ =
E[V ∗j∞|Fi∞].

Our next result concerns the possibility for agents to choose different
actions in the long run. The fact that agents get the same payoff in the long
run suggests that they must choose the same actions unless they are indiffer-
ent. This result requires a certain amount of care because their information
sets are different, but the intuition is essentially correct as the next theorem
shows.

Let {Xit,Fit : i = 1, ..., n, t = 1, 2, ...} be an equilibrium and define
V a
it : Ω→ R by

V a
it = E[U(a, ·)|Fit]

for any agent i, date t, and action a. Then {V a
it} is a martingale with respect

to {Fit} and V a
it converges to a random variable V a

i∞ almost surely.

Theorem 4 Let i and j be two agents such that j ∈ Ni and j is connected
to i. Let Eab denote the measurable set on which i chooses a infinitely often
and j chooses b infinitely often. Then V a

i∞(ω) = V b
i∞(ω) for almost every ω

in Eab. That is, i is indifferent between a and b for almost every ω in Eab.

Intuitively, if i always believes that he is getting the same payoff as agent
j then i cannot believe that he is choosing a better action than j. In this
sense, they cannot disagree forever.

Clearly, since the network is connected, every agent asymptotically has
the same payoff and, indifference apart, all agents must choose the same
actions.

The concept of connectedness used here is strong in the sense that there
must be a path running both ways between any pair of nodes. If the network
is not connected in this sense, one can still apply Theorem 4 to connected
components of the graph, that is, maximal subsets of nodes such that every
pair of nodes in the subset is connected.

5 Short-run dynamics

To illustrate the short-run dynamics of the model, we adapt the example
introduced in Section 3.1 by assuming there are three agents, A, B, and C,
and two actions, 0 and 1. As before, the payoff from action 0 is identically 0
and the payoff from action 1 is U(ω) = ωA+ωB+ωC , where, for each agent
i, the signal σi(ω) = ωi is uniformly distributed on the interval [−1, 1].

14



Figure 1: Three-person networks

The three-person case, unlike the two-person case, has several non-trivial
social networks, each of which gives rise to its own distinctive learning pat-
terns. We refer to a network in which every agent directly observes every
other agent as complete. Otherwise, the network is incomplete. The net-
work studied in Section 3 is complete whereas most of the networks for the
three-person case are incomplete. Several social networks are illustrated in
Figure 1.

In a complete network, the entire history of past actions is common
knowledge at each date. In an incomplete social network, past actions are
typically not common knowledge at each date. This lack of common knowl-
edge plays an important role in the learning process. It forces agents to make
more or less complicated inferences about what other agents have seen, as
well as about the inferences those agents have drawn, and changes the nature
of the decision rules adopted by the agents.

15



5.1 The complete network

As a benchmark, consider the (unique) complete network, in which each
agent can observe the other two:

NA = {B,C},NB = {A,C}, NC = {A,B}.

If agents choose the same action at the first date, learning effectively ends
there. For example, suppose that ωi > 0 for i = A,B,C. Agent i’s expected
payoff from action 1 is ωi > 0, since E[ωj ] = 0 for j 6= i. So each agent will
choose action 1 at the first date. At the second date, seeing that the others
have chosen the same action at date 1, agent i will infer that ωj > 0 and
hence that E[ωj |ωj > 0] = 1/2 for j 6= i. This will increase agent i’s payoff
from action 1 from ωi to ωi+1 and reinforce agent i’s preference for action
1. So each agent will continue to choose action 1 at date 2. At date 3 there
is no change in actions or beliefs, so we have reached an absorbing state.
Given the assumed values of the signals, the outcome is efficient.

A more interesting case is one in which there is diversity of actions at
date 1. For example, suppose that ωA > 0, ωB > 0, and ωC < 0. At date 1,
agents A and B will choose action 1 and agent C will choose action 0. At
date 2 it becomes common knowledge that ωA > 0, ωB > 0, and ωC < 0.
The payoff from action 1 conditional on agent A’s information is

ωA +E[ωB|ωB > 0] +E[ωC |ωC < 0] = ωA +
1

2
− 1
2
= ωA.

Similarly, the payoff from action 1 conditional on agent B’s information is
ωB. So both A and B will continue to choose action 1. Conditional on agent
C’s information, however, the payoff from action 1 is

E[ωA|ωA > 0] +E[ωB|ωB > 0] + ωC =
1

2
+
1

2
+ ωC > 0

since ωC > −1. So C will switch to action 1 at date 2. At date 3, no
further information is revealed, so actions and beliefs remain unchanged
and once again we have reached an absorbing state. Agent C ignores his
own information and joins the “herd” consisting of agents A and B. Clearly,
the outcome will be inefficient if ωA and ωB are small relative to the absolute
value of ωC .

In either of the cases considered, the learning process comes to a halt by
the end of the second period at the latest.
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5.2 Incomplete networks

The first incomplete network we examine is the Star:

NA = {B,C}, NB = {A}, NC = {A}.
Thus, at each date, A is informed about the entire history of actions that
have already been taken, whereas B and C have imperfect information and
thus have to form expectations about the actions of the unobserved third
agent.

As with the complete network, if all the agents choose the same action
at date 1, this is an absorbing state. So consider again the more interesting
case where there is diversity at date 1, for example, ωA > 0, ωB > 0, and
ωC < 0. The analysis of the decisions of the agents at date 1 is unchanged
but now at date 2 agent C only observes that his action at date 1 does not
match A’s action. Conditional on C’s information, the expected value of
A’s signal is 1/2 and the expected value of B’s signal is zero. Thus, at date
2, it is optimal for C to switch to 1 if ωC ≥ −1/2 and to continue to choose
0 otherwise.

By the third round at date 3, agent C can draw some conclusions about
the actions that B could have taken by observing the actions of agent A at
dates 1 and 2. If A chooses 1 at both dates then it is revealed to C that B’s
signal is positive; otherwise agent A would have switched to action 0 at date
2. Thus, a simple calculation shows that, having observed that A continues
to choose 1, it is optimal for C to switch to action 1 for any realization of
his private signal.

Even so, we have not necessarily reached an absorbing state, as agent
A might himself switch at date 3. To see this, note that at date 3, A’s
expected value of B’s signal is 1/2 and A’s expected value of C’s signal is
−3/4. Thus, it is optimal for A to choose 1 again if ωA ≥ 1/4 and to switch
to 0 otherwise. In case ωA < 1/4, it is common knowledge at date 4 that
0 ≤ ωA < 1/4, 0 ≤ ωB ≤ 1 and −1 ≤ ωC < −1/2. Table 1 summarizes the
play of the game and shows that it can continue for quite a few periods.

t (aA, aB, aC) EA[ωB], EA[ωC ] EB[ωA], EB[ωC ] EC [ωA], EC [ωB]
1 (1, 1, 0) 0, 0 0, 0 0, 0
2 (1, 1, 0) 1/2,−1/2 1/2, 0 1/2, 0
3 (0, 1, 1) 1/2,−3/4 1/2, 0 1/2, 1/2
4 (0, 1, 0) 1/2,−3/4 1/8,−3/4 1/8, 1/2
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Table 1

As Table 1 illustrates, the dynamics of actions and learning are quite
different in complete and incomplete social networks. First, in an incomplete
network, learning does not end after two periods and more information may
be revealed as a result. Secondly, for the diversity of actions to persist, the
agent at the center of the Star must have a signal that is relatively weak (as
measured by its absolute value) compared to the agents at the periphery.
When his signal is relatively weak, the central agent changes his action
frequently, thus transmitting information between the peripheral agents.

Alternating actions can also arise in the Star network when agent A has
the negative signal and B and C have positive signals. At date 2, agent A
observes that both B and C chose action 1 at date 1, so it is optimal for him
to ignore his own information and to switch to action 1. However, at the
same time, either agent B or agent C (or both) would switch from action 1
to action 0 if their signals are weak (less than 1/2). Table 2 illustrates that
alternating actions may continue beyond period 2 and that if the signals of
agents B and C are relatively weak, say ωB < 1/4 and ωC < 1/4, and A’s
signal is relatively strong, ωA < −1/2, there is an absorbing state in which
all choose action 0.

t (aA, aB, aC) EA[ωB], EA[ωC ] EB[ωA], EB[ωC ] EC [ωA], EC [ωB]
1 (0, 1, 1) 0, 0 0, 0 0, 0
2 (1, 0, 0) 1/2, 1/2 −1/2, 0 −1/2, 0
3 (0, 1, 1) 1/4, 1/4 −1/2, 1/2 −1/2, 1/2
4 (0, 0, 0) 1/8, 1/8 −3/4, 1/2 −3/4, 1/2

Table 2

A second example of an incomplete social network is provided by the
Circle, in which each agent observes one other agent:

NA = {C}, NB = {A}, NC = {B}.

In this case, generically no subset of the history of actions is shared as
public information, and thus each agent makes different inferences about
what others have learned. Thus, this network best illustrates how lack of
common knowledge plays a crucial role.
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Proceeding with the above example where ωA > 0, ωB > 0 and ωC < 0,
suppose that (t − 2)/t > ωA > (t − 1)/t and ωC < −(t − 1)/t. As in the
two-person case where agents have strong signals with opposite signs, so too
in this situation despite the lack of common knowledge agents can agree to
disagree. In fact, over time agent A and agent C learn that at least one of
the other agents must have contrary private information which is stronger
than they thought and thus they adjust their expectations towards −1 and
1 respectively. This continues until date t when agent A realizes that his
own signal is weaker and will switch to action 0.

Then, at date t + 1, having observed that agent A switched to action
1, agent B infers that agent A’s signal has expected value (2t − 3)/2t. On
the other hand, agent B cannot tell whether agent C has also switched, but
given his beliefs about C’s information and strategy, he infers that agent
C’s signal has expected value (t− 1)/t. Thus, at date t+1, it is optimal for
agent B to switch to 0 if ωB < 1/2t and to continue to choose 1 otherwise.

6 Discussion

There is a large literature on the economics of networks. The most closely
related paper is by Bala and Goyal (1998), henceforth BG. In the BG model,
at each date, an agent chooses one of several available actions with unknown
payoff distributions. The agent observes his payoff from the action and
uses this information to update his beliefs about the payoff distribution.
Agents are organized in a network and can observe the actions and payoffs
of their neighbors, that is, the agents with whom they are directly linked.
This is a model of social experimentation, in the sense that it generalizes
the problem of a single agent experimenting with a multi-armed bandit
to a social setting, rather than social learning: agents learn by observing
the outcome (payoff) of an experiment (choice of action) rather than by
inferring another agent’s private information from his action. A model of
social experimentation is quite different from a model of social learning. In
a model of social experimentation, there is an informational externality but
there is no informational asymmetry.

There is private information in the BG model, but agents are assumed
to ignore it. For example, suppose that agent A observes agent B’s action
and payoff but not agent C’s, whereas agent B observes agent C’s action
and payoff. Then agent B has private information, not available to agent A,
that is clearly payoff-relevant for agent A as well as agent B. However, A is
assumed to ignore this linkage. A learns from B’s experiments (actions), but
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does not ask what information might have led B to choose those experiments
(actions).

BG show that, in a connected network, in the long run, everyone adopts
the same action and the action chosen can be sub-optimal.

Our model differs from BG in two ways. First, we examine the decisions
of fully rational agents, who infer the information of unobserved agents from
the actions they observe. Although the beliefs of agents are very compli-
cated, it captures the idea that agents try to extract information about
unobserved one, especially in small groups. Second, in our model agents ob-
serve only the actions of other agents, whereas in BG agents observe payoffs
as well as actions. Obviously, there is a lot more information available in
BG.

The techniques used in this paper can be applied to other models. For
example, there is no difficulty applying them to random graphs, as long as
connectedness is satisfied with probability one. They could also be applied
to dynamic graphs where the set of neighbors observed changes over time.

Many questions about social learning in networks remain open. In spe-
cial cases, we have established that uniformity arises in finite time with
probability one. We conjecture that this result is true for all connected so-
cial networks, but we have yet to provide a general proof. This result would
follow as a corollary of Theorem 4 if we could prove that the probability
of indifference in the limit is zero, as we did in the two-person case. The
impossibility of indifference is harder to establish for networks with more
agents but we believe it must be true under some regularity conditions.

A second conjecture is that the result about asymptotic uniformity has
a converse: if all agents choose the same action, they have reached an ab-
sorbing state and will continue to choose that action forever. This is true in
the special cases we have looked at but we believe it must be true in general.

Speeds of convergence can be established analytically in simple cases.
For more complex cases, we have been forced to use numerical methods.
The computational difficulty of solving the model is massive even in the
case of three persons. However, the results are sufficiently dramatic that
they suggest the same might be true for more general cases. This is an
important subject for future research.
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7 Proofs

7.1 Proof of Theorem1

By definition (Billingsley, 1986, p. 480), the sequence {(V ∗it ,Fit) : t =
1, 2, ...} is a submartingale if the following four conditions hold:

(i) Fit ⊆ Fit+1;
(ii) V ∗it is measurable Fit;
(iii) E[|V ∗it |] <∞;
(iv) with probability 1, E[V ∗it+1|Fit] ≥ V ∗it .

The first conditions follows directly from the definition of equilibrium. The
second holds because U(a, ·) is Fit-measurable, Xit is Fit-measurable, and

V ∗it = E[U(Xit(·), ·)|Fit].

The third condition follows because A ⊂ R is finite and U(a, ·) is bounded
for each a. To establish the fourth condition, note that since Fit ⊆ Fit+1,
Xit is Fit+1-measurable and the equilibrium conditions imply that

E[U(Xit, ·)|Fit+1] ≤ E[U(Xit+1, ·)|Fit+1]
= V ∗it+1.

Then

V ∗it = E[U(Xit, ·)|Fit]

= E[E[U(Xit, ·)|Fit+1]|Fit]

≤ E[V ∗it+1|Fit]
and {(V ∗it ,Fit) : t = 1, 2, ...} is a sub-martingale.

From the martingale convergence theorem, there exists a random variable
V ∗i∞ such that V ∗it → V ∗i∞ almost surely.

7.2 Proof of Corollary 2

We note that for any j ∈ Ni, Xjt−1 is Fit-measurable so the equilibrium
conditions imply that

V ∗it ≥ E[U(Xjt−1, ·)|Fit]
= E[E[U(Xjt−1, ·)|Fjt−1]|Fit]

= E[V ∗jt−1|Fit].

From this inequality it follows that V ∗i∞ ≥ E[V ∗j∞|Fi∞], where Fi∞ is the
σ-field generated by ∪{Fi1,Fi2, ...}.
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7.3 Proof of Theorem 4

Let i and j be two agents such that j ∈ Ni and j is connected to i and let
a and b be fixed but arbitrary actions. Define E = {ω : Xit = a i.o, Xjt = b
i.o.}. Then E is a measurable set, in fact, E ∈ Fi∞. Let χE : Ω → {0, 1}
denote the indicator function for the set E, that is,

χE(ω) =

½
1, ω ∈ E,
0, ω /∈ E.

Since V a
it (ω) = V ∗it(ω) i.o. for every ω ∈ E and V a

it → V a
i∞ almost surely, we

have V a
i∞ = V ∗i∞ for almost every ω ∈ E. Similarly, V b

j∞ = V ∗j∞ for almost
every ω ∈ E. From Theorem 1, with probability one,

V ∗itχE → V ∗i∞χE

and
V ∗jtχE → V ∗j∞χE.

From Corollary 3, with probability one,

E[V ∗i∞χE|Fi∞] = E[V ∗j∞χE|Fi∞].

For any action a in A let

V a
it = E[U(a, ·)|Fit].

Clearly, {V a
it} is a martingale and V a

it → V a
i∞ almost surely. Let

Ea
i = {ω : V a

i∞(ω) ≥ V b
i∞(ω), b 6= a}.

Then Ea
i ∩Eb

j belongs to Fi∞∩Fj∞. Suppose that P[Ea
i ∩Eb

j ] > 0 for some
a 6= b. We conclude

E[V ∗i∞|Ea
i ∩Eb

j ] = E[U(a, ·)|Ea
i ∩Eb

j ]

≥ E[U(b, ·)|Ea
i ∩Eb

j ]

= E[V ∗j∞|Ea
i ∩Eb

j ].

Since V ∗i∞ = E[V ∗j∞|Fi∞] we have V a
i∞(ω) = V b

i∞(ω) for almost every ω ∈
Ea
i ∩Eb

j . Thus, agents i and j can disagree (choose different optimal actions)
in the limit only if i is indifferent.
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